HƯỚNG DẪN ÔN TẬP HỌC KỲ 2 – MÔN TOÁN 9* LÝ THUYẾT: Xem lại đề cương HKI + những nội dung sau đây: A.ĐẠI SỐ: CHƯƠNG III : Hệ hai phương trình bậc nhất một ẩn 1 Phương trình bậc nhất hai ẩ
Trang 1HƯỚNG DẪN ÔN TẬP HỌC KỲ 2 – MÔN TOÁN 9
* LÝ THUYẾT: Xem lại đề cương HKI + những nội dung sau đây:
A.ĐẠI SỐ:
CHƯƠNG III : Hệ hai phương trình bậc nhất một ẩn
1) Phương trình bậc nhất hai ẩn
2) Các phương pháp giải hệ: pp thế, pp cộng, pp đồ thị
3) Giải bài toán bằng cách lập hệ phương trình
4) Quan hệ giữa số nghiệm của hệ phương trình :
' ' 'c b y c a
c by ax
với vị trí tương đối của hai đường thẳng (d): ax + by = c và (d’): a’x + b’y = c’
CHƯƠNG IV: Hàm số y = ax 2 ( a 0) Phương trình bậc nhất hai một ẩn.
1) Tính chất và đồ thị của hàm số y = ax2 ( a0)
2) Phương trình bậc hai một ẩn số
3) Công thức nghiệm , công thức nghiệm thu gọn của phương trình bậc hai
4) Hệ thức Vi-ét và ứng dụng
5) Phương trình đưa được về phương trình bậc hai: phương trình trùng phương, phương trình tích, phương trình chứa ẩn ở mẫu…
6) Giải bài toán bằng cách lập phương trình
B HÌNH HỌC:
CHƯƠNG III: Góc và đường tròn
1) Định nghĩa và tính chất của các loại góc với đường tròn: Góc ở tâm, góc nội tiếp, góc tạo bởi tia tiếp tuyến và dây, góc có đỉnh ở bên trong hay bên ngoài đường tròn
2) Liên hệ giữa cung và dây
3) Tứ giác nội tiếp
4) Cung chứa góc
5) Độ dài đường tròn, cung tròn
6) Diện tích hình tròn, hình quạt tròn, hình viên phân, hình vành khăn
CHƯƠNG IV: Hình trụ Hình nón Hình cầu.
1) Hình trụ Diện tích xung quanh và thể tích hình trụ
2) Hình nón- Hình nón cụt Diện tích xung quanh và thể tích của hình nón, hình nón cụt
3) Hình cầu Diện tích mặt cầu và thể tích hình cầu
*BÀI TẬP:
I Bài tập SGK:
1 Đại số: Xem lại các bài tập : trang 27/SGK.tập2, trang 63/SGK.tập 2
2 Hình học: Xem lại các bài tập: trang 104, 105/SGK tập 2, trang 111,
112/SGK.Tập 2, trang 118, 119/sgk.Tập 2, trang 124, 125/sgk.Tập 2
II Bài tập thêm:
1 Bài tập trắc nghiệm:
Câu 1: Phương trình nào là phương trình bậc nhất hai ẩn?
a) x – 3y = 0 b) 0x – 4y = 7 c) –x + 0y = 0 d) cả ba phương trình trên
Câu 2: Cặp số (-2;-1) là nghiệm của phương trình nào?
a) 4x – y = -7 b) x – 2y = 0 c) 2x + 0y = -4 d) cả ba phương trình trên
Trang 2Trường THCS Lam Sơn
-Câu 3: Các hệ phương trình nào sau đây tương đương với nhau?
