D E B C A M N B C A K D H B A C K F A B C E D ễN TP Hẩ TON 7 PHN HèNH Bi 1 : Cho tam giác cân ABC (AB = AC). BD và CE là hai phân giác của tam giác. a) Chứng minh: BD = CE b) Xác định dạng của ADE c) Chứng minh: DE // BC Gi i : a) à à 1 1 ? BD CE BDC CEB B C = = = c c c b) ADE l tam giỏc gỡ ? nờu cỏch c/ m ? AE + EB = AB ; AD + DC = AC m : AB = AC ; EB = DC => AE = AD => ADE cõn ti A c ) p dng cõu trờn cú th c/ m DE // BC ? lm t/ no à à ã à à ã 0 0 180 180 ; 2 2 A A B AED B AED = = = => DE // BC Bài 2: Cho tam giác ABC có AB < AC, phân giác AM. Trên tia AC lấy điểm N sao cho AN = AB. Gọi K là giao điểm của các đờng thẳng AB và MN. Chứng minh rằng: a) MB = MN b) MBK = MNC c) AM KC và BN // KC d) AC AB > MC MB Gi i a) ( ) ABM ANM c g c = => MB = MN b) MBK = MNC ( g-c-g) c) AC - AB = AC - AN = NC > MC - MN = MC - MB Bài 3: Cho tam giác ABC vuông tại A. Vẽ đờng cao AH. Trên cạnh BC lấy điểm D sao cho BD = BA. a.Chứng minh rằng: tia AD là tia phân giác của ã HAC . b.Vẽ DK AC (K AC). Chứng minh rằng: AK = AH. c.Chứng minh rằng: AB + AC < BC + AH. Gi i : a) ã ã ã ã ã ã ;BAD BDA BAD ADK BDA ADK= = = => AHD AKD = ( ch gn ) (1 ) => tia AD là tia phân giác của ã HAC . b) T ( 1 ) => AK = AH c) AB = BD ; AH = AK => AB + AK = BD + AH m DC > KC => BA + AK + KC < BD + AH + CD => Kq Bài 4: Cho ABC cân tại A. Kẻ phân giác AD ( D BC ). Trên tia đối của tia AB lấy điểm E sao cho AE = AB. Trên tia phân giác của ã CAE lấy điểm F sao cho AF = BD. Chứng minh rằng: a. AD BC b. AF // BC c. EF = AD d. Các điểm E, F, C thẳng hàng. Gi i : a) ABC cân tại A.cú phõn giỏc AD l ng cao k o E F B C A P R Q 2 2 1 1 M C A N B M N I m n p P b) AD BC ; AD E F ( phan giỏc ca hai gúc k bự ) => . AF // BC c) ABD EAF = ( c-g-c) => EF = AD d) ABD EAF = => ã 0 90EFA = ; AFC CDA = => ã 0 90AFC = => ã 0 180EFC = => Các điểm E, F, C thẳng hàng. C2 : tg ABC = tg CFA => gúc C = gúc A => CF//AD m E F // AD nờn CF trựng vi E F => Các điểm E, F, C thẳng hàng. Bài5: Cho tam giác ABC. Gọi E, F theo thứ tự là trung điểm của các cạnh AB, AC. Trên tia đối của tia FB lấy điểm P sao cho PF = BF. Trên tia đối của tia EC lấy điểm Q sao cho QE = CE. a.Chứng minh: AP = AQ b.Chứng minh ba điểm P, A, Q thẳng hàng. c.Chứng minh BQ // AC và CP // AC d.Gọi R là giao điểm của hai đờng thẳng PC và QB. Chứng minh rằng chu vi PQR bằng hai lần chu vi ABC. e.Ba đờng thẳng AR, BP, CQ đồng quy. Gi i : a) AP = AQ ( Cựng = BC ) ) b) ba điểm P, A, Q thẳng hàng ( qua im A cú AQ//CB ; AP //BC) c) tam giỏc PQR cú QAB CBA QB AC PAC BCA PC AB = => = = => = => ABC RCB = => CR = AB m CP = AB nờn CR = CP C l trung im ca PR ; tng t B l trung im ca QR Kq