1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đồ thị hàm số chứa giá trị tuyệt đối

15 2,2K 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 1,04 MB

Nội dung

Sưu tầm và biên soạn: Dương Văn Tấn 0905092026 ĐỒ THỊ HÀM SỐ CHỨA GIÁ TRỊ TUYỆT ĐỐI Dạng 1. Đồ Thị Hàm     A. Kiến thức . Đề bài : Cho hàm số y=f(x) có đồ thị (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1)        Ta có               Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : - Giữ nguyên phần đồ thị của (C) nằm trên trục hoành ( do (1) ) - Lấy đối xứng qua trục hoành phần đồ thị (C) nằm dưới trục hoành (do (2) Câu 1. Cho hàm số        (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1)              Ta có               Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : - Giữ nguyên phần đồ thị của (C) nằm trên trục hoành ( do (1) ) - Lấy đối xứng qua trục hoành phần đồ thị (C) nằm dưới trục hoành (do (2)) Sưu tầm và biên soạn: Dương Văn Tấn 0905092026 Câu 2. Cho hàm số        (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1)              Ta có               Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : - Giữ nguyên phần đồ thị của (C) nằm trên trục hoành ( do (1) ) - Lấy đối xứng qua trục hoành phần đồ thị (C) nằm dưới trục hoành (do (2)) Câu 3. Cho hàm số    (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1)        Ta có               Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : - Giữ nguyên phần đồ thị của (C) nằm trên trục hoành ( do (1) ) - Lấy đối xứng qua trục hoành phần đồ thị (C) nằm dưới trục hoành (do (2)) Sưu tầm và biên soạn: Dương Văn Tấn 0905092026 Dạng 2. Đồ Thị Hàm      A. Kiến thức . Đề bài : Cho hàm số y=f(x) có đồ thị (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1)         Ta có           Ta lại có hàm số        là hàm chẵn nên (C1) đối xứng qua trục tung (3) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : - Giữ nguyên phần đồ thị của (C) nằm bên phải trục tung ( do (1) ) - Lấy đối xứng qua trục tung phần đồ thị (C) nằm bên phải trục tung (do (3)) Câu 4. Cho hàm số        (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1)              Ta có           Ta lại có hàm số        là hàm chẵn nên (C1) đối xứng qua trục tung (3) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : - Giữ nguyên phần đồ thị của (C) nằm bên phải trục tung ( do (1) ) - Lấy đối xứng qua trục tung phần đồ thị (C) nằm bên phải trục tung (do (3)) Sưu tầm và biên soạn: Dương Văn Tấn 0905092026 Câu 5. Cho hàm số    (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1)             Ta có           Ta lại có hàm số        là hàm chẵn nên (C1) đối xứng qua trục tung (3) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : - Giữ nguyên phần đồ thị của (C) nằm bên phải trục tung ( do (1) ) - Lấy đối xứng qua trục tung phần đồ thị (C) nằm bên phải trục tung (do (3)) Sưu tầm và biên soạn: Dương Văn Tấn 0905092026 Dạng 3. Đồ Thị Hàm         A. Kiến thức . Đề bài : Cho hàm số y=f(x) có đồ thị (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C2)            Ta vẽ từ trong ra ngoài  Vẽ đồ thị hàm        có đồ thị (C1) Ta có           Ta lại có hàm số        là hàm chẵn nên (C1) đối xứng qua trục tung (3) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : - Giữ nguyên phần đồ thị của (C) nằm bên phải trục tung ( do (1) ) - Lấy đối xứng qua trục tung phần đồ thị (C) nằm bên phải trục tung (do (3))  Vẽ đồ thị hàm        có đồ thị (C2) Ta có                    Do đó đồ thị hàm số (C2) được suy từ đồ thị hàm số (C1) như sau : - Giữ nguyên phần đồ thị của (C1) nằm trên trục hoành ( do (4) ) - Lấy đối xứng qua trục hoành phần đồ thị (C1) nằm dưới trục hoành (do (5)) Câu 6. Cho hàm số        (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1)               Ta vẽ từ trong ra ngoài  Vẽ đồ thị hàm        có đồ thị (C1) Ta có           Ta lại có hàm số        là hàm chẵn nên (C1) đối xứng qua trục tung (3) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : - Giữ nguyên phần đồ thị của (C) nằm bên phải trục tung ( do (1) ) - Lấy đối xứng qua trục tung phần đồ thị (C) nằm bên phải trục tung (do (3)) Sưu tầm và biên soạn: Dương Văn Tấn 0905092026  Vẽ đồ thị hàm        có đồ thị (C2) Ta có                    Do đó đồ thị hàm số (C2) được suy từ đồ thị hàm số (C1) như sau : - Giữ nguyên phần đồ thị của (C1) nằm trên trục hoành ( do (4) ) - Lấy đối xứng qua trục hoành phần đồ thị (C1) nằm dưới trục hoành (do (5)) Câu 7. Cho hàm số    (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C2)              Ta vẽ từ trong ra ngoài Sưu tầm và biên soạn: Dương Văn Tấn 0905092026  Vẽ đồ thị hàm        có đồ thị (C1) Ta có           Ta lại có hàm số        là hàm chẵn nên (C1) đối xứng qua trục tung (3) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : - Giữ nguyên phần đồ thị của (C) nằm bên phải trục tung ( do (1) ) - Lấy đối xứng qua trục tung phần đồ thị (C) nằm bên phải trục tung (do (3))  Vẽ đồ thị hàm        có đồ thị (C2) Ta có                    Do đó đồ thị hàm số (C2) được suy từ đồ thị hàm số (C1) như sau : - Giữ nguyên phần đồ thị của (C1) nằm trên trục