Tén dé tai: Nghiên cứu chế tạo, biến tính vật liệu hấp phụ hiệu năng cao zeolite sinh học phủ nano oxit kim loại và ứng dụng để xử lý các chất hữu cơ gây ô nhiễm môi trường nước 1.2.. Kế
Trang 1ĐẠI HỌC QUÓC GIA HÀ NỘI
BAO CAO TONG KET
KET QUA THUC HIEN DE TAI KH&CN
CAP DAI HOC QUOC GIA
Trang 2PHAN I THONG TIN CHUNG
1.1 Tén dé tai: Nghiên cứu chế tạo, biến tính vật liệu hấp phụ hiệu năng cao zeolite
sinh học phủ nano oxit kim loại và ứng dụng để xử lý các chất hữu cơ gây ô nhiễm
môi trường nước
1.2 Mã số: QG.22.17
1.3 Danh sách chủ trì, thành viên tham gia thực hiện đề tài
tài
TS Đặng Văn Long Khoa Hóa học, DH KHTN Chủ nhiệm đề tài
2 |Đoàn Thị Hải Yến Khoa Hóa học, ĐH KHTN|_ Thành viên đề tài
3_ [Phạm Tiến Đức Khoa Hóa học, BH KHTN|L Thành viên đề tài
4 Nguyễn Thị Minh Thư Khoa Hóa hoc, BH KHTN|L Thành viên đề tài
5 |HVCH Trương Thị Thùy Trang |Khoa Hóa hoc, DH KHTNL Thành viên đề tài
1.4 Đơn vị chủ trì: Trường Đại học Khoa học Tự nhiên
1.5 Thời gian thực hiện:
1.5.1 Theo hợp đồng: 24 tháng, từ tháng 5 năm 2022 đến tháng 5 năm 2024
1.5.2 Gia hạn (nếu có): Không
1.5.3 Thực hiện thực tế: 24 tháng, từ tháng 5 năm 2022 đến tháng 5 năm 2024
1.6 Những thay đổi so với thuyết minh ban dau:
- Thay đồi chủ nghiệm đề tai (theo quyết định số 1223/OD-PHOGHN ngày11/4/2023 của Giám đốc DHOGHN)
1.7 Tong kinh phi được phê duyệt của dé tài: 360 triệu đồng.
PHAN II TONG QUAN KET QUÁ NGHIÊN CỨU
1 Đặt vẫn đề
Xử lý ô nhiễm nguồn nước là một trong các vấn dé cấp thiết Các phương pháp
dé xử lý nguồn nước 6 nhiễm các hợp chất hữu co phổ biến hiện nay là kết tủa, trao
đổi ion, ozon hóa, lọc Tuy nhiên, hiệu quả xử lý của các phương pháp này khôngđược cao hay đòi hỏi yêu cầu kỹ thuật phức tạp va chi phí cao Gần đây, phương pháphấp phụ ngày càng trở lên phổ biến vì quá trình đơn giản, chi phí thấp và hiệu quả xử
Trang 3ly ô nhiễm hữu cơ cao Việt Nam là một nước nông nghiệp, do đó lượng phế phụ phamnông nghiệp như lõi ngô, bã mía thải ra môi trường rất lớn Trong khi đó, chỉ một phần
phụ phẩm nông nghiệp được tái sử dụng hiệu quả Do đó, việc tận dụng các phụ phế
phẩm nông nghiệp dé tổng hợp các vật liệu hấp phụ hiệu năng cao là hướng di đúngđắn, bảo vệ môi trường Trong các ứng dụng hấp phụ, các lõi ngô, bã mía được hoạthóa làm tăng độ xốp hoặc dùng để chế tạo than sinh học hoặc than hoạt tính Tuynhiên, hiệu suất xử lý không được cao do các thuốc nhuộm trong nguồn nước và một
số chất diét cỏ có đặc tính phân cực mang điện tích khác nhau trong khi các loại than
hoạt tính hay than sinh học thường có bề mặt kị nước Các vật liệu mao quản được ứng
dụng rộng rãi trong hấp phụ Các zeolite với đặc tính cấu trúc là các lỗ xóp là vật liệuhấp phụ hữu cơ tiềm năng Với nghiên cứu được tiến hành trong đề tài này là tổng hợpvật liệu hấp phụ zeolite sẽ mang lại nhiều lượi thế như vật liệu diều chế dồi dào, rẻtiền, giải quyết khan hiếm vật liệu hấp phụ hiệu năng cao Tuy nhiên, các zeolite vimao quản còn nhiều hạn chế trong hấp phụ các phân tử kích thước lớn Với nghiên cứubiến tính bề mặt zeolite bằng các CHĐBM hay các polyme mang điện tích hay phủmột lượng nhỏ oxit đất hiếm nhẹ tăng cường tỉ trọng điện tích bề mặt và khả năng hấpphụ là một giải pháp hữu hiệu tiềm năng giải quyết được các nhược điểm trên
* Mục tiêu chung:
— Chế tạo được vật liệu zeolite sinh học từ các phụ phẩm nông nghiệp như bã mía, lõi
ngô , phủ oxit kim loại như CeO: dé tăng cường diện tích bề mặt
— Biến tính được bề mặt zeolite sinh học bằng phương pháp phủ chất hoạt động bề
mặt (CHĐBM) và các polyme mang điện tích nhằm tăng diện tích và điện tích bềmặt cua zeolite sinh học nói trên phục vụ cho mục tiêu hấp phụ xử lý thuốc nhuộm
và thuốc trừ cỏ trong môi trường nước
* Mục tiêu cụ thể:
- Ché tạo được vật liệu zeolite với thành phần pha SiO2 và Al2O3 khác nhau từ các
hóa chất tinh khiết
- Chế tạo được vật liệu zeolite sinh hoc từ các phụ phế phẩm nông nghiệp là vỏ trau
- _ Nghiên cứu động lực hoc hấp phụ của các hợp chất hữu cơ trên bề mặt zeolite
- Phủ oxit kim loại CeOa, biến tính bề mặt zeolite bằng phủ CHDBM, các polyme
mang điện tích đương và các polyme mang điện tích âm nhăm tăng cường tỉ trọngđiện tích bề mặt và tăng khả năng hấp phụ các chất ô nhiễm hữu cơ gây ô nhiễm
môi trường.
Trang 4- _ Tiến hành xử lý các chất hữu co gây 6 nhiễm môi trường nước bao gồm các thuốc
nhuộm và chât diệt cỏ với hiệu suât xử lý cao trên 90%.
