1. Trang chủ
  2. » Giáo án - Bài giảng

đề thi HSG toán 7 (Rất hay)

41 387 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 41
Dung lượng 0,96 MB

Nội dung

Đề số 1: đề thi học sinh giỏi huyện Môn Toán Lớp 7 (Thời gian làm bài 120 phút) Bài 1. Tìm giá trị n nguyên dơng: a) 1 .16 2 8 n n = ; b) 27 < 3 n < 243 Bài 2. Thực hiện phép tính: 1 1 1 1 1 3 5 7 49 ( ) 4.9 9.14 14.19 44.49 89 + + + + Bài 3. a) Tìm x biết: 2x3x2 +=+ b) Tìm giá trị nhỏ nhất của A = x20072006x + Khi x thay đổi Bài 4. Hiện nay hai kim đồng hồ chỉ 10 giờ. Sau ít nhất bao lâu thì 2 kim đồng hồ nằm đối diện nhau trên một đờng thẳng. Bài 5. Cho tam giác vuông ABC ( A = 1v), đờng cao AH, trung tuyến AM. Trên tia đối tia MA lấy điểm D sao cho DM = MA. Trên tia đối tia CD lấy điểm I sao cho CI = CA, qua I vẽ đờng thẳng song song với AC cắt đờng thẳng AH tại E. Chứng minh: AE = BC Đề số 2: đề thi học sinh giỏi huyện Môn Toán Lớp 7 (Thời gian làm bài 120 phút) Bi 1:(4 im) a) Thc hin phộp tớnh: ( ) ( ) 12 5 6 2 10 3 5 2 6 3 9 3 2 4 5 2 .3 4 .9 5 .7 25 .49 A 125.7 5 .14 2 .3 8 .3 = + + b) Chng minh rng : Vi mi s nguyờn dng n thỡ : 2 2 3 2 3 2 n n n n+ + + chia ht cho 10 Bi 2:(4 im) Tỡm x bit: a. ( ) 1 4 2 3, 2 3 5 5 x + = + b. ( ) ( ) 1 11 7 7 0 x x x x + + = Bi 3: (4 im) a) S A c chia thnh 3 s t l theo 2 3 1 : : 5 4 6 . Bit rng tng cỏc bỡnh phng ca ba s ú bng 24309. Tỡm s A. b) Cho a c c b = . Chng minh rng: 2 2 2 2 a c a b c b + = + Bi 4: (4 im) Cho tam giỏc ABC, M l trung im ca BC. Trờn tia i ca ca tia MA ly im E sao cho ME = MA. Chng minh rng: a) AC = EB v AC // BE b) Gi I l mt im trờn AC ; K l mt im trờn EB sao cho AI = EK . Chng minh ba im I , M , K thng hng c) T E k EH BC ( ) H BC . Bit ã HBE = 50 o ; ã MEB =25 o . Tớnh ã HEM v ã BME Bi 5: (4 im) Cho tam giỏc ABC cõn ti A cú à 0 A 20= , v tam giỏc u DBC (D nm trong tam giỏc ABC). Tia phõn giỏc ca gúc ABD ct AC ti M. Chng minh: a) Tia AD l phõn giỏc ca gúc BAC b) AM = BC Ht Đáp án đề 1toán 7 Bài 1. Tìm giá trị n nguyên dơng: (4 điểm mỗi câu 2 điểm) a) 1 .16 2 8 n n = ; => 2 4n-3 = 2 n => 4n 3 = n => n = 1 b) 27 < 3 n < 243 => 3 3 < 3 n < 3 5 => n = 4 Bài 2. Thực hiện phép tính: (4 điểm) 1 1 1 1 1 3 5 7 49 ( ) 4.9 9.14 14.19 44.49 89 + + + + = 1 1 1 1 1 1 1 1 1 2 (1 3 5 7 49) ( ). 