(I)
3 1 2
3
y
x
y x
(II)
3 2
2
1 2
3
y x
y x
(III)
9 3
3
1 2
3
y x
y x
(IV)
6 2
2
1 2
3
y
x
y
x
a) (I) (II) b) (I) (III) c) (III) (IV) d) Cả a, b, c đều đúng
Câu 4: Phương trình x – 2y = 0 có nghiệm ttổng quát là:
a) x R; y = 2x b) x =2y; yR c) x R; y = 2 d) x = 0; y R
Câu 5:Với giá trị nào của a, b thì hệ phương trình
2 1 3
by x
y ax
nhận cặp số (-2;3) là nghiệm?
a) a = 4; b= 0 b) a = 0; b = 4 c) a = 2; b= 2 d) a = -2; b = -2
Câu 6: Điểm A(-2;-1) thuộc đồ thị hàm số nào?
a) y =
4
2
2
2
x
4
2
x
2
2
x
Câu 7: Phương trình x2 + x – 2 = 0 có nghiệm là:
a) x = 1; x = 2 b) x = -1; x = 2 c) x = 1; x = -2 d) vô nghiệm
Câu 8: Với giá trị nào của a thì phương trình x2 + 2x – a = 0 có nghiệm kép?
Câu 9:Trong các phương trình sau, phương trình nào có hai nghiệm phân biệt?
a)x2 – 6x + 9 = 0 b)x2 + 1 = 0 c)2x2 – x – 1 = 0 d)x2 + x + 1 = 0
Câu 10:Gọi x1, x2 là nghiệm của phương trình 2x2 -3x – 5 = 0, ta có:
a)x1 + x2 =
2
3
; x1x2 =
2
5
b) x1 + x2 =
2
3
; x1x2 =
2
5
c) x1 + x2 = 23 ; x1x2 = 25 d) x1 + x2 = 23; x1x2 = 25
Câu 11: Lập một phương trình bậc hai khi biết hai nghiệm là : 3 2và 3 2, ta được phương trình:
a) x2 -2 3x +1 = 0 b) x2 -2 2x +1 = 0 c) x2 +2 3x +1 = 0 d) x2 +2 2x +1 = 0
Câu 12:Với gái trị nào của m thì phương trình 2x2 – x –m + 1 = 0 có hai nghiệm phân biệt? a)m > 78 b) m < 78 c) m < 87 d) m > 87
Câu 13: Với giá trị nào của m thì đường thẳng (d): y = 2x +m tiếp xúc với parabol(P): y = x2
Câu 14: Câu nào đúng? Câu nào sai?
(I) Phương trình x2 + ( 2-1)x - 2= 0 có hai nghiệm x1 = 1 và x2 = - 2 vì
a + b + c = 0
(II) Phương trình 2x2 – 3x – 7 = 0 có tổng các nghiệm là x1 + x2 = 23 và tích các nghiệm là
x1x2 =
2
7
a) (I) đúng; (II) đúng b) (I) đúng; (II) sai c) (I) sai; (II) đúng d) (I) sai; (II) sai
Câu 15: Biết x1 = -2 là nghiệm của phương trình x2 – 4x + 3m = 0, ta tính được nghiệm thứ hai x2 và m là:
a)x2 = 4; m = 4 b) x2 = 6; m = -4 c) x2 = -4; m = 6 d) x2 = 6; m = 6
Câu 16: Cho AB = R là dây cung của (O; R) Số đo cung AB là:
a) 600 b) 900 c) 1200 d) 1500
Trang 3Câu 17: Cho tam giác ABC có góc A = 800, góc B = 500 nội tiếp đường tròn (O) Câu nào sau đây sai:
a) AB AC b) sđ BC = 1600 c) AOB AOC =1000 d) Không có câu nào sai
Câu 18: Bán kính hình tròn là bao nhiêu nếu hình tròn có diện tích là 36 (cm2)
Câu 19: Diện tích hình vành khăn giới hạn bởi hai hình tròn (O; 8cm) và (O; 4cm) là:
a) 48 (cm2) b) 32 (cm2) c) 12 (cm2) d) 8 (cm2)
Câu 20: Tứ giác ABCD nội tiếp , biết A = 1150, B = 750 Hai góc C, D có số đo là:
a) C = 1050; D = 650 b) C = 1150; D = 650 c) C = 650; D = 1050 d) C = 650; D = 1150
Câu 21: Cho (O;R) và cung AB có sđ AB = 300 Độ dài cung AB (tính theo R là):
Câu 22: Hai bán kính OA, OB của (O) tạo thành góc ở tâm là 1100 Vậy số đo cung AB lớn là:
Câu 23: Diện tích một hình tròn là 25 (cm2) Vậy chu vi hình tròn là:
Câu 24: Cung AB của (O;R) có số đo là 1200 Vậy diện tích hình quạt AOB là:
a)
2
2
R
3
2
R
c)
4
2
R
6
2
R
Câu 25: Câu nào sau đây có chỉ số đo bốn góc của tứ giác nội tiếp?