hoành ( do (4) ) - Lấy đối xứng qua trục hoành phần đồ thị (C1) nằm dưới trục hoành (do (5)) Sưu tầm và biên soạn: Dương Văn Tấn 0905092026 Dạng 4. Đồ Thị Hàm        A. Kiến thức . Đề bài : Cho hàm số y=u(x).v(x) có đồ thị (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1)           Ta có             Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : - Giữ nguyên phần đồ thị của (C) nằm trên miền ( do (1) ) - Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên miền (do (2)) Câu 8. Cho hàm số        (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1)              Tacó                                 Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : - Giữ nguyên phần đồ thị của (C) nằm trên miền  ( do (1) ) - Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên miền (do (2)) Câu 9. Cho hàm số        (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1)               Tacó                                            Sưu tầm và biên soạn: Dương Văn Tấn 0905092026 Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : - Giữ nguyên phần đồ thị của (C) nằm trên miền     ( do (1) ) - Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên miền (    (do (2)) Câu 10. Cho hàm số        (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1)               Ta có                                   Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : - Giữ nguyên phần đồ thị của (C) nằm trên miền        ( do (1) ) - Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên miền        (do (2)) Câu 11. Cho hàm số        (C) Sưu tầm và biên soạn: Dương Văn Tấn 0905092026 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1)               Ta có                                   Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : - Giữ nguyên phần đồ thị của (C) nằm trên miền        ( do (1) ) - Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên miền        (do (2)) Câu 12. Cho hàm số    (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1)       Ta có                    Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : - Giữ nguyên phần đồ thị của (C) nằm trên miền   ( do (1) ) - Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên miền  (do (2)) [...]... Cho hàm số y = f(x) có đồ thị (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) | |  Ta có nhận trục hoành làm trục đối xứng (2) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : - Giữ nguyên phần đồ thị của (C) nằm trên trục hoành ( do (1) ) - Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên trục hoành (do (2)) Câu 14 Cho hàm số. .. và vẽ đồ thị (C) của hàm số 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) | |  Ta có nhận trục hoành làm trục đối xứng (2) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : - Giữ nguyên phần đồ thị của (C) nằm trên trục hoành ( do (1) ) - Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên trục hoành (do (2)) Câu 15 Cho hàm số (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số 2)... và biên soạn: Dương Văn Tấn Câu 13 Cho hàm số (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1)  Ta có | | | | { Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : - Giữ nguyên phần đồ thị của (C) nằm trên miền ( do (1) ) - Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên miền Dạng 5 Đồ Thị Hàm | | 0905092026 (do (2)) Sưu tầm và... Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) | |  Ta có nhận trục hoành làm trục đối xứng (2) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : 0905092026 Sưu tầm và biên soạn: Dương Văn Tấn - Giữ nguyên phần đồ thị của (C) nằm trên trục hoành ( do (1) ) - Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên trục hoành (do (2)) Câu 16 Cho hàm số (C) 1) Khảo sát sự biến thiên và vẽ đồ thị. .. của hàm số 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) | |  Ta có nhận trục hoành làm trục đối xứng (2) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : - Giữ nguyên phần đồ thị của (C) nằm trên trục hoành ( do (1) ) - Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên trục hoành (do (2)) 0905092026 Sưu tầm và biên soạn: Dương Văn Tấn x 1 (1) x 1 1 Khảo sát sự biến thiên và vẽ đồ thị. .. xứng qua trục hoành phần đồ thị (C) nằm trên trục hoành (do (2)) 0905092026 Sưu tầm và biên soạn: Dương Văn Tấn x 1 (1) x 1 1 Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) Câu 17 Cho hàm số : y  2.Từ đồ thị hàm số (1) suy ra đồ thị hàm số (C1 ) |  Ta vẽ từ trong ra ngoài và từ phải qua trái:  | | | | x 1 y || | | | | x 1 0905092026 | | | | | | || | | | | || | | | | | | | | || | | | Sưu tầm và . 0905092026 ĐỒ THỊ HÀM SỐ CHỨA GIÁ TRỊ TUYỆT ĐỐI Dạng 1. Đồ Thị Hàm     A. Kiến thức . Đề bài : Cho hàm số y=f(x) có đồ thị (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm. Dạng 2. Đồ Thị Hàm      A. Kiến thức . Đề bài : Cho hàm số y=f(x) có đồ thị (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1). Cho hàm số y=f(x) có đồ thị (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C2)            Ta vẽ từ trong ra ngoài  Vẽ đồ thị

Ngày đăng: 16/07/2014, 20:49

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w