1. Trang chủ
  2. » Giáo án - Bài giảng

chuyên đề về căn thức

5 408 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 285,5 KB

Nội dung

Chơng I Căn bậc hai - căn bậc ba I. Các kiến thức lý thuyết của chơng. +) Nếu a 0, x 0, a = x <=> x 2 = a +) AA = 2 +) Để A có nghĩa thì A 0 +) )0,0(. = BABAAB +) B A B A = ( A 0, B > 0) +) )0( 2 = BBABA +) = 0,0; 0,0; 2 2 BABA BABA BA +) B BA B A = ( A và B cùng dấu, B 0) +) B BA B A = (A 0, B > 0) +) );0,( )( CBCB CB CBA CB A = + +) );0,( )( CBCB CB CBA CB A + = +) );0( )( 2 CBB CB CBA CB A = Lu ý: CB + và CB đợc gọi là hai biểu thức liên hợp của nhau, CB + và CB cũng đợc gọi Là hai biểu thức liên hợp của nhau Dạng 1. Tìm điều kiện xác định 1. Lu ý khi tìm điều kiện xác định của một biểu thức + Nếu biểu thức chứa biến nằm trong căn bậc hai .Tìm điều kiện của biển để biểu thức trong căn không âm. 2. Kiến thức cần nắm khi tìm điều kiện xác định của biểu thức dới dấu căn 3. Các ví dụ: Ví dụ 1: Tìm điều kiện của x để các biểu thức sau có nghĩa a) 3x ; b) 12 x ; c) 23 +x Dạng 3: Biến đổi biểu thức chứa dấu căn - Rút gọn 1. Lu ý khi biến đổi biểu thức chứa dấu căn + Vận dụng chính xác hằng đẳng thức AA = 2 +) Vận dụng đúng các công thức về trục căn ở mẫu, khử mẫu. +) Quy tắc khai phơng chỉ áp dụng cho tích và thơng(không áp dụng cho tổng và hiệu) Ví dụ 3: Rút gọn a) 22 21 b) a a + 1 1 ( a 0) c) 31 1 31 1 + , d) xx + + 1 2 1 2 ( 0 x 1) Ví dụ 4: Rút gọn các biểu thức sau: a) A = + x x xx 2 4 . 2 1 2 1 Với 0 < x 4 b) B = + + + 1 1 : 11 x x x x x x Với 0 x 1 1 c) C = )1(22. 2 1 . 1 1 2 >+ xx x x Bài tập Bài 1: Tìm điều kiện xác định của các biểu thức sau: a) 53 +x b) 3 2 +x ; c) 12 + x Bài 2: So sánh : a) 2 và 5 b) 3 2 và 17 c) 6 1 26 2 1 v Bài 10: Rút gọn: a) 55 15 b) aa a + +1 (với a > 0) c) 1 1 + a a (với a 0) Bài 11: Rút gọn: a) 32 1 32 1 + + b) 21 2 21 2 + c) 52 1 32 1 + Bài 12: Rút gọn: a) 1 1 1 + + xx 1 b) yxyx + 11 Bài 13 : Rút gọn: a) 2 9 . 3 1 3 1 + x xx b) 4 1 : 2 2 2 2 + + + x x x x x C = 2 1 1 1 1 + a a a a aa Bi 9 : Cho biu thc 1 2 1 2 3 1 3 x A x x x x = + + + . a) Rỳt gn A. b) Tớnh giá tr ca biu thc A khi 11 6 2x = . Bài 12: Cho P = 9x x113 3x 1x 3x x2 + a) Với các giá trị nào của x thì biểu thức có nghĩa b) Rút gọn P c) Tìm x để P < 1 âu 3: Cho biểu thức: A = + + + 1 1 1 1 : 1 1 1 1 xxxx Với 0 x 1 a) Rút gọn A b) Với giá trị nào của x thì A = 1 Bài 3 (3 đ) Cho biểu thức P = + + 1 2 2 1 3 1 : 1 1 1 x x x x xx a) Rút gọn P 2 b) Tìm giá trị nguyên của x để P nguyên Cõu 1. (3.0 im) Cho biu thc: 2 3 2 1 2 : 1 3 2 3 2 2 x x x x P x x x x x x + = ữ ữ ữ ữ + + + + + a) Rỳt gn P b) Tỡm x ( 1) 2 2x P x + = + . c) Tỡm x x=1 v x=3 thừa món: 2 ( 1) 1mP m x m x = + Bài 4 Thực hiện phép tính A= 423 2 423 2 + B= 10067 1 6734 1 341 1 + + + + + C= + + 35 35 35 35 + D= ( 3).135415312 + E= 448)1008700252( + F=2 48537521240 G=(15 10:)4503200550 + H= 3253 ++ . 3253 + I= )154)(610)(154( + J=( ) 32 1 :1(:) 12 22 23 323 ++ + + + + Bài 8: Chứng minh đẳng thức a, 1)).(( 2 33 = + + + ba ba ab ba ba với mọi a>0 ; b>0 ; a b b, ba baba abba = + + 1 : 2 với mọi a>0 ; b>0 ; a b c, (2+ 2).