- Khảo sát đánh giá khả năng tái sử dụng của vật liệu hấp phụ
3 Phương pháp nghiên cứu
Phương pháp nghiên cứu, kỹ thuật sử dụng:
Các phương pháp điều chế vật liệu hấp phụPhương pháp thủy nhiệt dé điều chế vật liệu zeoliteZeolit thường được tổng hợp từ hỗn hợp dung dịch nước-kiềm của nhôm như nhômhydroxit, nhôm sunfat và silic như thủy tỉnh lỏng hay silicagel thưởng ở áp suấtthường hoặc trong autoclave ở áp suất cao Sự kết tinh của zeolite đòi hỏi khống
chê nghiêm ngặt nông độ các câu tử, sự hợp thức của các câu tử, nhiệt độ két tinh
và tốc độ khuấy các hỗn hợp sau khi trộn và tao gel, các tinh thé zeolite được tao
thành từ các hạt vô định hình thông qua sự chuyên pha gel sang pha lỏng
Phương pháp để điều chế zeolite từ các phế phâm nông nghiệp lõi ngô, bã míaCác phương pháp nghiên cứu cấu trúc, thành phần, đặc tính bề mặt của vật liệuPhương pháp nhiễu xạ Rơnghen (XRD): xác định cấu trúc, thành phần pha vậtliệu zeolite và vật liệu zeolite được phủ CeO: trên bề mặt
Phương pháp phổ hồng ngoại (IR): xác định các nhóm chức đặc trưng trên bềmặt vật liệu hấp phụ zeolite và zeolite biến tính
Phương pháp kính hién vi điện tử truyền qua (TEM): xác định hình thái và kíchthước hạt của zeolite và zeolite biến tính
Phương pháp BET: xác định diện tích bề mặt vật liệu zeolite và zeolite biến tínhPhương pháp do thé zeta: xác định điện tích cũng như độ linh động điện di củavật liệu zeolite và zeolite biến tính trong nền chất điện li
Các phương pháp phân tích định lượng nghiên cứu hấp phụPhương pháp phổ hấp phụ phân tử UV-Vis: xác định trực tiếp nồng độ thuốcnhuộm, chất diệt cỏ, CHĐBM và các polyme dương trong dung dịch
Phương pháp điện di mao quản với detector đo độ dẫn không tiếp xúc CD) và phương pháp sắc ký khí đo độ dẫn (GC-TCD) và sắc ký lỏng hiệu năngcao (HPLC) xác định nồng độ thuốc nhuộm, chất diệt cỏ, CHĐBM và các
(CE-polyme mang điện dương trong dung dịch.
Phương pháp đo tổng cacbon hữu cơ: dé xác định ham lượng thuốc nhuộm, chat
diét cỏ, CHDBM và các polymer mang điện dương.
Các phương pháp áp dụng các mô hình tính toán
Phương trình hấp phụ dang nhiệt cơ bản như Langmuir, Freundlich, mô hình
hấp phụ một bước hay hai bước.
Trang 5- Phuong trình Ohshima trong tính toán, giải thích độ linh động điện di của các
hạt trong nền điện di khác nhau
- _ Các mô hình giả động học hấp phụ bậc 1 và bậc 2 góp phần đề xuất cơ chế hap
phụ.
Tính mới, tính độc đáo, tính sáng tạo của phương pháp, kỹ thuật sử dụng:
Thực tế, các phế phâm nông nghiệp như bã mía, lõi ngô thường được bỏ đimột cách lãng phí Do đó, nghiên cứu có tính độc đáo, hiệu quả cao khi điều chế vậtliệu hấp phụ hiệu năng cao tận dụng nguồn phế phẩm nông nghiệp Việc hấp phụ trựctiếp các chất ô nhiễm hữu cơ lên vật liệu thường không mang lại hiệu suất cao vì diệntích bề mặt nhỏ của zeolit Đây là nghiên cứu đầu tiên tại Việt Nam và là tiên phong
trên thé giới biến tính zeolite bằng CHDBM và các polyme mang điện tích, phủ CeO>
vào zeolite dé ứng dụng xử lý thuốc nhuộm va chất diệt cỏ trong môi trường nước
Quá trình biến tính và phủ CeO> có thé làm thay đổi và tăng cường tỉ trọng điện tích bềmặt vật liệu hấp phụ, có tính thực tiễn cao trong xử lý chất hữu cơ ô nhiễm môi trường
nước.
4 Tổng kết kết quả nghiên cứu
- Quy trình chế tao vật liệu Zeolite sinh học từ các phụ phế phâm nông nghiệp (vỏ
trau) được phủ CeOa Kết quả đã tổng hợp được 500 g vật liệu mẫu loại Zeolite sinh
hoc, phủ CeO» có diện tích bề mặt riêng 50 m”g; thé zeta 30 mV
- Vật liệu Zeolite sinh học biến tính với polymer mang điện tích dương có thế Zeta là
30 mV Kết quả đã tông hợp được 500 gam vật liệu mẫu loại Zeolite sinh học biến tínhvới polymer mang điện tích đương có thế Zeta 30 mV
- Vật liệu Zeolite sinh học biến tính với CHDBM mang điện tích dương có thế zeta là
30 mV Kết quả thù được là 500 gam vật liệu mẫu loại Zeolite sinh học biến tính với
CHĐBM (chất hoạt động bề mặt) mang điện tích dương có thé Zeta đạt trên 30 mV vàkèm theo các thông số xác định các đặc tính hóa lý và hóa học được xác định bằng các
phương pháp hiện đại: BET, XRD, XRE, SEM, TEM và FT-IR.
5 Đánh giá về các kết quả đã đạt được và kết luận
Đề tài đã nghiên cứu chế tạo được vật liệu Zeolite sinh học từ các phụ phẩmnông nghiệp (vỏ trau) bằng phương pháp thủy nhiệt ứng dụng trong hấp phụ xử lýthuốc nhuộm azo và thuốc trừ sâu glyphosate gây ô nhiễm môi trường nước Nghiêncứu chế tạo được vật liệu Zeolite phủ Cerioxit (CeO2) (CeO2@Zeolite) ứng dụng tronghấp phụ xử lý thuốc nhuộm azo và thuốc trừ sâu glyphosate gây ô nhiễm môi trường
nước.
Đã tổng hợp đưa ra được quy trình chế tạo vật liệu Zeolite sinh học từ các phụphế phẩm nông nghiệp (vỏ trau) được phủ CeOz có diện tích bề mặt riêng 50 m2/g
4
Trang 6bang các phương pháp nhiễu xa tia Rơnghen (XRD), phương pháp phổ hồng ngoạibiến đổi Fourier (FT-IR), phương pháp kính hiển vi điện tử truyền qua, thuyết hấp phụBrunauer- Emmett- Teller (BET) xác định diện tích bề mặt và điện thế Zeta.
Đã tổng hợp đưa ra được quy trình chế tạo vật liệu Zeolite sinh học và Zeolitephủ CeOa có thé zeta 30 mV bang các phương pháp nhiễu xa tia Ronghen (XRD),phương pháp phô hồng ngoại biến đồi Fourier (FT-IR), phương pháp kính hién vi điện
tử truyền qua, thuyết hấp phụ Brunauer- Emmett- Teller (BET) xác định diện tích bềmặt và điện thế Zeta
6 Tóm tắt kết quả (tiếng Việt và tiếng Anh)
Tiếng Việt
Zeolit Permutit (Per) với tinh thé lập phương, tỷ lệ siO2/Al2O3 là 1,66, diện tích
bề mặt riêng là 44,81 m’/g, ban kinh 16 rong trung bình là 1,7 nm va các liên kết đặc
trưng của Si-OH, Si- O-Si, Si-O-Al và O-Si-O-Si đã được nghiên cứu trong nghiên cứu này.