5 4 9 9 14 14 19 44 49 12 + + + + + + + + + = 1 1 1 2 (12.50 25) 5.9.7.89 9 ( ). 5 4 49 89 5.4.7.7.89 28 + = = Bài 3. (4 điểm mỗi câu 2 điểm) a) Tìm x biết: 2x3x2 +=+ Ta có: x + 2 0 => x - 2. + Nếu x - 2 3 thì 2x3x2 +=+ => 2x + 3 = x + 2 => x = - 1 (Thoả mãn) + Nếu - 2 x < - 2 3 Thì 2x3x2 +=+ => - 2x - 3 = x + 2 => x = - 3 5 (Thoả mãn) + Nếu - 2 > x Không có giá trị của x thoả mãn b) Tìm giá trị nhỏ nhất của A = x20072006x + Khi x thay đổi + Nếu x < 2006 thì: A = - x + 2006 + 2007 x = - 2x + 4013 Khi đó: - x > -2006 => - 2x + 4013 > 4012 + 4013 = 1 => A > 1 + Nếu 2006 x 2007 thì: A = x 2006 + 2007 x = 1 + Nếu x > 2007 thì A = x - 2006 - 2007 + x = 2x 4013 Do x > 2007 => 2x 4013 > 4014 4013 = 1 => A > 1. Vậy A đạt giá trị nhỏ nhất là 1 khi 2006 x 2007 Bài 4. Hiện nay hai kim đồng hồ chỉ 10 giờ. Sau ít nhất bao lâu thì 2 kim đồng hồ nằm đối diện nhau trên một đờng thẳng. (4 điểm mỗi) Gọi x, y là số vòng quay của kim phút và kim giờ khi 10giờ đến lúc 2 kim đối nhau trên một đờng thẳng, ta có: x y = 3 1 (ứng với từ số 12 đến số 4 trên đông hồ) và x : y = 12 (Do kim phút quay nhanh gấp 12 lần kim giờ) Do đó: 33 1 11: 3 1 11 yx 1 y 12 x 1 12 y x == ===>= => x = 11 4 x)vũng( 33 12 ==> (giờ) Vậy thời gian ít nhất để 2 kim đồng hồ từ khi 10 giờ đến lúc nằm đối diện nhau trên một đờng thẳng là 11 4 giờ Bài 5. Cho tam giác vuông ABC ( A = 1v), đờng cao AH, trung tuyến AM. Trên tia đối tia MA lấy điểm D sao cho DM = MA. Trên tia đối tia CD lấy điểm I sao cho CI = CA, qua I vẽ đờng thẳng song song với AC cắt đờng thẳng AH tại E. Chứng minh: AE = BC (4 điểm mỗi) Đờng thẳng AB cắt EI tại F ABM = DCM vì: AM = DM (gt), MB = MC (gt), ã AMB = DMC (đđ) => BAM = CDM =>FB // ID => ID AC Và FAI = CIA (so le trong) (1) IE // AC (gt) => FIA = CAI (so le trong) (2) Từ (1) và (2) => CAI = FIA (AI chung) => IC = AC = AF (3) và E FA = 1v (4) Mặt khác EAF = BAH (đđ), BAH = ACB ( cùng phụ ABC) => EAF = ACB (5) Từ (3), (4) và (5) => AFE = CAB =>AE = BC Đề số 2: đề thi học sinh giỏi huyện Môn Toán Lớp 7 (Thời gian làm bài 120 phút) Bi 1:(4 im) a) Thc hin phộp tớnh: ( ) ( ) 12 5 6 2 10 3 5 2 6 3 9 3 2 4 5 2 .3 4 .9 5 .7 25 .49 A 125.7 5 .14 2 .3 8 .3 = + + b) Chng minh rng : Vi mi s nguyờn dng n thỡ : 2 2 3 2 3 2 n n n n+ + + chia ht cho 10 Bi 2:(4 im) Tỡm x bit: a. ( ) 1 4 2 3,2 3 5 5 x + = + b. ( ) ( ) 1 11 7 7 0 x x x x + + = Bi 3: (4 im) D B A H C I F E M c) Số A được chia thành 3 số tỉ lệ theo 2 3 1 : : 5 4 6 . Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A. d) Cho a c c b = . Chứng minh rằng: 2 2 2 2 a c a b c b + = + Bài 4: (4 điểm) Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng: a) AC = EB và AC // BE b) Gọi I là một điểm trên AC ; K là một điểm trên EB sao cho AI = EK . Chứng minh ba điểm I , M , K thẳng hàng c) Từ E kẻ EH BC ⊥ ( ) H BC∈ . Biết · HBE = 50 o ; · MEB =25 o . Tính · HEM và · BME Bài 5: (4 điểm) Cho tam giác ABC cân tại A có µ 0 A 20= , vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh: c) Tia AD là phân giác của góc BAC d) AM = BC ……………………………… Hết ……………………………… §¸p ¸n ®Ò 2 to¸n 7 Bài 1:(4 điểm): a) (2 điểm) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 10 12 5 6 2 10 3 5 2 12 5 12 4 10 3 4 6 3 12 6 12 5 9 3 9 3 3 9 3 2 4 5 12 4 10 3 12 5 9 3 3 10 3 12 4 12 5 9 3 2 .3 4 .9 5 .7 25 .49 2 .3 2 .3 5 .7 5 .7 2 .3 2 .3 5 .7 5 .2 .7 125.7 5 .14 2 .3 8 .3 2 .3 . 3 1 5 .7 . 1 7 2 .3 . 3 1 5 .7 . 1 2 5 .7 . 6 2 .3 .2 2 .3 .4 5 .7 .9 1 10 7 6 3 2 A − − − − = − = − + + + + − − = − + + − = − − = − = b) (2 điểm) 2 2 3 2 3 2 n n n n+ + − + − = 2 2 3 3 2 2 n n n n+ + + − − = 2 2 3 (3 1) 2 (2 1) n n + − + = 1 3 10 2 5 3 10 2 10 n n n n− × − × = × − × = 10( 3 n -2 n ) Vậy 2 2 3 2 3 2 n n n n+ + − + − M 10 với mọi n là số nguyên dương. Bài 2:(4 điểm) a) (2 điểm) ( ) 1 2 3 1 2 3 1 7 2 3 3 1 5 2 3 3 1 4 2 1 4 16 2 3,2 3 5 5 3 5 5 5 1 4 14 3 5 5 1 2 3 x x x x x x x x − = − =− = + = − =− + = − − + = − + ⇔ − + = + ⇔ − + =   ⇔ − = ⇔         ⇔ b) (2 điểm) ( ) ( ) ( ) ( ) 1 11 1 10 7 7 0 7 1 7 0 x x x x x x x + + + − − − =   ⇔ − − − =   ( ) ( ) ( ) 1 10 1 10 7 0 1 ( 7) 0 7 0 7 ( 7) 1 8 7 1 7 0 10 x x x x x x x x x x +    ÷   + − = − − = − = ⇒ = − = ⇒ =   ⇔ − − − =     ⇔     ⇔   Bài 3: (4 điểm) a) (2,5 điểm) Gọi a, b, c là ba số được chia ra từ số A. Theo đề bài ta có: a : b : c = 2 3 1 : : 5 4 6 (1) và a 2 +b 2 +c 2 = 24309 (2) Từ (1) ⇒ 2 3 1 5 4 6 a b c = = = k ⇒ 2 3 ; ; 5 4 6 k a k b k c= = = Do đó (2) ⇔ 2 4 9 1 ( ) 24309 25 16 36 k + + = ⇒ k = 180 và k = 180 − + Với k =180, ta được: a = 72; b = 135; c = 30. Khi đó ta có số A = a + b + c = 