a) 500; 600;1300;1400 b) 650;850;950;1150 c) 820; 900;980;1000 d)Cả a,b,c đều sai
Câu 26 : Một hình trụ có bán kính đường tròn đáy là 3 cm, chiều cao 10 cm thì diện tích
xung quanh (làm tròn đến một chữ số thập phân) là:
Câu 27: Một hình nón có bán kính đường tròn đáy là 2 cm, chiều cao 3 cm thì thể(làm tròn
đến hai chữ số thập phân) là:
a)12,56 cm3 b) 15,25 cm3 c) 14,45 cm3 d) 13,65 cm3
Câu 28: Diện tích mặt cầu có đường kính 10 cm (làm tròn đến hai chữ số thập phân) là:
a)418,67 cm 2 b) 314 cm 2 c) 209,33 cm 2d) 628 cm 2
Câu 29: Hình cầu có đường kính 20cm thì có thể tích (làm tròn đến hai chữ số thập phân)là:
Câu 30: Hình nón có diện tích đáy là 113,04 cm2, chiều cao 8 cm thì có độ dài một đường sinh là:
2 Bài tập tự luận:
A.Đại số:
Chương III : Hệ hai phương trình bậc nhất hai ẩn
DẠNG 1 : Giải hệ phương trình.
Phương pháp : dùng phương pháp cộng, phương pháp thế, phương pháp đồ thị.
Trang 4Trường THCS Lam Sơn
-Bài 1: Giải hệ phương trình:1)
11
-y -2x
11 4y 3x
2)
7,4
-y
-0,2x
1,1 0,3y
0,5x
3)
2
y 3 1 2x
9
y 2 5 3x
4)
5 -1
= 2y + 1)x -5 (
1 -5 3
= 3y -2x
5)
2 2
10 4
2 2
5 3
y x y x
y x y x
DẠNG 2 : Đường thẳng và vị trí tương đối của hai đường thẳng
Bài 2: Viết phương trình đường thẳng đi qua hai điểm A(2; -1) và B(1; 3)
Bài 3: Xét vị trí tương đối của hai đường thẳng
a) (d) : 2x + 3y = -1 và (d’) : 2x – y = 2
b) (d) : -x + 2y = 3 và (d’) : 5x – 10y = -15
c) (d) : 1,2x – 4,8y = 1 và (d’) : x – 4y = -0,2
Chương IV : Hàm số y = ax 2 ( a0) Phương trình bậc hai một ẩn.
I Hàm số y = ax 2 ( a 0) : Một số dạng bài tập thường gặp :
DẠNG 1:Xác định hàm số y = ax 2 ( a0),tính chất của hàm số y = ax 2 (a0)
Bài 4: Cho hàm số y = f(x) = (m + 2)x2 ( m-2) có đồ thị là (P)
a) Tìm m để hàm số đồng biến khi x < 0 ; nghịch biến khi x > 0
b) Với m = -3 Không tính hãy so sánh : f(1 - 2 ) và f(1 - 3 )
c) Tìm m để (P) đi qua điểm C ( -2 ; 6)
d) Tìm m để (P) cắt đường thẳng y = -x + 2 tại điểm có hoành độ bằng 5
DẠNG 2: Vẽ đồ thị hàm số y = ax 2 (P) và vẽ đồ thị hàm số y = mx + n (d) trên cùng một MP toạ độ.
Bài 5: Cho (P) : y = x2 và đường thẳng (d) : y = -2x + 3
a) Vẽ đồ thị của (P) và (d) trên cùng một hệ trục tọa độ
b) Hãy tìm giao điểm của (P) và đường thẳng (d) bằng phép tính
DẠNG 3: Tương giao giữa đường thẳng (d) : y = mx + n và parabol (P) : y = ax 2 :
- Tìm điều kiện để (d) cắt (P) tại 2 điểm phân biệt, (d) tiếp xúc (P), (d) không giao (P).