Hiệu suất loại bỏ hấp phụ của thuốc nhuộm azo PC4R đã tăng gần gấp đôi từkhoảng 53,23% lên 90,06% nhờ sự thay đồi diện tích bề mặt Per với chất hoạt động bềmặt cation cetyltrimethylammonium bromide (CTAB) làm chất hấp phụ hiệu quả vàcho hiệu suất cao Quá trình loại bỏ chất hấp phụ PC4R được tối ưu hóa ở các giá trị
có độ pH=4, nồng độ NaCl 10 mM, tốc độ mỗi lần là 6 mg/mL và thời gian tiếp xúcngắn là 15 phút Cả hai mô hình Langmuir và Freundlich đều hợp lý để mô tả cácđường đăng nhiệt hap phụ PC4R trên CTAB@Per trong khi động học hap phụ hóa họcPC4R phù hợp tốt với mô hình giả bậc hai Khả năng hấp phụ đa lớp PC4R đạt cực đạingoại suy là 15,470 mg/g Các cơ chế hấp phụ PC4R đã được chứng minh bằng phép
đo FT-IR chủ yếu là lực hút tĩnh điện giữa CTAB va PC4R, tương tác lưỡng cuc-ion
và liên kết hydro giữa các phân tử PC4R
adsorbent The PC4R adsorptive removal was optimized at independent variables of
pH 4, the ionic strength of 10 mM NaCl, the Per dosage of 6 mg.mL— 1, and the short contact time of 15 min Both the Langmuir and Freundlich models were reasonable to describe the PC4R adsorption isotherms on the CTAB@Per while the PC4R
Trang 7chemisorption kinetics were well accorded with the pseudo-second-order model The PC4R multilayer adsorption capacity achieved an extrapolated maxima of 15.470
mg.g— 1 The PC4R adsorption mechanisms were demonstrated by the FT-IR
measurement to be primarily the electrostatic attractions between the CTAB and the PC4R, dipole-ion interactions, and hydrogen bondings between the PC4R molecules.
PHAN III SAN PHAM, CONG BO VA KET QUA DAO TAO CUA DE TAI
3.1 Kết quả nghiên cứu
Yêu cầu khoa học hoặc/và chỉ tiêu kinh tế
TT Tên sản phẩm - kỹ thuật
Đăng ký Đạt được
Quy trình chế tạo vật liệu
1 |Quy trình chế tạo vật liệu| Diện tích bề mặt Diện tích bề mặt
Zeolite sinh học từ các phụ phê riêng tôi thiêu 50 riêng tôi thiêu 50
phâm nông nghiệp (bã mia, lõi m”/g m”/g
gô, ) được phủ CeO2
2 | Vật liệu Zeolite sinh hoc va) Thế zeta tối thiểu 30 | Thế zeta tối thiểu
Zeolite phủ CeO2 mV 30 mV
3 | Vat liệu Zeolite sinh học biên | Thế zeta tối thiểu 30 | Thế zeta tối thiểu
tính với polymer mang điện tích mV 30 mV
dương có thé Zeta tối thiểu 30 mV
4 | Vật liệu Zeolite sinh học biển | Thế zeta tối thiểu 30 | Thế zeta tối thiểu
tính với CHĐBM mang điện tích mV 30 mV
dương có thé zeta tối thiểu 30
mV
San pham vật liệu mau
5 |500 gam vật liệu mau loai| Thế zeta tối thiểu 30 | Thế zeta tối thiểu
Zeolite sinh học, phủ CeO2 mV 30 mV
6 |500 gam vật liệu mau loại | Thế zeta tối thiểu 30 | Thế zeta tối thiểu
Zeolite sinh học biên tính với mV 30 mV polymer mang điện tích dương
có thế Zeta tối thiểu 30 mV
Trang 8Yêu cầu khoa học hoặc/và chỉ tiêu kinh tế
TT Tên sản phẩm - kỹ thuật
Đăng ký Đạt được
7 |500 gam vật liệu mẫu loại | Thế zeta tối thiểu 30 | Thế zeta tối thiểu
Zeolite sinh học biên tính với mV 30 mV
CHĐBM (chat hoạt động bê mặt) mang điện tích dương có
thê Zeta tôi thiêu 30 mV và kèm
theo các thông sô xác định các
đặc tính hóa lý và hóa học được xác định băng các phương pháp hiện dai: BET, XRD, XRF,
SEM, TEM va FT-IR.
3.2 Hình thức, cấp độ công bố kết quả
Tình trạng | Ghi địa | Đánh
(Đã in/ chấp chỉ và giá nhận in/ đã cảmơn | chun nộp don/ da | SW tài trợ |g
: 2 duoc chap cua (Đại,
“7 San pham nhận don hợp DHQGH khôn
lé/ đã được | Ning | g dat) cap gidy xdc quy định
nhận SHT T7 xác nhận sử
dụng sản
phẩm )
| Công trình công bố trên tạp chí khoa học quốc tế theo hệ thống ISI/Scopus
11 Thi Hai Yen Doan, Van Long Dang, Thi Đã in Có Đạt
Thuy Trang Truong, Thi Ngan Vu, Thanh Son Le, Thi Minh Thu Nguyen, Minh Ngoc Nguyen, Thu Thao Pham, Shin-ichi Yusa, Tien Duc Pham “Removal of Acid Orange G Azo Dye _ by
Modified Alpha Alumina Nanoparticles’.
Chem Asian J 2023, e202300404.
https://doi.org/10.1002/asia.202300404, ISI Q1.
Trang 9
Polycation-12 Van Long Dang, Thu Trang Kieu, Thi Da in Có Đạt
Thu Thao Nguyen, Thi Thuy Trang Truong,
Duy Thanh Hoang, Thi Linh Chi Vu, Thi
Minh Thu Nguyen, Thanh Son Le, Thi Hai Yen Doan, Tien Duc Pham “Surface
modification of zeolite by cationic surfactant and the application on adsorptive removal of azo dye Ponceau 4R” Journal of Molecular Structure 1304
(2024) 137619.
https://doi.org/10.1016/.molstruc.2024.1
37619 ISI Q2.
3.3 Két qua dao tao
¬ ¬ Công trình công bố liên
¬ ae gian bia kinh quan Đã bao
TT Họ và tên phí tham gia dé tài „ A
(số tháng/số tiền) (Sản pham KHCN, luận án, VỆ
luận văn)
Học viên cao học
1 | Trương Thị 3/24.957.500 Tên luận văn: Nghiên cứu | Đã có
Thùy Trang hấp phụ xử lý chất hữu cơ bang
khó phân hủy trên vật liệu nano oxit kim lọai được
biến tính bề mặt bằng
polyme mang điện.