d) AR, BP, CQ l 3 trung tuyn ca tg PQR => ng quy Bài 1: Cho ABC cân tại A có BC < AB. Đờng trung trực của AC cắt đờng thẳng BC tại M. Trên tia đối của tia AM lấy điểm N sao cho AN = BM. a,Chứng minh rằng: ã AMC = ã BAC b). Chứng minh rằng: CM = CN c) Muốn cho CM CN thì tam giác cân ABC cho trớc phải có thêm điều kiện gì? GII a) M thuc trung trc ca AC => MA = MC => tg MAC cõn ti M => ã à 0 1 180 2MAC C= Tg ABC cõn ti A => ã à 0 1 180 2BAC C= => ã AMC = ã BAC b) tg AMB = tg CNA ( c-g-c ) => CM = CN c) CM CN => tg MCN vuụng cõn => gúc AMC = 45 0 => gúc BAC = 45 0 Bài 2: Cho 3 tia phân biệt Im, In, Ip sao cho ã ã 0 120nIm mIp = = . Trên tia Im, In, Ip lần lợt lấy 3 điểm M, N, P sao cho IM = IN = IP. Kẻ tia đối của tia Im cắt NP tại E. Chứng minh rằng: a. IE NP b. MN = NP = MP Gii : a) tg NIM = tg PIM ( c-g-c ) y x D B A O C M z y x H B A O => MI là phân giác của góc NMP => MI la đường cao của tg cân NMI => MI vng góc với NP b ) tg NIM = tg NIP = tg MIP ( c –g-c ) => MN = NP = MP Bài về nhà : B i 4: à Cho ®iĨm M n»m bªn trong gãc xOy . Qua M vÏ ®êng th¼ng a vu«ng gãc víi Ox t¹i A, c¾t Oy t¹i C vµ vÏ ®êng th¼ng b vu«ng gãc víi Oy t¹i B, c¾t Ox t¹i D. a. Chøng minh OM ⊥ DC. B.X¸c ®Þnh trùc t©m cđa MCD ∆ . c.NÕu M thc ph©n gi¸c gãc xOy th× OCD ∆ lµ tam gi¸c g×? V× sao? (vÏ h×nh minh ho¹ cho tr- êng hỵp nµy). Bài 5: Cho tam giác ABC có góc B nhỏ hơn góc C . a/ Hãy so sánh hai cạnh AC và AB b/ Từ A kẻ AH vuông góc với BC . Tìm hình chiếu của AC , AB trên đường thẳng BC c/ Hãy so sánh hai hình chiếu vừa tìm được ở câu b Bài 6: : Cho tam giác ABC cân có AB = 4 ; BC = 9 . a/ Tính độ dài cạnh AC b/ Tính chu vi của tam giác ABC Bài 7 : Cho góc xOy khác góc bẹt với Oz là phân giác trong của góc xOy , trên Oz lấy điểm H . Qua H kẽ đường thẳng a vuông góc với Oz và cắt hai cạnh Ox, Oy lần lượt tại A và B . a/ Vẽ hình b/ Chứng minh OH là trung tuyến của tam giác OAB B i 4: à Cho ®iĨm M n»m bªn trong gãc xOy . Qua M vÏ ®êng th¼ng a vu«ng gãc víi Ox t¹i A, c¾t Oy t¹i C vµ vÏ ®êng th¼ng b vu«ng gãc víi Oy t¹i B, c¾t Ox t¹i D. b. Chøng minh OM ⊥ DC. B.X¸c ®Þnh trùc t©m cđa MCD∆ . c.NÕu M thc ph©n gi¸c gãc xOy th× OCD∆ lµ tam gi¸c g×? V× sao? (vÏ h×nh minh ho¹ cho tr- êng hỵp nµy). Giải a) tg OCD có 2 đường cao CA và DB cắt nhau tại M OM là đường cao của tg OCD OM ⊥ DC. b) trùc t©m cđa MCD∆ l à điểm O c) tg OCD có OM là đường cao và phân giác OCD ∆ lµ tam gi¸c cân tại O Bài 7 : Cho góc xOy khác góc bẹt với Oz là phân giác trong của góc xOy , trên Oz lấy điểm H . Qua H kẽ đường thẳng a vuông góc với Oz và cắt hai cạnh Ox, Oy lần lượt tại A và B . a/ Vẽ hình b/ Chứng minh OH là trung tuyến của tam giác