1. Trang chủ
  2. » Giáo Dục - Đào Tạo

CƠ HỌC ỨNG DỤNG - PHẦN 1 CƠ HỌC VẬT RẮN TUYỆT ĐỐI - CHƯƠNG 2 pot

13 695 9

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 240,85 KB

Nội dung

Nếu đường tác dụng của các lực cùng nằm trong mặt phẳng ta có hệ lực đồng quy phẳng.. Hợp lực của hệ lực đồng quy được biểu diễn bằng véc tơ chính của hệ lực đặt tại điểm đồng quy... Khá

Trang 1

Chương 2: HỆ LỰC

2.1 Hệ lực đồng quy phẳng

2.1.1 Định nghĩa

Hệ lực có đường tác dụng đi qua một điểm gọi là hệ lực đồng quy Nếu đường tác dụng của các lực cùng nằm trong mặt phẳng ta có

hệ lực đồng quy phẳng.

2.1.2 Dạng tối giản

Cho hệ đồng quy phẳng có n lực

Sử dụng định lý trượt lực đưa gốc của các véc tơ lưc về điểm đồng quy.

Sử dụng định luất 3 để biến đổi hệ lực đồng quy phẳng thành một lực đặt tại điểm đồng quy.

Hợp lực của hệ lực đồng quy được biểu diễn bằng véc tơ chính của hệ lực đặt tại điểm đồng quy.

Trang 2

2.1.3 Điều kiện cân bằng

Hệ lực đồng quy phẳng cân bằng khi và chỉ khi véc tơ chính của hệ lực triệt tiêu.

Ví dụ

2.2 Hệ ngẫu lực

2.2.1 Ngẫu lực

2.2.1.1 Khái niệm

Hệ hai lực song song, ngược chiều và cùng cường độ tạo thành một ngẫu lực

Trong mặt phẳng xác định ngẫu lực được biểu diễn bằng mô men đại số.

Trong không gian ngẫu lực được biểu diễn bằng véc tơ mô men 2.2.1.2 Biến đổi tương đương ngẫu lực

Hai ngẫu lực nằm trong cùn g một mặt phẳng, có cùng trị số mô men đại số thì tương đương nhau.

Trang 3

Trong không gian hai ngẫu lực có cùng véc tơ mô men thì tương đương với nhau.

2.2.2 Hệ ngẫu lực

Tập hợp các ngẫu lực tác dụng lên một vật rắn gọi là hệ ngẫu lực 2.2.2.1 Thu gọn hệ ngẫu lực

Hợp các ngẫu lực trong mặt phẳng là một ngẫu lực nằm trong mặt phẳng đã cho, có mô men đại số bằng tổng mô men đại số của các ngẫu lực trong hệ.

2.2.2.2 Điều kiện cân bằng

Hệ ngẫu lực phẳng cân bằng khi và chỉ khi tổng mô men đại số của các ngẫu lực trong hệ triệt tiêu.

Ví dụ:

2.3 Hệ lực phẳng

n

k

k

m m

1

Trang 4

2.3.1.Véc tơ chính và mô men chính của hệ lực phẳng

2.3.1.1 Véc tơ chính của hệ lực phẳng

Véc tơ chính của một hệ lực phẳng, ký hiệu là , bằng tổng các véc

tơ lực của hệ lực.

Véc tơ chính có thể xác định bằng phương pháp véc tơ hoặc tọa độ

đề các.

2.3.1.2 Mô men chính của hệ lực phẳng đối với một điểm

 Mô men của một lực đối với một điểm O là một đại lượng đại số,

ký hiệu

Lấy dấu (+) nếu quay quanh O ngược chiều kim đồng hồ.

d F F

V

d

O

d F

F

Trang 5

 Mô men chính của hệ lực phẳng đối với một điểm

Mô men chính của một hệ lực phẳng đối với một điểm O là một lượng đại số, ký hiệu bằng tổng mô men của các lực của hệ đối với điểm O.

 Ví dụ

- Tính Mo của một hệ lực phẳng

 Nhận xét:

- Véc tơ chính là véc tơ tự do có giá trị không đổi với mỗi hệ lực, mô

men chính phụ thuộc vào điểm lấy mô men

- Mô men chính của hệ lực đồng quy lấy đối với điểm đồng quy bằng

0.

- Véc tơ chính của hệ ngẫu lực bằng 0.