PHAN IV TONG HỢP KET QUÁ CÁC SAN PHAM KH&CN VA ĐÀO TAO
Trang 10PHẦN V TÌNH HÌNH SỬ DỤNG KINH PHÍ
Kinh phí được | Kinh phí thực
TT Nội dung chi duyệt hiện on
(triệu dong) (triệu dong)
A_ | Chi phí trực tiếp 342.000.000 342.000.000
1 | Thuê khoán chuyên môn 268.796.100 268.796.100
2 | Nguyên vật liệu, năng lượng 62.000.000 62.000.000
3 | Hội nghị, Hội thảo, kiêm tra tiến 10.800.000 10.800.000
- _ Nghiệm thu, thanh lý đề tài
PHAN VI PHU LUC (minh chứng các sản phẩm nêu ở Phan II)
Minh chứng kết quả đào tạo
- Minh chứng kết quả công bố
Minh chứng kết quả nghiên cứu
Đơn vị chủ trì đề tài(Thủ trưởng don vi ký tên, đóng dau)
Chủ nhiệm đề tài
TS Đặng Văn Long
Trang 11PHỤ LỤC
(minh chứng các sản phẩm nêu ở Phan III)Phụ lục 1 Minh chứng kết quả đào tạo
01 Học viên cao học đã có bằngPhụ lục 2 Minh chứng kết quả công bố
02 bài báo công bố trên tạp chí khoa học quốc tế theo hệ thong ISIPhụ lục 3 Minh chứng kết quả nghiên cứu
3.1 Quy trình chế tạo vật liệu3.2 Sản phẩm vật liệu mẫu
Phụ lục 4 Thuyết minh dé tài
10
Trang 12Phụ lục 1 Minh chứng kết quả đào tạo
Đào tạo 01 học viên cao học đã có bằng
11
Trang 14ĐẠI HỌC QUOC GIA HÀ NỘI CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN Độc lập - Tự do - Hạnh phúc
BANG DIEM THAC SĨ
(Chỉ có giá trị kèm theo văn bằng số: QM 041244 cắp ngày 26/09/2023)
Họ và tên: Trương Thị Thùy Trang Ngày sinh: 10/10/1999 Nơi sinh: Hà Nội
Quyết định công nhận học viên cao học số 3485/QĐ-ĐHKHTN ngày 15/12/2021
của Hiệu trưởng Trường Đại học Khoa học Tự nhiên
Chuyên ngành: Hóa phân tích Mã số: 8440112.03
Quyết định công nhận hoc vị và cắp bằng thạc sĩ số 2751/QD-DHKHTN ngày 22/08/2023 của Hiệu trưởng
Trường Đại học Khoa học Tự nhiên
KET QUA HỌC TAP
Ma hoc ˆ à Số tín Mã học ˆ à
' Các kỹ thuật tách chất và
ENG5001 |Tiéng Anh cơ bản CHE6302 sắc ký trong phân tích 2 A
Các phương pháp hiện đại Các phương pháp phân
Các phương pháp phân Phương pháp tính Hóa
pass» tích quang phổ nâng cao ? A+ |CHE6002 lượng tử trong Hóa học 3
CHE6307 Các kỹ thuật phân tích CHE6306 Các kỹ thuật phân tích hiện
vết các chat
Trung binh chung hoc tap Tổng số tin chỉ tích lũy | |
Tên đề tài: Nghiên cứu hap phụ xử ly chất hữu cơ khó phân Hội đồng cham luận văn:
hủy trên vật liệu nano oxit kim loại được biến tính bề mặt bằng _ Chủ tich: PGS.TS Pham Thị Ngọc Mai
polyme mang điện Phản biện 1: PGS.TS Nguyễn Thị Ánh Hường
Người hướng dan khoa học: _ Phản biện 2: PGS.TS Nguyễn Xuân Trường
PGS.TS Phạm Tiên Đức; TS Đoàn Thị Hải Yên Thư ký: TS Hoàng Quốc Anh
Ngày bao Võ: 90/00/2026 Ủy vién: TS Nguyễn Vân Anh
Nơi bảo vệ: Trường Đại học Khoa học Tự nhiên - ĐHQGHN
Điểm luận văn: A+
Trang 15ĐẠI HỌC QUÓC GIA HÀ NỘI CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN Độc lập - Tự do - Hạnh phúc
Số: £048 /QD-DHKHTN
Ha Nội, ngày 20 thang € nam 2023
QUYET DINH
Vé việc thành lập Hội dong đánh giá luận văn thạc sĩ
HIỆU TRƯỞNG TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
Căn cứ Quy định về Tổ chức và hoạt động của các đơn vị thành viền và don vị trực
thuộc Đại học Quốc gia Hà Nội ban hành theo Quyết định số 3568/OD-PHOGHN ngày
08/10/2014 của Giám đốc Đại học Quốc gia Hà Nội;
Can cứ Quy chế đào tạo thạc si tại Dai học Quốc gia Hà Nội ban hành theo Quyết
định số 4668/OD-DHOGHN ngày 10/12/2014 của Giám đốc Đại học Quốc gia Hà Nội;
Căn cứ Quyết định số 250/QD-DHQGHN ngày 18/01/2018 của Giám đốc Đại học
Quốc gia Hà Nội về việc chuyển đổi các ngành, chuyên ngành đào tạo ở Đại học Quốc
gia Hà Nội theo Danh mục giáo duc, đào tạo cap IV trình độ đại học, thạc sĩ, tiễn sĩ;
Theo đề nghị của Trưởng khoa Hóa học và Trưởng phòng Đào tạo.
QUYÉT ĐỊNH:
Điều 1 Thành lập Hội đồng đánh giá luận văn của học viên Trương Thị Thùy Tra yors
Ngày sinh: 10/10/1999 Khóa: QH.2021.T.C = not
Chuyên ngành: Hóa phân tích Mã số: 8440112.03 cae
Đề tài: "Nghiên cứu hap phụ xử lý chất hữu cơ khó phân hủy trên vật liệu nan
kim loại được biến tính bê mặt bằng polyme mang điện"
Người hướng dẫn: PGS.TS Phạm Tiến Đức, TS Đoàn Thị Hải Yến
Điều 2 Ủy nhiệm Trưởng khoa Hóa học tổ chức bảo vệ luận văn trên theo quy định hiện
hành Hội đông tự giải thê sau khi hoàn thành nhiệm vụ.
Diều 3 Trưởng các đơn vị có liên quan, học viên Trương Thị Thùy Trang và các thành
viên trong Hội đồng đánh giá luận văn thạc sĩ chịu trách nhiệm thi hành Quyết định này./.
Trang 16DANH SÁCH HỘI ĐÒNG ĐÁNH GIÁ LUẬN VĂN THẠC SĨ
(Kèm theo Quyết định số: ¿039/QĐ-ĐHKHTN, ngày 30/ 6 /2023)
Trách
Cơ quan công tác nhiệm trong; Ghichú |
Hội đồng Trường Đại học Khoa học "
STT Họ tên
1 |PGS.TS Pham Thị Ngọc Mai
IP@S.TS, Nguyễn Thị Ánh Trường Đại học Khoa học en ee
| 2 |Hường Ty nhién-DHQGHN | Phan biện l |
——— +
3 |PGS.TS Nguyễn Xuân Trường ee bọc Bách Khoa Ha | shan biter?
