1. Trang chủ
  2. » Giáo án - Bài giảng

Tích lũy chuyên môn tháng 04

23 256 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 23
Dung lượng 587,5 KB

Nội dung

Nội dung phương pháp I. Phương pháp lượng giác hoá 1. Nếu thì ta có thể đặt hoặc Ví dụ 1 : Lời giải : ĐK : Đặt Phương trình đã cho trở thành : cos( )( ) = 0 Kết hợp với điều kiện của t suy ra : Vậy phương trình có 1 nghiệm : Ví dụ 2 : Lời giải : ĐK : Khi đó VP > 0 . Nếu Nếu . Đặt , với ta có : ( ) ( ) = 0 Vậy nghiệm của phương trình là Ví dụ 3 : Lời giải : ĐK : Đặt phương trình đã cho trở thành : Vậy phương trình có nghiệm duy nhất Ví dụ 4 (TC THTT): HD : Nếu : phương trình không xác định . Chú ý với ta có : vậy để giải phương trình (1) ta chỉ cần xét với Đặt khi đó phương trình đã cho trở thành : 2. Nếu thì ta có thể đặt : Ví dụ 5 : Lời giải : ĐK : Đặt Phương trình đã cho trở thành : kết hợp với điều kiện của t suy ra Vậy phương trình có 1 nghiệm : TQ : Ví dụ 6 : Lời giải : ĐK : Đặt phương trình đã cho trở thành : (thỏa mãn) TQ : với a,b là các hằng số cho trước 3. Đặt để đưa về phương trình lượng giác đơn giản hơn : Ví dụ 7 : (1) Lời giải : Do không là nghiệm của phương trình nên : (1) (2) Đặt . Khi đó (2) trở thành : Suy ra (1) có 3 nghiệm : Ví dụ 8 : Lời giải : ĐK : Đặt phương trình đã cho trở thành : Kết hợp với điều kiện suy ra : Vậy phương trình có 1 nghiệm : II. Phương pháp dùng ẩn phụ không triệt để * Nội dung phương pháp : Đưa phương trình đã cho về phương trình bậc hai với ẩn là ẩn phụ hay là ẩn của phương trình đã cho : Đưa phương trình về dạng sau : khi đó : Đặt . Phương trình viết thành : Đến đây chúng ta giải t theo x. Cuối cùng là giải quyết phương trình sau khi đã đơn giản hóa và kết luận : Ví dụ 10 : (1) lời giải : ĐK : Đặt Lúc đó : (1) Phương trình trở thành : Giải phương trình trên với ẩn t , ta tìm được : Do nên không thỏa điều kiện . Với thì : ( thỏa mãn điều kiên Ví dụ 11 : Lời giải : ĐK : Đặt . phương trình đã cho trở thành : * Với , ta có : (vô nghiệm vì : ) * Với , ta có : Do không là nghiệm của phương trình nên : Bình phương hai vế và rút gọn ta được : (thỏa mãn) TQ : [ Ví dụ 12 : Lời giải : Đặt . Phương trình đã cho viết thành : Từ đó ta tìm được hoặc Giải ra được : . * Nhận xét : Cái khéo léo trong việc đặt ẩn phụ đã được thể hiện rõ trong ở phương pháp này và cụ thể là ở ví dụ trên . Ở bài trên nếu chỉ dừng lại với việc chọn ẩn phụ thì không dễ để giải quyết trọn vẹn nó . Vấn đề tiếp theo chính là ở việc kheo léo biến đổi phần còn lại để làm biến mất hệ số tự do , việc gải quyết t theo x được thực hiện dễ dàng hơn . ví dụ 13 : Lời giải : ĐK : Đặt . phương trình đã cho trở thành : Giải ra : hoặc (loại) * ta có : Vậy là các nghiệm của phương trình đã cho . ví dụ 14 : Lời giải : ĐK : Đặt Phương trình đã cho trở thành : Phương trình trên đã khá đơn giản !!!!!!! III. Phương pháp dùng ẩn phụ đưa về dạng tích 1. Dùng một ẩn phụ Ví dụ 15 : (1) Lời giải : ĐK : . Đặt . phương trình (1) trở thành : (2) giải đựoc bằng cách áp dụng phương pháp I : Đặt để đưa về dạng : TQ : Với a là hắng số cho trước . Ví dụ 16 : (1) Lời giải : ĐK : Viết lại (1) dưới dạng : (2) Đặt . Khi đó (2) trở thành : Do vậy hoặc * . Ta có : * . Ta có : Vậy phương trình đã cho có 2 nghiệm : Ví dụ 17 : Lời giải : ĐK : (1) Đặt (2) . phương trình đã cho trở thành : (3) Đối chiếu với hai điều kiện (1) và (2) thay vào và giải ra : Ví dụ 18 : Lời giải : ĐK : (1) . trở thành : Phương trình trên đã khá đơn giản !!!!!!! III. Phương pháp dùng ẩn phụ đưa về dạng tích 1. Dùng một ẩn phụ Ví dụ 15 : (1) Lời giải : ĐK : . Đặt . phương trình (1) trở thành : (2)

Ngày đăng: 06/07/2014, 12:00

TỪ KHÓA LIÊN QUAN

w