~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~ ~~~~~~ ~~~~~~~~~~~ ~ ~~~~~~~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~ ~ ~~~ ~~ ~~~ ~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~~~~~~~~ ~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~~~~~~~~ ~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~ ~~~~~ ~ ~ ~~~~~~~ ~ ~ ~~~~~~~~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~ ~~~~~ ~ ~ ~~~~~~~~~ ~~~ ~ ~~~ ~~~ ~~ ~~~ ~~ ~~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~~ ~~~ ~~~ ~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~ ~ ~~~~~~~~~~~ ~ ~ ~~~ ~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~ ~~~ ~~~ ~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~ ~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~ ~ ~~~~~~~ ~~ ~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~ ~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~ ~~~~~~ ~~~ ~ ~~~~~~~~ ~~ ~~~ ~~~~~ ~~~ ~~~ ~ ~~~ ~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~ ~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~ ~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~ ~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~ ~~~ ~~~~~~~~ ~~~ ~~ ~~~ ~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~~~ ~ ~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~ ~ ~ ~~ ~ ~~~~~~ ~~~~~ ~ ~ ~~~~~~ ~ ~~~~~~~~~~~~~~~~ ~ ~ ~~~~~ ~~ ~~ ~~ ~~~~~ ~~~ ~~ ~~~ ~~~~ ~~~~~~~~~~~ ~ ~~~~~~~ ~~~ ~~ ~~~ ~~~~~~~ ~~ ~ ~~~ ~ ~~~~~~~ ~ ~ ~ ~~~ ~ ~~~ ~ ~~~ ~~~ ~~ ~~~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~ ~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~ ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~ ~~~~~~~~~~~~~~~ ~~~~ ~ ~~ ~~~~~~~~~ ~ ~~~~~~~~~~~~~ ~ ~~~~ ~~~ ~~~~ ~~~~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~ ~ ~~~ ~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~ ~~~ ~~ ~ ~~ ~ ~~~~~~~ ~ ~ ~ ~~~~~ ~~~ ~~~~~~~~~ ~ ~~~~~~ ~ ~ ~ ~~~ ~ ~~~ ~ ~ ~ ~ ~~~ ~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~ ~~~ ~ ~~~~ ~~~ ~~~ ~~~~~~~ ~~~ ~~~ ~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~ ~ ~ ~~~ ~ ~ ~~ ~~ ~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~ ~ ~~~ ~~ ~~~ ~~~~ ~~~ ~~ ~~~~ ~~~ ~~~~~~ ~~ ~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~ ~ ~~ ~~ ~~~ ~~~~~~ ~~~~~~~~ ~ ~~~ ~~~~~~~~~~~~~ ~~~ ~~~ ~~~~ ~~~~~~~~~~~~ ~~~ ~ ~~~~~~~~~ ~~~~~~ ~ ~ ~ ~~~ ~ ~~~ ~ ~~~ ~ ~ ~ ~ ~ ~ ~~~ ~~ ~~~ ~~~~~ ~ ~ ~~ ~~ ~ ~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~ ~ ~ ~~ ~~~ ~~~~ ~ ~~~ ~~~ ~~ ~~~~~ ~~ ~~~ ~~~~~~~~~~~~~~~~ ~~~ ~~ ~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~~~~~ ~~ ~~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~~~~~~~~~~~~~~ ~ ~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~ ~~~~ ~~ ~ ~ ~ ~ ~~ ~ ~ ~~ ~~~ ~~~~~ ~ ~ ~~~ ~~~ ~~~ ~ ~ ~ ~ ~~~ ~~ ~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~ ~~ ~~~~ ~~~~~~~~~~~~ ~~~ ~~ ~~~ ~ ~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~ ~ ~~~~~~~~ ~~ ~~ ~ ~~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~ ~~~ ~ ~~~~ ~~~ ~~~ ~~~~ ~ ~ ~~~ ~ ~~~ ~~~ ~ ~ ~~ ~~ ~ ~~~ ~ ~~~ ~ ~~~ ~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~~~ ~ ~~~~~~~~~~~~~ ~ ~~~~ ~~~ ~~~~~ ~ ~ ~ ~~~~~~~~ ~ ~ ~~~~ ~ ~~~~ ~~~~ ~ ~~~~~ ~ ~~~~~ ~~~~ ~ ~ ~~~~~~~ ~ ~~~~~~~~ ~ ~~~ ~~ ~~~~ ~ ~~~ ~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~ ~~~ ~~ ~~~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~ ~ ~ ~~~ ~ ~ ~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~ ~~ ~ ~~~ ~~ ~~~ ~~~ ~~~~~~~~~ ~ ~ ~~~~ ~ ~~~~ ~~~~~~ ~~~ ~~~~ ~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~~~~~~~~~~~~~~~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~ ~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~ ~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~ ~ ~~~~~~ ~ ~ ~ ~~ ~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~~~~~~~~~~~ ~ ~ ~~~~~~ ~ ~~~~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~ ~ ~ ~ ~~~~~~~~~ ~ ~ ~ ~~ ~~ ~~~ ~~~~~~~~~~ ~~~~~~~~~~~ ~ ~~~~~~ ~ ~~ ~~~ ~~~~ ~~~ ~ ~ ~~~~~ ~ ~~ ~~~ ~~~~ ~ ~ ~ ~~ ~~ ~~~ ~~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~ ~ ~~ ~ ~ ~~~~~~~~ ~ ~ ~ ~~ ~~ ~~~ ~~ ~~~~~ ~~~ ~ ~ ~ ~~~~ ~~~~~ ~ ~ ~~~ ~~ ~~~ ~~~ ~ ~ ~~ ~~~~~ ~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~ ~ ~~~~~~~~~~ ~~~~~ ~~~ ~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~ ~ ~~~ ~ ~ ~~~ ~ ~ ~ ~~~~~~~ ~~~~~~~~~~~~ ~~~~ ~~ ~~ ~~ ~~~~~~~~ ~ ~ ~~~ ~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~ ~ ~~ ~~ ~~~~~~~~~~~ ~~~~ ~ ~~~ ~ ~ ~~ ~~ ~~~ ~~~~~ ~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~ ~ ~~ ~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~ ~~~ ~~ ~~~ ~ ~~~~~~~~~~~~~~~~~~~~ ~ ~ ~~~ ~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~ ~~~~~ ~~~~~~~~~~~~~~~~ ~ ~~~~~ ~ ~~ ~~~ ~~ ~~~~~ ~ ~~~ ~ ~ ~~~~ ~ ~ ~ ~~ ~ ~~~~~~~~~~~~~ ~~~ ~~ ~~~~ ~ ~ ~ ~ ~~ ~ ~ ~~~~~~~~~~ ~ ~ ~~~ ~~ ~~~ ~~~~~~~~~~ ~~~ ~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~ ~~ ~~ ~ ~~~~~~~~~~~~~ ~ ~~ ~ ~~~~~~~~~~~ ~~ ~~ ~~~ ~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~ ~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~ ~~ ~~~ ~~~~~~~~~~~~~~~~~ ~~~ ~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~ ~~ ~~ ~~~ ~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~ ~~~ ~~~~~~~~~~~~ ~ ~~~~~~~~~~~~~~~~~ ~ ~~~ ~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~ ~~~~~~~ ~ ~~~~~~~~~ ~~ ~~ ~ ~~~ ~~~~ ~~~~~~~~~~ ~ ~~~ ~~ ~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~ ~~~~~~~~ ~~ ~~~~ ~ ~ ~~~~ ~ ~~~ ~~ ~~ ~~~~~~~ ~~~ ~~ ~~~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~ ~~~~ ~ ~ ~~~~~~~~~~~~~~~ ~ ~ ~~~ ~~ ~~~ ~~~~~~~~~~~~~~~ ~~~ ~~ ~~~~ ~ ~~~~~~ ~ ~~ ~~~ ~~ ~ ~ ~ ~~ ~~ ~~~~ ~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~ ~ ~ ~~~~ ~~~~~~~ ~~ ~~~ ~~~~~ ~~~~ ~ ~~ ~ ~~ ~ ~~~~~~~ ~~ ~ ~ ~ ~ ~~~ ~ ~~~~~ ~~~ ~ ~ ~~~~~~ ~ ~ ~~~ ~~ ~~~~ ~ ~ ~~~~~~~~ ~ ~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~ ~ ~~~~~~~~~~~ ~~ ~ ~ ~~~~~~~~~~~~~~ ~~~~~~ ~~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~ ~~~ ~~ ~~ ~ ~~~ ~ ~ ~~~~ ~ ~~~~~~~~~~~~~~~~~~ ~ ~ ~~~ ~~ ~~~~ ~~~~~ ~~~ ~~ ~~~ ~ ~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~ ~~ ~ ~ ~ ~~ ~ ~ ~~~ ~ ~ ~~~ ~~ ~~~~~~~~ ~ ~~~ ~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~ ~ ~ ~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~ ~~ ~ ~ ~~~ ~~ ~~~~ ~~~~~~~~~~~ ~ ~~~ ~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~ ~ ~~~~~~~ ~~ ~ ~ ~~~ ~~ ~~~~ ~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~ ~ ~ ~~~~~ ~ ~~~~~~~~~~~ ~ ~~~~~~~~~~~ ~ ~ ~~~ ~~ ~~~~ ~~~~~~~~~ ~~ ~~~~~~ ~ ~ ~~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~ ~ ~~~~~~~ ~ ~~~ ~~ ~~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~ ~ ~ ~~ ~~ ~~~~~~ ~ ~ ~ ~~~ ~ ~~~~~~~~~~ ~ ~ ~ ~~ ~~ ~~~ ~~ ~~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~ ~~~ ~ ~~~ ~~~~~~~ ~~~~~ ~ ~ ~~~ ~~ ~~~ ~~~~~ ~~ ~ ~~~ ~~ ~~ ~~ ~ ~ ~ ~~~ ~ ~~ ~~~ ~~~ ~~~~ ~~~~~~~ ~ ~ ~ ~~ ~~ ~~~ ~~~~~~~~~~~~~~~~~~~ ~ ~~~~~~~~~ ~ ~ ~~~~ ~ ~~ ~~~~~ ~~~~~~ ~ ~ ~~~ ~~~~ ~~~~~~~ ~~~~~~~ ~ ~ ~~~ ~~ ~~~ ~~~~~~~~~~~~~~~~ ~ ~ ~~~~~~ ~~~ ~~ ~~ ~~~~~~~ ~~~ ~~ ~~~ ~~~ ~~ ~~ ~~~ ~~~~~~~~~~~ ~ ~ ~~~~~~~~~ ~~~~~ ~ ~~~~~~~~~~~~~~~~~ ~~ ~ ~ ~~~ ~~ ~~~ ~~~~~ ~ ~~~~~~~~~~ ~ ~ ~~~~~ ~~~~~ ~ ~ ~ ~~~~~~~~~ ~ ~ ~ ~~ ~~ ~~~ ~~ ~ ~ ~~~~~~~~~ ~~~~ ~ ~~~ ~ ~ ~~~~ ~ ~~~~ ~~~~~~~~~~ ~~~ ~~ ~~~ ~~~ ~~~ ~~ ~~~~~ ~~~~~~ ~~~~ ~~~ ~ ~ ~~~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~~~ ~ ~~~ ~ ~ ~ ~ ~~ ~~ ~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~ ~~ ~~~~~~ ~ ~~~~~~~~~ ~~~~~~~ ~~~ ~ ~~~~~~~~ ~~~~~~~ ~~~ ~ ~~~~~~~ ~ ~~~~ ~~~ ~~ ~~~ ~~~~~~~ ~~ ~~~~ ~ ~~ ~~~~ ~~ ~~~~ ~ ~ ~ ~~~ ~~~~ ~~ ~~~~~~ ~ ~ ~ ~~ ~~ ~~~ ~ ~~ ~~~ ~ ~ ~ ~~~~~ ~~~~~~~~~~~~~ ~ ~ ~ ~ ~ ~~ ~~ ~~~~ ~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~ ~~~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~ ~ ~~~~~ ~ ~~ ~ ~~ ~~~ ~~ ~~~~ ~~ ~ ~ ~~~~~~~ ~~~~~~~~~~~ ~~ ~~~~~~~~~~~ ~~ ~~~~~ ~~~ ~ ~ ~~~~~~~ ~~~~~ ~~~~~ ~ ~ ~ ~~~ ~ ~ ~ ~ ~~ ~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~ ~~~ ~ ~~~~~~~ ~~~ ~~~~~~~ ~ ~ ~ ~~~ ~ ~~~ ~ ~~~ ~ ~~~ ~~ ~~~~ ~~~~~~~~~~~~~ ~~ ~ ~~~~~~~ ~ ~ ~~~~~ ~~ ~~~~ ~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~ ~ ~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~ ~ ~~~ ~~ ~~~~ ~ ~~ ~ ~ ~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~ ~ ~~~~~~~~~ ~ ~~~~~~~ ~ ~~~ ~~~~~~~~~~~~~~~~~~~~ ~ ~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~~~~~~~~~~~~~~ ~ ~ ~~~~~~~~~~~~ ~ ~ ~ ~~ ~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~ ~~~~~~ ~ ~ ~~~~~~~~~~~ ~ ~ ~~~~~~~~~~ ~~ ~~~~~~~ ~~ ~~~~ ~~~ ~ ~~~ ~ ~~~ ~ ~ ~~~~~~~ ~ ~~~~~ ~~~~~ ~~~ ~~ ~~~~~~~~~~ ~~ ~~~ ~ ~ ~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~ ~ ~ ~~~ ~~ ~~~ ~~ ~~~~~ ~~~ ~~ ~~~ ~~ ~~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~ ~~~~~~~~~ ~ ~~ ~ ~ ~~~ ~~ ~~~ ~~~~~~ ~~ ~~~~~~~~~~ ~~~ ~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~ ~~~ ~ ~~~~~~~~ ~ ~ ~ ~ ~~~~~~~~~~~~ ~~~~ ~~ ~ ~ ~~~ ~~ ~~~ ~~ ~ ~~ ~~~~ ~~ ~~ ~~~~~~~ ~~~~ ~ ~ ~~~~~~~ ~~~ ~~~ ~~~ ~ ~~ ~~ ~ ~~~~ ~~~ ~ ~ ~~ ~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~ ~ ~~ ~ ~ ~ ~ ~ ~ ~~ ~ ~~~~~~ ~ ~~~ ~ ~~~ ~~ ~~~ ~~~~~ ~~~~~ ~~~~~~~~~~ ~ ~ ~ ~~ ~~~ ~ ~~ ~~ ~ ~~~~~~~ ~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~ ~ ~ ~~ ~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~ ~ ~~~ ~ ~~~~ ~ ~ ~~~ ~~ ~~~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~ ~~~~~~~ ~~~~ ~ ~ ~ ~~ ~~ ~~~~~~~~~ ~ ~~ ~~~~~~~~~~~ ~~~ ~~~~~~ ~ ~ ~~~~~~~~ ~~~~~~~~~~ ~~ ~ ~ ~~~ ~~ ~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~ ~ ~ ~~~ ~~ ~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~ ~~ ~~~ ~~~ ~~~ ~~~~~~~ ~ ~ ~~~ ~ ~~~ ~ ~~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~ ~~ ~~~ ~~~~ ~ ~~ ~~ ~~ ~ ~ ~ ~ ~~ ~~ ~~~ ~~~ ~~ ~~~ [...]... (12. 12.1) = jFn (x_z) g i (z)dz , and we shall consider the expression ( 12. 12.2) F§(x2)-F.(xl) ° Suppose that 82 > 0 ; then jIzI>n~' -e 2 Fn (x- z)g l (z) = B exp(-Znl-2E2) If x l [(1+ 712" '-l)]-z J exp [-2 u 2 /(1+n 2 "' -l )]du(1+208 4) (12 12 7) If 84 is sufficiently small compared with the number ~l in (12. 11 11), then (12. 12 7) contradicts (12 11 9) Thus (12. .. +OPn4 (12 8 1) 12 8 EXPANSION OF R AS A TAYLOR SERIES 237 We take K = [10/(2 -a)] + 1 (12. 8.2) and note that, for p < K, JIyI>yn y"p(y)dy < C 6 exp for sufficiently large (12 7.5), n [-c9n27p5(n)2] < C6n-10 (12. 8.3) Thus (12 8 1) becomes, using (12. 8 2), (12 8 3) and K hp R=1+ E ap -+ 6C7 n 10 , p=2 P! ( 12. 8 4) where the ap are the moments of the Xj (i < n) Moreover, 00 m=E(Xj)=R-1 f- (12 8 5)... (12 8 13) implies that h = m+OC8n-1P2(n)-s-3 (12 8 17) „ 9 Further transformations Turning to (12. 7.1) we now choose h so that (12. 9 1) x=mn2 , where 1 < x< n"/P7 (n) , P7 (n) % P2 (n) 20 • (12. 9 2) 12 9 FURTHER TRANSFORMATIONS From (12 8 17) this implies that h = n-Zx+9Csn-1 p2 (n)-s-3 , 239 ( 12. 9.3) which in view of (12 9.2) is consistent with (12 3 3) Moreover, Rn e -h m" = exp [n (log R -. .. 27r n ©, -n -pi Chap 12 exp [-2 (n+n2a')t2] exp[nKs 0 +3(t) - n+ itx]dt+ +B exp (-E 1 n2a') (12. 11 4) Following the computations of „„ 9 6, 6 that, for 1