- Chứng tỏ (d) cắt (P) tại 2 điểm phân biệt, (d) tiếp xúc (P), (d) không giao (P).
Bài 6: Cho parabol (P) : y = x2 và đường thẳng (d) : y = 2x + m
a) Xác định toạ độ giao điểm của (d) và (P) khi m = 6
b) Với giá trị nào của m thì (d) cắt (P) tại 2 điểm phân biệt
c) Tìm m để (d) tiếp xúc (P) Tìm toạ độ tiếp điểm
Bài 7: a) Chứng tỏ đường thẳng y = 2x – 1 luôn tiếp xúc với parabol y = x2
b) Chứng tỏ đường thẳng y = 8x – 4 luôn cắt parabol y = x2 tại 2 điểm phân biệt c) Chứng tỏ đường thẳng y = - 4x - 3 không cắt parabol y = 4x2
II Phương trình bậc hai một ẩn : Một số dạng bài tập cơ bản :
DẠNG 1: Giải phương trình bậc hai
a) Giải phương trình bậc hai khuyết b: a x 2 + c = 0
b) Giải phương trình bậc hai khuyết c: a x 2 + bx = 0
c) Giải phương trình bậc hai đủ :
a + b + c = 0 phương trình có 2 nghiệm x 1 = 1 ; x 2 = c/a
a – b + c = 0 phương trình có 2 nghiệm x 1 = -1 ; x 2 = -c/a
Dùng công thức nghiệm tổng quát hay công thức nghiệm thu gọn.
Trang 5d) Giải phương trình quy về phương trình bậc hai.
Phương trình trùng phương – Phương trình chứa ẩn ở mẫu – Phương trình tích.
Bài 8: Giải các phương trình sau :
1) x2 – 2x = 0 2) 2x2 + 5x = 0 3) 2x2 – 1 = 0 4) x2 + 5 = 0
5) x2 + x – 2 = 0 6) 2x2 – 3x – 5 = 0 7) x2 – 4x + 4 = 0
8) x2 + 6x + 15 = 0 9) 4x2 + 21x – 18 = 0 10) 4x2 + 5 x – 11 = 0
11) x2 –( 2 + 1)x + 2 =0 12)(2x – 1)2 – (x + 1)(x + 3) = 0
13) x4 – 13x2 + 36 = 0 14) 9x4 + 6x2 + 1 = 0 15) 2x4 – 7x2 – 4 = 0
3
x
x
18) (3x2 + 10x + 80)(4x2 – 23x + 28) = 0
DẠNG 2:Số nghiệm của phương trình bậc hai
- Chứng tỏ phương trình luôn có 2 nghiệm phân biệt, có nghiệm, vô nghiệm với mọi m.
- Tìm giá trị của tham số để phương trình có 2 nghiệm phân biệt, có nghiệm, có nghiệm kép, vô nghiệm.
Bài 9: Chứng tỏ phương trình x2 – 2(m – 1)x + m – 3 = 0 luôn có 2 nghiệm phân biệt với mọi m
Bài 10: Chứng tỏ phương trình x2 – 2mx + 2m2 – 4m + 7 = 0 luôn vô nghiệm với mọi m
Bài 11: Chứng tỏ phương trình x2 –2(m – 1)x + 3(2m - 5) = 0 có nghiệm với mọi m
Bài 12: Tìm điều kiện của m để các phương trình sau có nghiệm kép Tính nghiệm kép đó :
a) x2 – (m – 2)x + 4 = 0 b) x2 + 2(m + 3)x + 3 = 0
Bài 13: Tìm điều kiện của m để các phương trình sau vô nghiệm :
a) 3x2 – 2x + m = 0 b) x2 – 2(m + 2)x + (m + 1)(m – 3) = 0
Bài 14: Tìm điều kiện của m để các phương trình sau có 2 nghiệm phân biệt :