OAB OH là phân giác và đường cao trong tg cân OAB => OH là trung tuyến của tam giác OAB 8 5 5 H B C A E D K B E D F H I M N I m n p P Bài 8 : Cho tam giác ABC cân có AB = 4 ; BC = 9 . a/ Tính độ dài cạnh AC b/ Tính chu vi của tam giác ABC Giải nếu cạnh còn lại của tg = 4 thì khơng t/ mãn bất đẳng thức tam giác cạnh còn lại = 9 chu vi tg = 4 + 9 + 9 = 22 Bài 9: Cho tam giác cân ABC có AB = AC = 5 cm , BC = 8 cm . Kẻ AH vng góc với BC (H € BC) a) Chứng minh : HB = HC và · CAH = · BAH b)Tính độ dài AH ? c)Kẻ HD vng góc AB ( D€AB), kẻ HE vng góc với AC(E€AC). Chứng minh : DE//BC Giải : c) tg ADH = tg AEH ( ch – gn ) => AD = AE => tg ADE cân tại A => µ µ 0 180 2 A D − = ; µ µ 0 180 2 A B − = => DE//BC Bài về nhà Bài 10 : Cho tam giác MNP vng tại M, biết MN = 6cm và NP = 10cm . Tính độ dài cạnh Bài 11: Cho tam giác DEF vng tại D, phân giác EB .Kẻ BI vng góc với EF tại I .Gọi H là giao điểm của ED và IB .Chứng minh : a)Tam giác EDB = Tam giác EIB b)HB = BF c)DB<BF c.Gọi K là trung điểm của HF. Chứng minh 3 điểm E, B, K thẳng hàng Giải a) Tam giác EDB = Tam giác EIB ( C-G-C) b) EB là đường cao thứ 3 của tg EH F EB ⊥ H F tại M tgEHM = tg E FM EH = E F Tg EBH = tg EB F ( c-g-c ) BH = BF c) DB < BH = BF d) Tg EH F cân tại E có đường cao BM là trung tuyến nên M là trung điểm của HF M trùng với K E, B, K thẳng hàng Bài 12 : Cho tam giác ABC vng tại A . Đường phân giác của góc B cắt AC tại H . Kẻ HE vng góc với BC ( E € BC) . Đường thẳng EH và BA cắt nhau tại I . a) Chứng minh rẳng : ΔABH = ΔEBH b.Chứng minh BH là trung trực của AE H B A C I E c.So sánh HA và HC d.Chứng minh BH vuông góc với IC . Có nhận xét gì về tam giác IBC Gi ả i a) ΔABH = ΔEBH ( c-g-c) b) BA = BE ; HA = HE => BH là trung trực của AE c) HA = HE < HC d) BH là đường cao trong tg BIC => BH ⊥ IC +) tg BIC có đường cao BH là phân giác => cân tại B B i và ề nh à Bµi 13: Cho tam gi¸c ABC c©n t¹i A. Trªn c¹nh AB lÊy ®iÓm D , trªn c¹nh AC lÊy ®iÓm E sao cho AD = AE .Gäi M lµ giao ®iÓm cña BE vµ CD.Chøng minh r»ng: a.BE = CD b.BMD = CME c.AM lµ tia ph©n gi¸c cña gãc BAC. . giác IBC Gi ả i a) ΔABH = ΔEBH ( c-g-c) b) BA = BE ; HA = HE => BH là trung trực của AE c) HA = HE < HC d) BH là đường cao trong tg BIC => BH ⊥ IC +) tg BIC có đường cao BH là phân. minh rằng: AK = AH. c.Chứng minh rằng: AB + AC < BC + AH. Gi i : a) ã ã ã ã ã ã ;BAD BDA BAD ADK BDA ADK= = = => AHD AKD = ( ch gn ) (1 ) => tia AD là tia phân giác của ã HAC k o E F B C A P R Q 2 2 1 1 M C A N B M N I m n p P b) AD BC ; AD E F ( phan giỏc ca hai gúc k bự ) => . AF // BC c) ABD EAF = ( c-g-c) => EF = AD d) ABD EAF = => ã 0 90EFA = ; AFC CDA = => ã 0 90AFC = =>