( 1a aa a a aa = + + 4) 1 với mọi a>0 ; a 1 d, 3612 +++ xx - 3612 ++ xx =6 với mọi x 6 e, ( 1 21 ). 1 2 12 2 = + ++ + a a a a a aa a với mọi a>0 ; a 1 f, ( 2 )1() 1 1 ).( 1 1 aa a aa a a aa = + + + với mọi a 0 ; a 1 II. Rút gọn: Bài 10.1: Cho biểu thức A= 824 22 2 + xx x - 824 22 2 ++ + xx x a,Rút gọn A b,Tính gía trị của A tại x=3 ( KQ: A=2) Bài 10.2: B=( )1 1 1 (:)1 1 1 2 + + + x x x với -1<x<1 a,Rút gọn B bTính gía trị của B tại x=4 52 ( KQ: B= x1 = =2- 2 ) Bài 10.3 C= 131 155 + xx xx với x 10;1 > x 3 a,Rút gọn C KQ; :C= 1 21 x x b,Tìm x để C<3 (đúng với mọi ; x 10;1 > x ) Bài 10.4 D= x x x x x x + + + + + 4 52 2 2 2 1 với mọi x 4;0 x ) a,Rút gọn D b,Tìm x để D=2 Bài 10.5 Đ =( ) 2 1 (:) 1 1 11 2 + ++ + + x xxx x xx x a,Rút gọn Đ ( KQ:Đ= 1 2 ++ xx ) b, C/m rằng Đ >0 với mọi đ/k của x để Đ có nghĩa Bài 10.6 E= ( x 1 - 1 1 x ) : ( ) 2 1 1 2 + + x x x x ( với x>0 ;x 1 và x 4) 1; Rút gọn E 2; Tìm x để E=0 Bài 10.7 F= x x x x xx x + + + + 3 32 1 23 32 1115 a,Rút gọn F ( KQ:F= 3 52 + x x ) bTìm gía trị của x để F=0,5 ( x=1/121) c, Tìm x để F nhận giá trị lớn nhất .Tìm giá trị lớn nhất đó (E MAX =2/3<=>x=0) Bài 10.8 G= 1 )1(22 1 2 + + ++ x x x xx xx xx a,Rút gọn G b, Tìm x để G nhận giá trị nhỏ nhất .Tìm giá trị đó Bài 10.9 H= 4 12 + x xx a,Rút gọn H ( KQ: H=3- x 3 vì bTìm x để H có giá trị lớn nhất .Tìm giá trị lớn nhất đó Bài 10.10 I= x x x x xx x 1 ). 1 2 12 2 ( + ++ + với x>0; x 1 a,Rút gọn I ( KQ : I = 1 2 x ) bTính gía trị nguyên của x để I có giá trị nguyên Bài 10.11 J = x x x x xx xx + + + + + + 1 2 2 1 2 393 (với mọi x 1;0 x ). a,Rút gọn J ( KQ J = 1 3 x x bTính gía trị nguyên của x để J có giá trị nguyên ( x=0;4;9) Bài Bài 10.12 K= x x x x xx x + + + + + 2 3 3 12 65 92 a,Rút gọn K ( KQ:K= 3 1 + x x bTính gía trị nguyên của x để K có giá trị nguyên ( x=1;16;25;49) Bài 10.13 M = xxx x xx x ++ + + + 1 1 1 1 1 2 a,Rút gọn M 4 b,TÝnh gÝa trÞ cña M nÕu x=28-6 3 ( M= 1++ xx x = = 3328 133 − − = ) c,C/m r»ng M < 3 1 (xÐt hiÖu vµ c/m hiÖu <0) Bµi 10.14 N =1+( 12 ). 1 2 1 12 − − − +− − − −+ x xx xx xxxx x xx a,Rót gän N b, C/m N > 3 2 c,T×m x biÕt N= 61 6 + Bµi 10.15 P= )1 3 22 (:) 9 )3(3 33 2 − − − − + − − + + x x x x x x x x víi mäi x 9;0 ≠≥ x ) a,Rót gän P b,T×m x ®Ó P<-1 (KQ: 1 3 )3(3 −< + − x x <=> 0 3 )6(4 < + − x x ) c,T×m x ®Î P cã gi¸ trÞ nhá nhÊt Bµi 10.16 Q= 1 2 1 2 + + − +− + x xx xx xx a,Rót gän Q b,BiÕt x >1so s¸nh Q vµ / Q/ c,T×m x ®Î Q=2 d,T×m x ®Î Q cã gi¸ trÞ nhá nhÊt 5 . biểu thức chứa biến nằm trong căn bậc hai .Tìm điều kiện của biển để biểu thức trong căn không âm. 2. Kiến thức cần nắm khi tìm điều kiện xác định của biểu thức dới dấu căn 3. Các ví dụ: Ví dụ 1:. các biểu thức sau có nghĩa a) 3x ; b) 12 x ; c) 23 +x Dạng 3: Biến đổi biểu thức chứa dấu căn - Rút gọn 1. Lu ý khi biến đổi biểu thức chứa dấu căn + Vận dụng chính xác hằng đẳng thức AA. biểu thức liên hợp của nhau, CB + và CB cũng đợc gọi Là hai biểu thức liên hợp của nhau Dạng 1. Tìm điều kiện xác định 1. Lu ý khi tìm điều kiện xác định của một biểu thức + Nếu biểu thức

Ngày đăng: 11/07/2014, 11:00

TỪ KHÓA LIÊN QUAN

w