a) -2x2 + 3x + m2 – 1 = 0 b) x2 + (m + 3)x + m + 1 = 0
DẠNG 3: Ứng dụng của hệ thức Vi-ét
1 Không giải phương trình, nhẩm nghiệm của phương trình bậc hai.
2 Biết một nghiệm của phương trình bậc hai, tìm nghiệm còn lại.
3 Không giải phương trình, tính tổng và tích các nghiệ của phương trình bậc hai.
4 Tìm hai số biết tổng và tích của chúng.
5 Lập phương trình bậc hai biết 2 nghiệm của nó.
6 Không giải ph/trình, tính giá trị của biểu thức chứa 2 nghiệm x 1 , x 2 của ph/trình.
7 Cho phương trình chứa tham số Tìm giá trị của tham số để phương trình có 2 nghiệm
x 1 , x 2 thoả mãn một hệ thức chứa x 1 , x 2
8 Cho phương trình chứa tham số Viết một hệ thức liên hệ giữa 2 nghiệm x 1 , x 2 độc lập đối với tham số.
9 Xét dấu các nghiệm số của phương trình bậc hai.
10 Phân tích một tam thức bậc hai ra thừa số.
Bài 15 Không giải phương trình x2 – 2x – 15 = 0 Gọi x1, x2 là 2 nghiệm của phương trình Tính: a) x12 + x22 b) 2 2
1 2
1 1
e) (x1 – x2)2 g)
1 2 1 2
Bài 16: Lập phương trình bậc hai biết 2 nghiệm x1 , x2 như sau :
Trang 6Trường THCS Lam Sơn
-a) x1 = 3 + 2 ; x2 = 3 b) x1 = 1
6 2 3 ; x2 = 1
6 2 3 c) x1 x2 = 4 và x12 + x22 = 17
Bài 17: Cho phương trình x2 + (m – 3)x + 1 – 2m = 0
a) Chứng tỏ phương trình luôn có 2 nghiệm phân biệt với mọi m
b) Tìm giá trị của m để :
b1) phương trình có nghiệm x = -5 Tìm nghiệm còn lại
b2) phương trình có 2 nghiệm trái dấu
b3) Phương trình có 2 nghiệm cùng dương
b4) Phương trình có 2 nghiệm cùng âm
b5) Phương trình có ít nhất một nghiệm dương
b6) Phương trình có 2 nghiệm x1, x2 thoả 2x1 + x2 = 3 b7) Phương trình có 2 nghiệm x1, x2 thoả (x1 – x2)2 = 2 c) Viết một hệ thức liên hệ giữa 2 nghiệm của phương trình độc lập với tham số m
DẠNG 4: Giải bài toán bằng cách lập phương trình, lập hệ phương trình :
Bài 18: Hai người ở hai địa điểm A và B cách nhau 3,6km ; khởi hành cùng một lúc.đi
ngược chiều nhau và gặp nhau ở một điểm cách A là 2km Nếu cả hai cùng giữ nguyên vận tốc như trường hợp trên nhưng người đi chậm hơn xuất phát trước người kia 6 phút thì họ sẽ gặp nhau ở chính giữa quãng đường Tính vận tốc của mỗi người
Bài 19: Tìm số tự nhiên có hai chữ số, biết rằng chữ số hàng chục lớn hơn chữ số hàng đơn
vị là 2 và nếu thêm chữ số bằng chữ số hàng chục vào bên phải thì được một số lớn hơn số ban đầu là 682
Bài 20: Hai địa điểm A và B cách nhau 150km Hai ô tô khởi hành cùng một lúc đi ngược
chiều nhau và gặp nhau tại C cách A là 90km Nêu1 vận tốc vẫn không đổi nhưng ô tô đi từ
B đi trước ô tô đi từ A là 50 phút thì hai xe gặp nhau chính giữa quãng đường Tính vận tốc của mỗi ô tô
Bài 21: Hai vòi nước cùng chảy vào một bể không có nước và chảy đầy bể trong 2 giớ 55
phút Nếu chảy riêng, vòi thứ nhất có thể chảy nhanh đầy bể hơn vòi thứ hai là 2 giờ Hỏi mỗi vòi sẽ chảy đầy bể trong bao lâu ?