237. + Với k = 180 − , ta được: a = 72 − ; b = 135 − ; c = 30 − Khi đó ta có só A = 72 − +( 135 − ) + ( 30 − ) = 237 − . b) (1,5 điểm) Từ a c c b = suy ra 2 .c a b= khi đó 2 2 2 2 2 2 . . a c a a b b c b a b + + = + + = ( ) ( ) a a b a b a b b + = + Bài 4: (4 điểm) a/ (1điểm) Xét AMC ∆ và EMB∆ có : AM = EM (gt ) · AMC = · EMB (đối đỉnh ) BM = MC (gt ) Nên : AMC ∆ = EMB∆ (c.g.c ) 0,5 điểm ⇒ AC = EB Vì AMC∆ = EMB∆ · MAC⇒ = · MEB (2 góc có vị trí so le trong được tạo bởi đường thẳng AC và EB cắt đường thẳng AE ) Suy ra AC // BE . 0,5 điểm b/ (1 điểm ) Xét AMI∆ và EMK∆ có : AM = EM (gt ) · MAI = · MEK ( vì AMC EMB∆ = ∆ ) AI = EK (gt ) Nên AMI EMK∆ = ∆ ( c.g.c ) Suy ra · AMI = · EMK Mà · AMI + · IME = 180 o ( tính chất hai góc kề bù ) ⇒ · EMK + · IME = 180 o ⇒ Ba điểm I;M;K thẳng hàng c/ (1,5 điểm ) Trong tam giác vuông BHE ( µ H = 90 o ) có · HBE = 50 o · HBE⇒ = 90 o - · HBE = 90 o - 50 o =40 o · HEM⇒ = · HEB - · MEB = 40 o - 25 o = 15 o · BME là góc ngoài tại đỉnh M của HEM∆ Nên · BME = · HEM + · MHE = 15 o + 90 o = 105 o ( định lý góc ngoài của tam giác ) Bài 5: (4 điểm) a) Chứng minh ∆ ADB = ∆ ADC (c.c.c) suy ra · · DAB DAC= Do đó · 0 0 20 : 2 10DAB = = b) ∆ ABC cân tại A, mà µ 0 20A = (gt) nên · 0 0 0 (180 20 ) : 2 80ABC = − = ∆ ABC đều nên · 0 60DBC = K H E M B A C I 20 0 M A B C D Tia BD nằm giữa hai tia BA và BC suy ra · 0 0 0 80 60 20ABD = − = . Tia BM là phân giác của góc ABD nên · 0 10ABM = Xét tam giác ABM và BAD có: AB cạnh chung ; · · · · 0 0 20 ; 10BAM ABD ABM DAB= = = = Vậy: ∆ ABM = ∆ BAD (g.c.g) suy ra AM = BD, mà BD = BC (gt) nên AM = BC Đề số 3: đề thi học sinh giỏi Môn Toán Lớp 7 (Thời gian làm bài 120 phút) Câu 1: Tìm tất cả các số nguyên a biết a 4 Câu 2: Tìm phân số có tử là 7 biết nó lớn hơn 9 10 và nhỏ hơn 9 11 Câu 3. Cho 2 đa thức P ( ) x = x 2 + 2mx + m 2 và Q ( ) x = x 2 + (2m+1)x + m 2 Tìm m biết P (1) = Q (-1) Câu 4: Tìm các cặp số (x; y) biết: = = = x y a / ; xy=84 3 7 1+3y 1+5y 1+7y b/ 12 5x 4x Câu 5: Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau : A = 1+x +5 B = 3 15 2 2 + + x x Câu 6: Cho tam giác ABC có  < 90 0 . Vẽ ra phía ngoài tam giác đó hai đoạn thẳng AD vuông góc và bằng AB; AE vuông góc và bằng AC. a. Chứng minh: DC = BE và DC BE b. Gọi N là trung điểm của DE. Trên tia đối của tia NA lấy M sao cho NA = NM. Chứng minh: AB = ME và ABC = EMA c. Chứng minh: MA BC Đáp án đề 3 toán 7 Câu 1: Tìm tất cả các số nguyên a biết a 4 0 a 4 => a = 0; 1; 2; 3 ; 4 * a = 0 => a = 0 [...]