| : b
Trường Đại học Khoa học Thư ký
4 TS Hoàng Quôc Anh Tự nhiên - BHOGHN
Trường Đại học Thủ đô
5 là Nguyên Vân Anh Hà Nội Ủy viên
(Hội dong gom 05 thành viên.⁄) d4
Trang 17_ ĐẠIHỌC QUÓC GIA HÀ NỘI CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN Độc lập - Tự do - Hạnh phúc
số:9//QĐ-ĐHKHTN Hà Nội, ngày Lp tháng 6 năm 2022
QUYÉT ĐỊNH
A en h rey ^^ a
Về việc giao đề tài va cử cán bộ hướng dẫn luận văn thạc sĩ
cho học viên Khóa QH.2021.T.CH
HIỆU TRƯỞNG TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
Căn cứ Quy vie về Tổ chức và hoạt động của các đơn vị thành viên và đơn vị trực
thuộc Đại học Quốc gia Ha Nội ban hành theo Quyết định số 3568/QĐÐ-ĐHQGNN ngày
08/10/2014 của Giám đốc Đại học Quốc gia Hà Nội;
Căn cứ Quy chế đào tạo thạc sĩ tại Đại học Quốc gia Hà Nội ban hành theo Quyết
định số 4668/OD-DHOGHN ngày 10/12/2014 của Giám đốc Dai học Quốc gia Hà Nội;
_ Căn cứ Quyết định số 250/OD-DHOGHN ngày 18/01/2018 của Giám đốc Đại học
Quốc gia Hà Nội về việc chuyên đôi các ngành, chuyên ngành đào tạo ở Đại học Quốc
gia Hà Nội theo Danh mục giáo duc, đào tao cấp IV trình độ đại học, thạc sĩ, tiễn sĩ;
Theo đề nghị của Trưởng khoa Hóa học và Trưởng phòng Đào tạo
QUYET ĐỊNH:
Điều 1 Công nhận tên đề tài luận văn thạc sĩ và người hướng dẫn học viên cao học
Trương Thị Thùy Trang, ngày sinh 10/10/1999, tại Hà Nội, mã số học viên: 21007863,
như sau:
Tên đề tài: Nghiên cứu hấp phụ xử lý chất hữu cơ khó phân hủy trên vật liệu nano
oxit kim loại được biến tính bề mặt bằng polyme mang điện.
Chuyên ngành: Hóa phân tích; mã số: 8440112.03.
Người hướng dẫn: PGS.TS Phạm Tiến Đức, Trường Đại học Khoa học Tự nhiên
-ĐHQGNN; TS Đoàn Thị Hải Yén, Trường Dai học Khoa học Tự nhiên - DHQGHN.
Điều 2 Cán bộ hướng dẫn và học viên cao học được hưởng các chế độ, quyền lợi
và nhiệm vụ theo Quy chế đào tạo sau đại học ở Đại học Quốc gia Hà Nội.
Điều 3 Trưởng Phòng Đảo tạo, Trưởng khoa Hóa học, cán bộ hướng dẫn và học
viên cao học có tên trong Điều | chịu trách nhiệm thi hành Quyết định nays.
Trang 18Phụ lục 2 Minh chứng kết quả công bố
Công trình công bố trên tạp chí khoa học quốc tế theo hệ thống ISI
1 Thi Hai Yen Doan, Van Long Dang, Thi Thuy Trang Truong, Thi Ngan Vu,
Thanh Son Le, Thi Minh Thu Nguyen, Minh Ngoc Nguyen, Thu Thao Pham, Shin-ichi Yusa, Tien Duc Pham “Removal of Acid Orange G Azo Dye by
Polycation-Modified Alpha Alumina Nanoparticles” Chem Asian J 2023,
e202300404.
https://doi.org/10.1002/asia.202300404, ISI ỌI.
2 Van Long Dang, Thu Trang Kieu, Thi Thu Thao Nguyen, Thi Thuy Trang
Truong,
Duy Thanh Hoang, Thi Linh Chi Vu, Thi Minh Thu Nguyen , Thanh Son Le, Thi Hai Yen Doan, Tien Duc Pham “Surface modification of zeolite by
cationic surfactant and the application on adsorptive removal of azo dye
Ponceau 4R” Journal of Molecular Structure 1304 (2024) 137619.
https://doi.org/10.1016/j.molstruc.2024.137619 IST Q2.
15
Trang 19Asian Chemical Editorial Society
AN ASIAN JOURNAL
www.chemasianj.org
Removal of Acid Orange G Azo Dye by Polycation-Modified Alpha Alumina Nanoparticles
Thi Hai Yen Doan," "! Van Long Dang,”! Thi Thuy Trang Truong,“ Thi Ngan Vu,“
Thanh Son Le,“ Thi Minh Thu Nguyen,“ Minh Ngoc Nguyen,“! Thu Thao Pham,
Shin-ichi Yusa,! and Tien Duc Pham*"!
Highly positively charged poly(vinyl benzyl trimethylammonium
chloride) (PVBMA) was successfully synthesized with
approx-imately 82% of yield The PVBMA was characterized by the
molecular weight (M,) of 343.45 gmol'' and the molecular
weight distribution, (Ð) of 2.4 by 'H NMR and SEC
measure-ments The PVBMA was applied as an effective agent for ơ-Al;O;
surface modification in the adsorptive removal of the azo dye
acid orange G (AOG) The AOG removal performance was
significantly enhanced at all pH compared to without surface
Introduction
Adsorption is a popular high-potential technique used for
pollutant removal including organic dyes,” besides other
conventional methods proposed such as advanced oxidation,3
and photocatalytic degradation.5' The advantages of
adsorp-tion are its simplicity, low time consumpadsorp-tion, low cost, and high
efficiency In most cases, adsorbents play one of the most
important roles in pollutant removal performance For
sustain-able development, friendly environmental adsorbents are
preferred such as oxide metals with high porosity, which have
been considered as efficient adsorbents Alumina, especially
alumina with nano-size varying states a, B, and y with greater
[a] Dr T H Yen Doan, Assoc Prof T D Pham
Faculty of Chemistry
University of Science,
Vietnam National University,
19 Le Thanh Tong, Hoan Kiem, Hanoi 100000 (Vietnam)
E-mail: tienduchphn@gmail.com
tienducpham@hus.edu.vn [b] Dr T H Yen Doan, V L Dang
Faculty of Chemistry
University of Science,
Vietnam National University
19 Le Thanh Tong, Hoan Kiem, Hanoi 100000 (Vietnam)
[c] T T Trang Truong, T N Vu, T S Le, T M Thu Nguyen, M N Nguyen
Faculty of Chemistry
University of Science,
Vietnam National University,
19 Le Thanh Tong, Hoan Kiem, Hanoi 100000 (Vietnam)
[d] T T Pham, Prof S.-i Yusa
Department of Applied Chemistry,
Graduate School of Engineering
University of Hyogo
2167 Shosha, Himeji, Hyogo 671-2280 (Japan)
Supporting information for this article is available on the WWW under
https://doi.org/10.1002/asia.202300404
Chem Asian J 2023, e202300404 (1 of 11)
modification The experimental parameters were optimal at
pH 8, free ionic strength, 15min of adsorption time, and
mainly controlled by the PVBMA-AOG electrostatic attractions was better applicable to the Langmuir isotherm and the
pseudo-second kinetic model The PVBMA-modified ơ-Al;O;
demonstrates a high-performance and highly reusable ent with great AOG performances of approximately 90.1% after
adsorb-6 reused cycles.
specific surface areas, is one of the most popular mineral
components, presenting as high-performance adsorbents.?
Among the various alumina states, the alpha alumina (œ-Al;O:)
nanoparticles with the highest temperature resistance and
relative specific surface area were successfully applied to
remove organic pollutants."9!