B HÌNH HỌC :
Bài 1: Cho tam giác ABC vuông tại A, kẻ đường cao AH và phân giác BE ( H BC,
E AC ) Kẻ AD vuông góc với BE ( D BE ) Chứng minh :
a) Tứ giác ADHB nội tiếp Xác định tâm O của đường tròn ngoại tiếp tứ giác
b) EAD HBD và OD // HB
c) Tứ giác HCED nội tiếp
d) Cho biết ABC = 600 và AH = a (a > 0 cho trước) Tính theo a diện tích tam giác ABC phần nằm ngoài (O)
Bài 2: Cho tam giác ABC cân tại A nội tiếp (O ; R) Vẽ đường kính AOD M là một điểm
trên AC ( M khác Avà C) AM cắt đường thẳng BC tại E.
a) Chứng minh AM AE = AC2
b) DM cắt BC tại I AI cắt đường tròn (O) tại N Chứng minh D, N, E thẳng hàng
c) Cho BAC = 600 Tính theo R chu vi hình phẳng giới hạn bởi AB, AC và BDC
Trang 7Bài 3: Cho đường tròn (O;R) đường kính BC A là một điểm bên ngoài đường tròn sao cho
AB, AC cắt (O) tại D, E ( B, D, E, C cùng thuộc nửa mặt phẳng có bờ là đường thẳng BC) a) Chứng minh AD AB = AE AC
b) Đường tròn ngoại tiếp tam giác ABC cắt đường thẳng OA tại I (I khác A) DE cắt AI tại F Chứng minh tứ giác IFEC nội tiếp
c) Trong trường hợp tam giác ABC đều Tính theo R diện tích phần chung hai hình tròn: hình tròn (O) và hình tròn ngoại tiếp tam giác ABC
Bài 4: Cho đường tròn (O;R) và điểm A ở ngoài (O) sao cho OA = 2R Kẻ hai tiếp tuyến
AB, AC với (O) ( B, C là các tiếp điểm) AO cắt BC tại I
a) Tính theo R hai đoạn thẳng OI và BC
b) H là điểm nằm giữa I và B (H khác B, I) Đường vuông góc với OH tại H cắt AB, AC tại M và N Chứng minh các tứ giác OHBM, OHNC nội tiếp
c) Chứng minh H là trung điểm của MN
d) Cho H là trung điểm IB Tính theo R diện tích tam giác OMN
Bài 5: Cho đường tròn (O;R) và điểm S sao cho SO = 2R Vẽ các tiếp tuyến SA, SB với
đường tròn (O) (A, B là các tiếp điểm) và cát tuyến SMN (không qua O) Gọi I là trung điểm của MN
a) Chứng minh 5 điểm S, A, O, I, B thuộc một đường tròn
b) Chứng minh SA2 = SM SN Tính SM, SN theo R nếu MN = SA
c) Kẻ MH vuông gốc với OA tại H MH cắt AN, AB tại D, E Chứng minh tứ giác IEMB nội tiếp
d) Chứng minh ED = EM
Bài 6: Cho tam giác ABC vuông góc ở A (AB < AC), vẽ đường cao AH Tr6en đoạn thẳng
HC lấy điểm D sao cho HD = HB Vẽ CE vuông góc với AD kéo dài (E AD)
a) Chứng minh tứ giác AHEC nội tiếp và BA là tiếp tuyến của đường tròn ngoại tiếp tứ giác AHEC
b) Chứng minh ACB ECB
c) Cho biết AC = 6cm, số đo ACB = 300 hãy tính diện tích của hình phẳng giới hạn bởi
đoạn CA, đoạn CH và cung AH của đường tròn (AHEC).
Bài 7: Cho nửa đường tròn tâm O, đường kính AB Từ một điểm M trong nửa đường tròn đó
(M không nằm trên đường kính AB) ta kẻ đường vuông góc với AH tại H ( H khác A, B, O) Kéo dài AM, BM cắt nửa đường tròn (O) lần lượt tại C và D Gọi I là giao điểm của AD và BC
a) Chứng minh tứ giác DICM nội tiếp và xác định tâm K của đường tròn ngoại tiếp tứ giác đó
b) Chứng minh 3 điểm I, M, H thẳng hàng
c) Chứng minh OD là tiếp tuyến của đường tròn ngoại tiếp tứ giác DICM
Trang 8Trường THCS Lam Sơn
-ĐỀ THI TH Ử HỌC KÌ II- ĐỀ SỐ 1
Câu 1: Với giá trị nào của k thì hàm số : y = ( 1 – 3/k) x – k + 1 nghịch biến trên tập số thực
R?
