Joo,, do06 . 'ii o€ ttri roAr c,ro CAp r fBd'z) Thdi -eian iin bii:90 phrit f6Ong ducc tharm khio tii li€u, Cdu l. Xdt tinh.li€n tuc cia him sd tr.r) = ln2 In Ciu l. Tinh dao him crfp n cria hi.rn sd iix r = -r-= Ql- tl -;: ,=_2*+l'J- ./ CAu 3. Cho him f khi vi 3 ldn u€n khoing ia,b) vi ciic clidm r; x3 X1 ( x2 ( X3 sao cho' f(x1) = f(r.1).= f(xr). Chfng minh tdn ai i e(a.b) sao cho f"(i)= O, {. lo 1 cos t sinr t I sinl neu x*0 X niu x =0 Ciu 4., Tinh tichphdn lS I {t '_ i -, Ciu 5. Tinh dQ dii cung dddng cong dx. 4)L a. * f- ix=a t, =u , t e [g,zo] xle (a,b). - . khoing ia,b) vi ciic clidm r; x3 X1 ( x2 ( X3 sao cho' f(x1) = f(r .1) .= f(xr). Chfng minh tdn ai i e(a.b) sao cho f"(i)= O, {. lo 1 cos t sinr t I sinl neu x*0 X niu