On the other hand, coloring agents such as dyes and pigments are diversely used in the textile, paper, plastic,
cosmetic, and food industries.” Industrial effluents without
proper treatment threaten the environment and human health The dyes are usually accumulative, highly stable, difficultly naturally degradable, and hard discolorable in aquatic
environments."*" Azo dyes are the most commonly used, representing about 50-70% of entire dye applications."§!”
Removing the azo dyes from the effluents is necessary due to
their teratogenic and carcinogenic abilities."*?" Among the azo
dyes, acid orange G (AOG) is known as a synthetic-origin hazard
by the United States Environmental Protection Agency
(USEPA).2" The AOG is represented by a mono azo group
(—N=N-—) and two anionic groups (—SO;ˆ) bound to aromatic rings These molecular characteristics lead to its water-solubility
and pH stabilization!??” Therefore, the sciences have paid
attention to AOG removal An AOG maximum adsorption
capacity of 5.48 mggˆ' was determined through adsorption on
the modified sawdust while the unmodified sawdust efficiency
was not reported.”*! On the other hand, the AOG adsorption
capacity on the sawdust adsorbents increased from about 24 to
about 44% without and with modification by H,SO,,
respectively.” The potential of alumina in azo dye adsorptive removal has been affirmed in several researches.526' However,
the azo dye removal efficiency through adsorption onto the Al;O: material has been limited due to a lower specific surface area compared with the other alumina states Therefore, surface
ơ-modification is required It has been constantly concerned with polymer-adsorbent surface modifiers to improve not only the
© 2023 Wiley-VCH GmbH
Trang 20Asian Chemical
Editorial Society
ACE
specific surface area but also the surface charge density.2
The AOG removal percentage was enhanced from 65.16% by
the use of raw chitin to 81.20% by using the
polystyrene-modified chitin adsorbent.”® The AOG adsorption performance
of the unmodified chitosan was remarkably improved from 1.7
to 63.7mggTM' employing the N-vinyl-2-pyrrolidone-modified
chitosan adsorbent.” Whereas, the efficiency of polycation
application as an efficient surface modifier on organic pollution
removal was proved elsewhere.9# Especially, the quaternary
ammonium base polyelectrolytes have been considered as a
highly positively charged surface-active modifier because their
permanent charges readily attach to the anionic azo dye
AOG.*2 Following, the electrostatic attractions between the
dyes AOG and the adsorbents were impulsive, enhancing the
higher AOG removal efficiency On the other hand, the
quaternary ammonium base polyelectrolytes are stable in
general, unaffected by pH, and strongly cling to the surfaces."
The removal efficiency of the anionic azo dye new coccine
reached about 87% by using polycation
poly-diallyl-dimeth-ylammonium chloride to modify silica.#” Moreover, to control
the AOG adsorption process, the adsorption dynamics and
kinetics should be clarified Adsorbate-adsorbent interactions
and the adsorption capacity of the adsorbent were detailed by
the adsorption isotherms.”” Some popular models including
Langmuir, Freundlich, and two-step were employed to interpret
the AOG dye adsorption isotherm."**! Meanwhile, the
pseudo-first- and -second-order models are often used to evaluate the
AOG adsorption kinetics.32%
In this study, a highly charged polycation PVBMA was
successfully synthesized, characterized, and applied as a surface
modifier of a-Al,O; particles for the first time The adsorptive
removal process of azo dye AOG on the PVBMA-modified
a-Al,O; particles was systematically investigated The AOG
adsorption nature was clarified by the isotherms and kinetics
and the AOG adsorptive removal process was confirmed by
Fourier-transform infrared (FT-IR) analysis of samples before and
after adsorption.
Results and Discussion
Polycation PVBMA synthesis
The polycation PVBMA was synthesized via free-radical
polymer-ization (FRP) After purification, the results of the 'H NMR and
SEC were performed in Figure 1.
As seen in Figures 1(a) and (b), the proton signals at about
5.99 (a) and 5.48 (b) ppm, respectively in the 'H NMR spectra of
PVBMA before the polymerization, were not observed in the
spectra of PVBMA after the polymerization in D,O at 25°C The
peak disappearance in the 'H NMR spectra of PVBMA before
and after polymerization indicates that double bonds
disap-peared and the monomer conversion was approximately 100%.
About 14.8 g PVBMA was recovered by a free-drying method It
results in a synthesized yield of the PVBMA obtained of 81.8%
(Table 1) Figure 1(c) illustrates that the large and small peaks
eluted in turn at 22 and 36min indicated for PVBMA and
Chem Asian J 2023, e202300404 (2 of 11)
Elution time (min)
Figure 1 The 'H NMR spectra (a) before and (b) after polymerization, and (c)
SEC elution curve of the polycation PVBMA.
Table 1 The characteristics of the synthesized PVBMA determined by the
SEC measurement.
Amount Yield Mạ My, dD
(g) (%) (g.mol”) (g.mol ")
14.8 81.8 143.30 343.45 24
solvent (H;O) and air On the other hand, the M,, M,, and Ð
values of PVBMA were correspondingly determined to be about
143.30, 343.45 gmol, and 2.4 by the SEC measurement
(Table 1) The PVBMA synthesized using the free radical process was a high molecular weight and strong positive functional
amide group -N'(CH;);, which was beneficial for better
adsorption of negatively charged molecules On the other hand, the average pore width of the a-Al,O; particle of approximately
18.04 nm (determined by the BJH method) was much larger than the PVBMA diameter of about 2.30 nm (calculated by the
viscosity method)." In other words, PVBMA molecules could be
incorporated into the a-Al,O; particles It suggests that the PVBMA molecules could be also absorbed into the ơ-Al;O;
particles Therefore, the PVBMA can be a promising polycation
for modification of the alumina surface through sorption.
© 2023 Wiley-VCH GmbH
Trang 21Asian Chemical Editorial Society
ACE
Modification through PVBMA sorption on the synthesized
a-AIl;O; nanoparticles
PH and ionic strength effects
Figure 2(b) exhibits that the PVBMA sorption performance
slightly increased in the pH range from 1 to 8, and the optimum
was reached at pH 8, then lightened as the pH was higher than
8 It should be noted that the ơ-Al;O; original functional group
of -OH might be unchanged or changed to be -OH;' and —OTM
depending on pH.°”7 Moreover, the a-Al,O; isoelectric point
(IEP) of about 6.7 determined (Figure 2(a)) was consistent with
the previous report.*! On the other hand, the PVBMA with the
Figure 2 (a) The ¢ potential of œ-Al;O; as a function of pH in 1 mM NaCl and
effects of (b) pH and (c) ionic strength on the PVBMA adsorption on the
surface group -O~ and the —N” (CH;); on the PVBMA molecules.
Besides the electrostatic interactions, the non-electrostatic interactions between PVBMA molecules were suggested to
control the PVBMA sorption, introducing insignificant changes
in the PVBMA sorption capacity with the pH changes At pH 8,
the highest PVBMA sorption capacity was obtained Therefore, the optimal pH found was 8.
The PVBMA sorption performance remarkably increased with the ionic strength change from 1 to 100 mM NaCl, then
reduced with continuous ionic strength increment (Figure 2(c)).