a) k > 1/3 b) k < 1/3 c) k>3 d) k < 3
Câu 2: Hệ phương trình :
2 1 2
y x
y x
có nghiệm là:
a) ( x= -1; y = -3 ) b) ( x= 1; y = 1 ) c) ( x= 2; y = 0 ) d) ( x= -2; y = 4 )
Câu 3: Phương trình nào sau đây có hai nghiệm là 1 và -2?
a) x2 –x – 2= 0 b) x2 +x – 2= 0 c) x2 –x + 2= 0 d) x2 +
x + 2 = 0
Câu 4: Câu nào đúng, câu nào sai?
(I) Góc nội tiếp là góc có đỉnh trên đường tròn
(II) Hình thang nội tiếp được đường tròn khi và chỉ khi nó là hình thang cân
a) (I) đúng,(II) sai b) (I) sai,(II) đúng c) (I) đúng,(II) đúng d) (I) sai,(II) sai
Câu 5:Cung AB của đường tròn (O;6cm) có số đo bằng 1000 Vậy diện tích hình quạt OAB ( làm tròn đến hai chữ số thập phân, 3 , 14) là:
a) 3,14 cm2 b) 6,28 cm2 c) 31,4 cm2 d) 662,8 cm2
Câu 6:Hình trụ có thể tích là 81 cm3 , có chiều cao là 9cm Vậy bán kính hình tròn đáy là:
II TỰ LUẬN: ( 7 Đ) Bài 1: ( 1 đ) Giải phương trình
a) x2 – 3x = 0 b) x4 - 8 x2 + 15 = 0
Bài 2: ( 3đ) Cho phương trình : x2 – 2 ( m – 1) x – 3m – 1 = 0 ( 1) ( m là tham số )
a) Chứng tỏ rằng với mọi m, phương trình ( 1) luôn có nghiệm với mọi m
b) Tìm m để phương trình có nghiệm x1 = - 3 Tính nghiệm x2 còn lại
c) Tìm hệ thức liên hệ giữa x1 và x2 ( với x1, x2 là hai nghiệm của pt (1) ) sao cho không phụ thuộc vào m?
Bài 3: (3 đ)
Cho đường tròn tâm O đường kính AB = 2R, vẽ đường kính MN (không trùng AB) Tiếp tuyến tại B của(O ) cắt AM, AN tại C và D
a) Chứng minh tứ giác AMBN là hình chữ nhật
b) Chứng minh tứ giác MNDC nội tiếp
c) Cho biết sđ cung AM = 120 0 Tính diện tích tam giác AMN và diện tích tứ giác MNDC
ĐỀ THI TH Ử HỌC KÌ II- ĐỀ SỐ 2
I TRẮC NGHIỆM:( 3Đ)
Trang 9Câu 1: Với giá trị nào của k thì hàm số : y = ( 1 – 2k) x2 nghịch biến khi x> 0, đồng biến khi
x < 0?
a) k > 1/2 b) k < 1/2 c) k>2 d) k < 2
Câu 2: Phương trình nào sau đây có hai nghiệm phân biệt:
a) 3x2 – 8 = 0 b) 2x2 – x -3 = 0 c) x4 + 4x2 – 3 = 0 d) Cả ba phương trình trên
Câu 3: Với giá trị nào của a thì phương trình x2 – 2x + a – 3 = 0 có nghiệm?
a) a = 4 b) a 4 c) a 4 d) Không phải các điều kiện trên
Câu 4: Cho tứ giác ABCD, kết quả nào sau đây thì tứ giác ABCD nội tiếp.