... 0,25 0,25 0,5 0,5 Gọi số số hạng của tổng là n , ta có : n(n + 1) = 111a = 3. 37. a Hay n(n+1) =2.3. 37. a 2 0,25 Vậy n(n+1) chia hết cho 37 , mà 37 là số nguyên tố và n+1 a = 3 hoặc a = - 3 * a = 4 => a = 4 hoặc a = - 4 Câu 2: Tìm phân số có tử là 7 biết nó lớn hơn Gọi mẫu phân số cần tìm là x Ta có: 9 9 và nhỏ hơn 10 11 9 7 9 63 63 63 => => -77 < 9x < -70 Vì 9x M => 9x = -72 9 < < < < 10 x 11 70 9 x 77 => x = 8 Vậy phân số cần tìm là Câu 3 Cho 2 đa thức 7 8 P ( x ) = x 2 + 2mx + m 2 và Q ( x ) = x 2 + (2m+1)x + m 2 Tìm m biết P (1) = Q (-1) P(1)... điểm cố định khi D thay đổi trên cạnh BC Câu 5: (1 điểm) Tìm số tự nhiên n để phân số 7n 8 có giá trị lớn nhất 2n 3 Đề số 11: đề thi học sinh giỏi (Thời gian làm bài 120 phút) Câu 1: (2 điểm) a) Tính: 3 3 11 11 A = 0 ,75 0,6 + + : + + 2 ,75 2,2 7 13 7 13 10 1,21 22 0,25 5 225 : + B= 49 + 9 7 3 b) Tìm các giá trị của x để: x + 3 + x + 1 = 3x Câu 2: (2 điểm) a b c không là... p 2 + 1 ; 24 p 2 + 1 là các số nguyên tố Đề số 20: đề thi học sinh giỏi (Thời gian làm bài 120 phút) Câu 1: (2 điểm) a) Thực hiện phép tính: 3 3 + 7 13 ; A= 11 11 2 ,75 2,2 + + 7 3 B = ( 251.3 + 281) + 3.251 (1 281) 0 ,75 0,6 + b) Tìm các số nguyên tố x, y sao cho: 51x + 26y = 2000 Câu 2: ( 2 điểm) a) Chứng minh rằng: 2a - 5b + 6c 17 nếu a - 11b + 3c 17 (a, b, c Z) bz cy cx az ay bx = = a... = 75 (42004 + 42003 + + 42 + 4 + 1) + 25 l s chia ht cho 100 Bi 6 (4): Cho tam giỏc ABC cú gúc A = 600 Tia phõn giỏc ca gúc B ct AC ti D, tia phõn giỏc ca gúc C ct AB ti E Cỏc tia phõn giỏc ú ct nhau ti I Chng minh: ID = IE Đề số 8: đề thi học sinh giỏi (Thời gian làm bài 120 phút) Bi 1 (5): 1, Tỡm n N bit (33 : 9)3n = 72 9 2, Tớnh : 1 2 3 2 4 2 3 5 7 A = + 0, (4) + 2 4 6 9 2 3 5 7. .. BED Bài 5: (1 điểm) Tìm các cặp số nguyên tố p, q thoả mãn: 2 52 p + 19 97 = 52 p + q 2 Đề số 13: đề thi học sinh giỏi (Thời gian làm bài 120 phút) Bài 1: (2 điểm) 5 5 1 3 1 13 2 10 230 + 46 4 27 6 25 4 Tính: 2 3 10 1 1 + : 12 14 7 10 3 3 Bài 2: (3 điểm) a) Chứng minh rằng: A = 3638 + 4133 chia hết cho 77 b) Tìm các số nguyên x để