It implies that the PVBMA sorption on the œ-Al;O; was governed
by both electrostatic and non-electrostatic interactions It was
consistent with previous results.°°”! That is, the electrolyte ion
presence promoted the non-electrostatic interactions between the PVBMA molecules under the NaCl concentration lower than
100 mM, according to screening-enhanced adsorption while, the electrostatic interactions between the PVBMA molecules and the a-Al,O; particles were screened under the NaCl higher than 100 mM following screening-reduced adsorp-
Mean-tion The ionic strength was optimized at 100 mM NaCl due to
the highest PVBMA sorption performance achievement.
Sorption isotherm models
The Freundlich sorption isotherm provided a better fitting with
the experimental data with higher correlation coefficients, R?
than the Langmuir sorption isotherm (Figure 3(a) and ure S1) In the initial PVBMA/o-AlạO; weight ratio ranges of
Fig-0.005-0.2, it likely implies that multiple layers of PVBMA were formed on the heterogeneous ơ-Al;O; surface with diverse
functional groups of —OH, —O, OH,*, and O~.8”#! In addition,
the PVBMA sorption took place strongly and favorably because the parameter of 1/n was in the range of 0.5-1 (Table 2).
Figure 3(b) depicts that the Qpygma remarkably increased
from 0.95 to 37 mgg | corresponding with 6.33-56.10% of the
PVBMA sorption efficiencies while the initial PVBMA tration increased from 25 to 1000 ppm at pH 8 under different ionic strength conditions Also, the PVBMA sorption isotherms well followed the two-step model using the fit parameters
concen-indicated in Table 3 It was clarified that the PVBMA sorption
onto the ơ-Al;O; surface occurred in two steps as well as the
Table 2 Fitting parameters for the PVBMA sorption isotherms on the Al,0 particles following the Freundlich model.
a-NaCl (mM) 1 10 100 150
R? 0.9489 0.9189 0.9615 0.9516 K; (mg"!1g=1L) 0.097 0.594 18.336 8.792
1⁄n 0.73 047 0.78 0.90
n 1.38 211 1.28 1.11
© 2023 Wiley-VCH GmbH
Trang 22Asian Chemical Editorial Society
Figure 3 PVBMA sorption isotherms on the ơ-Al;O; particles following: (a)
the Freundlich model, and (b) the two-step model at different ionic
strengths: (IN) 1 mM, (@) 10 mM (A) 100 mM, and (®) 150 mM NaCl.
Table 3 Fitting parameters for the PVBMA sorption isotherms on the
a-Al;O; particles by the two-step model.
sorption process was driven by both electrostatic and
non-electrostatic interactions The equilibrium constant of the first
sorption step, k, is much lower than the equilibrium constant of
the second sorption step, k; in all ionic strengths In addition,
the k, value increases with increasing NaCl concentration from
1 to 150 mM The phenomena proved that the PVBMA sorption
was predominantly controlled by the hydrophobic interactions
Chem Asian J 2023, e202300404 (4 of 11)
CHEMISTRY
AN ASIAN JOURNAL
between PVBMA molecules on the particle surface It is consistent with the ionic strength effect on the PVBMA sorption
observed above Furthermore, the initial PVBMA concentration
of 1000 ppm was used to achieve a sufficient œ-Al;O; surface net charge.
Summarily, the a-Al,O; particle modification through PVBMA sorption was optimized at pH 8, ionic strength of
100 mM, contact time of 2h, and initial concentration of
500 ppm.
AOG removal by using the PVBMA-modified a-Al,0; particles
PH and ionic strength effects
The most important parameters that strongly affect the adsorption of charged molecules are pH and ionic strength due
to interference of interaction forces, and the natures of both absorbate and absorbent.
Figure 4(a) shows that the AOG removal performance was
remarkably enhanced by using the PVBMA modifier in
© 2023 Wiley-VCH GmbH
Trang 23Asian Chemical Editorial Society
ACE
ison with the absence of PVBMA at all pH values It proves the
necessity of the a-Al,O; surface modification through highly
positively charged PVBMA adsorption On the other hand, the
AOG removal performance decreased from 33.51 to 11.02%
with the corresponding pH change from 4 to 11, due to the
electrostatic attractions and the repulsions between -OH,* and
—O” groups on the ơ-Al;O; surface and the —SO;~ group of the
AOG dye at acidic and alkaline environments, respectively.
Meanwhile, with the PVBMA modification, the AOG removal
performance improved by increasing the pH from 4 to 7 and
then decreased by continuously increasing the pH until 11
(Figure 4(a)) As found above, the polycation PVBMA adsorption
was promoted at pH from 4 to 8, and more AOG dyes were
adsorbed on the adsorbent surface due to the electrostatic
attractions between the positively charged adsorbed PVBMA
molecules and the negatively charged AOG dyes In other
words, fewer AOG dyes remained by increasing the pH higher
than 8, due to fewer adsorbed PVBMA molecules on the
modified surface However, the maximum AOG removal
performance was significantly achieved at pH7 (instead of
pH 8), which might be due to the deprotonation of AOG
functional groups -SO;H and —OH corresponding with the pK,
of 1 and 11.5, which could be effective to the PVBMA-AOG
interaction numbers.“““! Thus, pH 7 was chosen for the AOG
adsorption.
The AOG removal performance decreased from 98.51 to
43.00% with the ionic strength increment from 0 to 100 mM
NaCl, respectively (Figure 4(b)) Herein, the electrolyte ions
screened electrostatic attraction between the positively charged
adsorbed PVBMA and negatively charged AOG dyes due to
screening-enhanced adsorption, suggesting that the
electro-static attraction forces dominated on the AOG removal.2646
Moreover, the AOG adsorptive removal was conducted without
adjusting the ionic strength for the next investigated
experi-ments.
Contact time and adsorbent dosage effects
The contact time and adsorbent dosage strongly affect the AOG
adsorptive removal efficiency Therefore, it is necessary to
investigate these two parameters.
As observed, the AOG decolorization occurred right after
the mixing event, suggesting that the AOG adsorption process
immediately took place A certain adsorbent dosage
contrib-uted to the given available adsorbent sites for a fixed adsorbate
amount It could be explained that available surface-active sites
were numerous at the initial stage, and then adsorbent site
saturation happened after a certain time The AOG removal
performance achieved a high value of approximately 94% and
no significant change after 15 min of the contact time for both
AOG initial concentrations of 10 and 20 ppm (Figure 5(a) and
Figure S2) Otherwise, it implies the strong interactions between
the AOG dyes and the modified alumina particles Also, the
time effect reveals that the AOG adsorption reached equilibrium
within 15 min For further investigations, the AOG adsorption
was conducted at the contact time of 15 min.
Chem Asian J 2023, e202300404 (5 of 11)
initial AOG concentrations.
On the other hand, the AOG removal performance was substantially raised with the a-Al,O; dosage increment (Fig-
ure 5(b)) With the adsorbent dosage increment from 0.25 to
10 mgmLˆ', the AOG removal performance went up from 19.23
to 98.13% and from 16.54 to 95.54% with the AOG initial concentration of 10 and 20 ppm, respectively (Figure 5(b) and Figure S3) Obviously, greater adsorption active sites were provided by a higher a-Al,O; particle amount, promoting more AOG adsorbed onto the modified surface.