a) DAB = 1100 30’; DCB = 69030’ b) ADB = ACB
c) ADC + ABC = 1800 d) Một trong ba kết quả trên
Câu 5:Cho hình vẽ, biết sđ AB = 1100 và sđ CD = 400 Số đo các góc AKB và AIB lần lượt là:
a) 1500 và 700 b) 750 và 350 c) 1100 và 400 d) Một đáp số khác
K D
C O
I A
B
Câu 6: Diện tích xung quanh hình nón có chiều cao 6 cm,bán kính đường tròn đáy là 8cm
lấy 3 , 14, làm tròn đến hai chữ số thập phân là :
a) 251,2 cm2 b) 367,8 cm2 c) 301,44cm2 d) 241,15 cm2
II TỰ LUẬN: ( 7 Đ) Bài 1: ( 1,5đ) a) Vẽ trên cùng một hệ trục tọa độ O xy đồ thị ( P) : y =
4
2
x
và (d) : y = x -1
b) Bằng phép tính chứng tỏ (d) tiếp xúc (P) Tìm tọa độ tiếp điểm ?
Bài 2: ( 2,5đ)Cho phương trình : x2 – 4 x + m +3 = 0 ( 1) ( m là tham số )
a) Tìm m để phương trình (1) có nghiệm
b) Tìm m để phương trình (1) có nghiệm có hai nghiệm phân biệt x1,x2 và
x12 + x22 = 10
Bài 3: (3 đ) Cho tam giác ABC đều nội tiếp đường tròn tâm O.Gọi I là điểm chính giữa của
cung nhỏ BC Trên cạnh AB lấy điểm M trên tia AC lấy điểm N sao cho: CN =BM(C nằm giữa A,N) Chứng minh:
a) IM = IN
b) Tứ giác AMIN nội tiếp
c) Gọi K là giao điểm của MN với BC Chứng minh : KM =KN
ĐỀ THI TH Ử HỌC KÌ II – ĐỀ SỐ 3
I TRẮC NGHIỆM: ( 3 Đ)
Trang 10Trường THCS Lam Sơn
-Câu 1: Với giá trị nào của a thì đường trẳng (d) : y = ( 2 – a) x + 4 song song với đường
thẳng y = x/2
a) a = 1 / 2 b) a= -1 /2 c) a = 3 / 2 d) a = - 3 / 2
Câu 2: Tìm b biết đồ thị của hàm số y = -2 x + b đi qua A ( -1; 1/2).
a) b = 3 / 2 b) b = 5 / 2 c) b = - 3 / 2 d) b = - 5 / 2
Câu 3: Điều kiện để phương trình ( ẩn x ) mx2 – x+ 1 = 0 có hai nghiệm phân biệt a) m 0 b) m < 1 / 4 c) Cả a và b d) a và b sai
Câu 4 : Bán kính đường tròn ngoại tiếp tam giác ABC với AB = 18 cm, AC = 30 cm, BC
= 24 cm là :
a) 9 cm b) 15 cm c) 12 cm d) Một đáp số khác
Câu 5: Tam giác ABC cân tại A có góc BAC = 300 nội tiếp đường tròn (O) Số đo của cung AB là:
Câu 6: Tính số đo góc xAB có trong hình vẽ, biết góc AOB = 1000
a) xAB = 1000
b) xAB = 1300
c) xAB = 500
d) Một đáp số khác
II TỰ LUẬN: ( 7 Đ)
1 2
1
Bài 2: (3đ) Cho hệ phương trình : (I)
m y x
y
a) Giải hệ khi m = 3
b) Với giá trị nào của m thì hệ pt (I) có nghiệm duy nhất? Tính nghiệm của hệ theo m c) Với giá trị nào của m thì hệ pt (I) có vô số nghiệm? Viết công thức nghiệm tổng quát?
Bài 3: ( 3đ) Cho (O;R) , đường kính AB , D là điểm trên đường tròn ( D khác A và B) Tiếp
tuyến tại A và D của (O) cắt nhau tại S
a) Chứng minh : O S // BD
b) BD cắt đường thẳng A S tại C Chứng minh : SA = SC
c) Kẻ DH vuông góc với AB, DH cắt SB tại E C/minh: E là tr.điểm của DH
d) Gọi K là trực tâm tam giác SHD Chứng minh tứ giác OAKD là hình thoi Tính diện tích hình thoi OAKD khi sđ cung AD = 1200
ĐỀ THI TH Ử HỌC KÌ II- ĐỀ SỐ 4
I TRẮC NGHIỆM:( 3Đ)
x
O
A
B