O M

n

k

k O

n O

O O

M

1

2

Trang 6

( ,

) (A F B mB F A

)

(F

m

3 2

1, F , F

F

B B

A

'

F

F

F

F

2.3.2 Thu gọn hệ lực phẳng

2.3.2.1 Định lý dời lực song song

Lực đặt tại A tương đương với tác dụng của nó đặt tại B và một ngẫu lực có mô men bằng mô men của đặt tại A đối với B

Chứng minh:

2.3.2.2 Thu gọn hệ lực phẳng về một điểm

Giả sử có một hệ lực gồm 3 lực ( ) thu lần lượt từng lực về

O (theo định lý dời lực song song) ta được một hệ lực đồng quy phẳng và một hệ ngẫu lực phẳng Thu gọn hai hệ này ta được một véc tơ chính đặt tại O và một mô men chính

F

V

O

M

Trang 7

 Định lý: Hệ lực phẳng bất kỳ tương đương với một lực và một

ngẫu lực đặt tại một điểm tuỳ ý cùng nằm trong mặt phẳng tác dụng của hệ lực, tương ứng là lực thu gọn và ngẫu lực thu gọn

2.3.2.3 Các dạng chuẩn của hệ lực phẳng

Tiếp tục thu gọn hệ ngẫu lực phẳng ta được các dạng chuẩn sau:

- Hệ lực phẳng cân bằng khi tồn tại đồng thời và

- Hệ lực phẳng thu gọn về một ngẫu khi và

- Hệ lực phẳng có hợp lực khi:

+ và (đặt tại O)

v

2

f

1

f

3

f

1

f

2

f

3

f

f12

3

m m 2

1

m

O

v

O

mo

)

(V

) (M O

0

V

0

O

M

0

V

0

O

M

0

O

M

0

V

Trang 8

2

f

1

f

3

f

1

f

2

f

3

f

f12

3

m m 2

1

m

O

v O

mo

Trang 9

+ và (đặt cách phương một khoảng về phía phụ thuộc vào chiều của mô men chính )

0

V

0

O

V

M

h  O

O

M

O

m = 0o

v

O

O

mo

v

v

v

O

v

h = M / V O

2.3.2.4 Điều kiện cân bằng của hệ lực phẳng

 Điều kiện cân bằng: Điều kiện cần và đủ để hệ lực phẳng cân

bằng là véc tơ chính và mô men chính của hệ lực đối với một điểm bất kỳ phải đồng thời triệt tiêu.

0

0

O

M

Trang 10

Các dạng phương trình cân bằng

- Dạng 1: Điều kiện cần và đủ để hệ lực phẳng cân bằng là tổng hình chiếu các lực lên hai trục toạ độ vuông góc và tổng mô men của các lực đối với một điểm bất kỳ phải đồng thời triệt tiêu.

0

1

n

k

kx

1

n

k

ky

F ( ) 0

1

0 

n

k

k

F

- Dạng 2: Điều kiện cần và đủ để một hệ lực phẳng cân bằng là tổng

hình chiếu của các lực lên trục  và tổng mô men của các lực đối với hai điểm A và B tuỳ ý phải đồng thời triệt tiêu Với điều kiện là AB không vuông góc với .

0 )

( 1

n

k

k

0 )

( 1

n

k

k

0

1

n

k

k

F

- Dạng 3: Điều kiện cần và đủ để một hệ lực phẳng cân bằng là tổng

mô men của các lực đối với ba điểm A, B và C tuỳ ý không thẳng

hàng phải triệt tiêu.

0 )

( 1

n

k

k

0 )

( 1

n

k

k

0 )

( 1

n

k

k

Trang 11

 Ví dụ:

2.3.2.5 Bài toán cân bằng của hệ lực phẳng với liên kết ma sát

 Khái niệm về ma sát trượt

Cho hai khâu A và B liên kết với nhau như hình vẽ Khảo sát vật A.

N R

S 1

Q B

A

N

R m

F m

P 2 P 3

Q

S 2 S 3 B

A

Các lực tác dụng lên A gồm: Q, N, P

- Khi P = P 1 đủ nhỏ vật A đứng yên  tồn tại lực ma sát

- Khi P = P 2 vật chớm chuyển động, F ma sát đạt cực đại F = F m Góc

 gọi là góc ma sát ( f = tg  = F m /N ), f được gọi là hệ số ma sát trượt

Trang 12

Tiếp tục tăng P = P 3 vật A sẽ chuyển động nhanh dần Phương của

S 3 nằm ngoài góc ma sát.

Bài toán cân bằng của hệ lực phẳng với liên kết ma sát trượt.

Ví dụ:

- Bài toán vật đi lên mặt phẳng nghiêng

-Bài toán vật đi xuông mặt phẳng nghiêng

2.4 Hệ lực không gian

Hệ lực không gian là tập hợp nhiều lực nằm bất kỳ trong không

gian.

2.4.1 Véc tơ chính và véc tơ mô men chính của hệ lực không gian

Tương tự như hệ lực phẳng, véc tơ chính của hệ lực không gian là một véc tơ tự do:

n

k

k

F

V

1

Trang 13

Khi dời song song một lực về một điểm O ta được một lực

và một ngẫu có véc tơ mô men là( I)

F

)

(

0 F

m   F (0)

)

(

0 F

FF

O

I

Khi thu hệ lực không gian về một điểm O ta được một véc tơ chính

và một véc tơ mô men chính

2.4.2 Điều kiện cân bằng

Ta viết được 6 phương trình cân bằng ( 3 phương trình mô men và

3 phương trình hình chiếu)

V

O

M

0

V

0

O

M

Ngày đăng: 23/07/2014, 20:22

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w