B = x 1 + x 2 đạt giá trị nhỏ nhất c) Chứng minh rằng:... cho: 2n 1 chia hết cho 7 Bài 4: (2 điểm) Cho cạnh hình vuông ABCD có độ dài là 1 Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi APQ bằng 2 Chứng minh rằng góc PCQ bằng 450 Bài 5: (1 điểm) Chứng minh rằng: 3a + 2b 17 10a + b 17 (a, b Z ) Đề số 14: đề thi học sinh giỏi (Thời gian làm bài 120 phút) Bài 1: (2 điểm) a) Tìm số nguyên dơng a lớn nhất sao cho 2004! chia hết cho 7a 1 1 1 1 + + + + 2... tam giác vuông với c là số đo cạnh huyền Chứng minh rằng: a 2 n + b 2 n c 2 n ; n là số tự nhiên lớn hơn 0 Đề số 16: đề thi học sinh giỏi (Thời gian làm bài 120 phút) Câu 1: (2 điểm) Tính: 3 1 16 1 8 5 +3 5 19 4 : 7 A= 9 4 1 24 14 2 2 34 34 17 1 1 1 1 1 1 1 B= 3 8 54 108 180 270 378 Câu 2: ( 2, 5 điểm) 1) Tìm số nguyên m để: a) Giá trị của biểu thức m -1 chia hết cho giá trị của biểu thức... FM Câu 5: (1 điểm) Cho 2n + 1 là số nguyên tố (n > 2) Chứng minh 2n 1 là hợp số Đề số 17: đề thi học sinh giỏi (Thời gian làm bài 120 phút) Câu 1: (2 điểm) Tính nhanh: 1 1 1 1 (1 + 2 + 3 + + 99 + 100) (63.1,2 21.3,6) 2 3 7 9 A= 1 2 + 3 4 + + 99 100 1 2 3 2 4 14 7 + 35 ( 15 ) B= 1 3 2 2 5 + 10 25 5 7 Câu 2: (2 điểm) a) Tính giá trị của biểu thức A = 3x 2 2 x + 1 với x = b) Tìm... EF = 2 AM c) AM EF Câu 5: (1 điểm) 1 2 1 3 1 4 Chứng tỏ rằng: 1 + + + 1 1 1 1 1 1 = + + + + 99 200 101 102 199 200 Đề số 18: đề thi học sinh giỏi (Thời gian làm bài 120 phút) Câu 1: (2 điểm) 2 2 1 1 + 0,25 + 9 11 3 5 a) Thực hiện phép tính: M = 7 7 1 1,4 + 1 0, 875 + 0 ,7 9 11 6 1 1 1 1 1 1 b) Tính tổng: P = 1 10 15 3 28 6 21 0,4 Câu 2: (2 điểm) 1) Tìm x biết: 2 x + 3 2 4 x = 5 2) . 9 3 2 .3 4 .9 5 .7 25 .49 2 .3 2 .3 5 .7 5 .7 2 .3 2 .3 5 .7 5 .2 .7 125 .7 5 .14 2 .3 8 .3 2 .3 . 3 1 5 .7 . 1 7 2 .3 . 3 1 5 .7 . 1 2 5 .7 . 6 2 .3 .2 2 .3 .4 5 .7 .9 1 10 7 6 3 2 A − − − − =. (2 điểm) ( ) ( ) ( ) ( ) 1 11 1 10 7 7 0 7 1 7 0 x x x x x x x + + + − − − =   ⇔ − − − =   ( ) ( ) ( ) 1 10 1 10 7 0 1 ( 7) 0 7 0 7 ( 7) 1 8 7 1 7 0 10 x x x x x x x x x x +    ÷ . : aa nn . 37. 3111 2 )1( == + Hay n(n+1) =2.3. 37. a Vậy n(n+1) chia hết cho 37 , mà 37 là số nguyên tố và n+1< ;74 ( Nếu n = 74 không thoả mãn ) 0,25 0,25 Do đó n= 37 hoặc n+1 = 37 Nếu n= 37 thì n+1

Ngày đăng: 07/07/2014, 05:00

TỪ KHÓA LIÊN QUAN

w