Đề thi tuyển sinh *Trờng THPT Nguyễn Trãi (Hải Dơng 2002- 2003, dành cho các lớp chuyên tự nhiên) Thời gian: 150 phút Bài 1. (3 điểm) Cho biểu thức. A = 1 44 242242 2 + ++++ x x xxxx 1) Rút gọn biểu thức A. 2) Tìm các số nguyên x để biểu thức A là một số nguyên Bài 2.( 3 điểm) 1) Gọi x 1 và x 2 là hai nghiệm của phơng trình. x 2 -(2m-3)x +1-m = 0 Tìm các giá trị của m để: x 1 2 + x 2 2 +3 x 1 .x 2 (x 1 + x 2 ) đạt giá trị lớn nhất 2) Cho a,b là các số hữu tỉ thoả mãn: a 2003 + b 2003 = 2.a 2003. b 2003 Chứng minh rằng phơng trình: x 2 +2x+ab = 0 có hai nghiệm hữu tỉ. Bài 3. ( 3 điểm) 1) Cho tam giác cân ABC, góc A = 180 0 . Tính tỉ số AB BC . 2) Cho hình quạt tròn giới hạn bởi cung tròn và hai bán kính OA,OB vuông góc với nhau. Gọi I là trung điểm của OB, phân giác góc AIO cắt OA tại D, qua D kẻ đờng thẳng song song với OB cắt cung trong ở C. Tính góc ACD. Bài 4. ( 1 điểm) Chứng minh bất đẳng thức: | 2222 caba ++ | | b-c| với a, b,c là các số thực bất kì. Họ tên thí sinh: Phòng: Số báo danh: . Đề thi tuyển sinh *Trờng THPT Nguyễn Trãi (Hải Dơng 2002- 2003, dành cho các lớp chuyên tự nhiên) Thời