AOG adsorption isotherm
Figure 6(a) exhibits that the AOG concentration increment, the
adsorption capacity of the AOG dye on the PVBMA-modified
a-Al,O; particles raised due to kinetically controlled adsorption.“
Moreover, the AOG adsorption isotherm better obeyed the
Langmuir model (with higher correlation coefficients, R?) than
the Freundlich model (Table 4) It reveals that the adsorbed AOG dyes were limited to one adsorbate layer on the modified
© 2023 Wiley-VCH GmbH
Trang 24Figure 6 AOG adsorption isotherms: (a) Langmuir and (b) Freundlich with
varying NaCl concentrations of: (I) 0, (@) 1, and (A) 100 mM.
Table 4 The parameters for the AOG adsorption onto the
PVBMA-modified a-Al,0; nanoparticles with the different adsorption isotherms
Langmuir and Freundlich.
NaCl Langmuir Freundlich
d-Al,O; surface.“*! On the other hand, the Langmuir constant, K,
reduced from 0.23 to 0.03 with 100times increasing the NaCl
concentration from 1 to 100 mM Such observation suggests
that the electrostatic attractions between the PVBMA and the
AOG were dominant and this trend was consistent with found
results above in the ionic strength effect part The separation
dimensionless factor, R, was in the range of O to unity,
indicating that the AOG adsorption was favorable (Table 4).
Chem Asian J 2023, e202300404 (6 of 11)
ered to fit with pseudo-first- and -second-order models.
The AOG adsorption kinetics on the PVBMA-modified
a-Al,O; particles were better fitted by the pseudo-second-order
kinetic model with high R2 values of 0.9967 and 0.9984 at the
different AOG initial concentrations of 10 and 20ppm,
respectively (Figure 7 and Figure S4) It assumes that the
interactions between the AOG dyes on the modified particles
were primarily governed by chemisorption.“”!
Adsorptive removal of the AOG dyes by using the a-Al,O;
nanoparticle modified by polycation PVBMA
The modification of the a-Al,O; nanoparticles through the PVBMA adsorption and the AOG removal through the adsorp-
tion onto the PVBMA-modified particles were affirmed by the FT-IR spectroscopy (Figure 8) In the former, the PVBMA adsorbed onto the ơ-AlạO; nanoparticles was confirmed based
on functional group changes The Al-O vibration at 763.67 and
1028.84 cm ` in the a-Al,0; spectrum correspondingly changed
to 757.89 and 1024.02 cmTM' in the PVBMA-modified a-Al,O;
spectrum.°°>" Meanwhile, the -OH vibrations attributed at
3465.46 and 1454.06 cm! in the œ-Al;O; spectrum were slightly moved to 3461.60 cm' and disappeared, respectively, in the
PVBMA-modified-a-Al,O, spectrum.2°” It reveals that the
electrostatic interactions between —N*(CH;); in the PVBMA and
—O” were generated from —OH in the Al;O: particles at pH 8.
The bands at 2926.45 and 3020.94 cm" presenting for N*-C
vibrations in the PVBMA spectrum were not observed in the
PVBMA-modified-a-Al,O; spectrum Lately, the bands at 2926.45
and 3020.94cm' attributed to the N*‘-C vibrations in the
PVBMA spectrum were absent in the AOG- PVBMA-modified
PVBMA-© 2023 Wiley-VCH GmbH
Trang 25Asian Chemical Editorial Society
Figure 8 FT-IR spectra of: (—) a-Al,0; nanoparticles, (—) PVBMA, (—) azo
dye AOG, (—) PVBMA-modified-ơ-Al;O; particles, and (—)
AOG-adsorbed-PVBMA-modified-ơ-Al;O; particles
Al,O; Meanwhile, the presence of C-N* vibration at
976.77 cm in the PVBMA spectrum raised to 971.95 cm“ in
the AOG-PVBMA-modified-o-Al,O; spectrum.P^°” Furthermore,
the bands at 1142.62 and 1185.04 cm~' attributed to -S=O in
the AOG spectrum disappeared in the AOG-
PVBMA-modified-a-Al,O; spectrum.P256°” The —N=N— vibration was displayed at
1448.12 cm” in the AOG spectrum and 1435.74cm'' in the
AOG- PVBMA-modified a-Al,O, spectrum It suggests the
electrostatic attraction between —N”(CH;); in the PVBMA and
~§O,~ in the AOG.
Reusability of the a-Al,0; adsorbents
The œ-Al;O; adsorbents were reused through the HCI treatment
with different HCl concentrations of 0.1-5 M It was proposed
that almost adsorbed AOG dyes (approximately 92.09%) were
desorbed from the modified a-Al,0O; surface by using 5 M HCl
compared with approximately 98.89% AOG adsorption with the
AOG initial concentration of 10 ppm Therefore, the œ-Al;O;
adsorbents were treated with 5 M HCI before reusing them for
the next adsorption cycles As investigated above, both the
PVBMA and the AOG adsorption efficiencies were low at the
low pH due to the electrostatic repulsions between the PVBMA
and the ơ-Al;O;, and less PVBMA adsorbed onto the particle
surfaces, respectively The addition of the 5M HCI solution
might decrease the solution pH, resulting that either the
adsorbed AOG or both PVBMA and AOG could be desorbed
from the adsorbent surfaces In addition, a-Al,O; dissolution
under acid conditions could be one reason Moreover, the use
of high HCI concentration (5 M) suggests strong electrostatic
attractions between the AOG and the modified adsorbents In
Figure 9, the AOG adsorption performance reduced to a quite
high value of 90.13% even after 6 reusability cycles, proving the
high reusability of the œ-AlạO; adsorbents On the other hand,
the PVBMA-modified-a-Al,O; adsorbents used in the present
study achieved the highest adsorption capacities even with low
œ-Al,O; adsorbent dosage (Table 5) Our results again
demon-strate that the PVBMA-modified-a-Al,O; particles are a
high-Chem Asian J 2023, e202300404 (7 of 11)
Table 5 Maximum AOG adsorption capacity with varying adsorbents.
Adsorbents đmax Madsorbent Reference
Perchloric acid-modified sawdust 5.48 20 [23]
Activated carbon-prepared phespe- 9.13 21.6 [60]
sia populnea pods
performance adsorbent for azo dye removal from aqueous
solutions.
Conclusions
It can be concluded that the highly charged polycation PVBMA synthesized was a highly effective agent to modify the ơ-Al;O; particle surface The AOG removal process was strongly effective by pH, ionic strength, contact time and the ơ-Al;O; dosage The results showed that the AOG removal efficiency
was remarkably achieved up to approximately 98.89% at pH 8, the ionic strength reduction, and the increments of both the contact time and the ơ-Al,O; dosage The AOG adsorption on the modified ơ-Al;O: particles was favourable and well-suitable with the Freundlich isotherms and the pseudo-second kinetic model The electrostatic attractions between adsorbed PVBMA
molecules and AOG dyes were dominant on the d-Al;O;
nanoparticles The PVBMA-modified a-Al,O; were highly able and high-performance adsorbents for dye removal in water
reus-environments.
© 2023 Wiley-VCH GmbH
Trang 26ACES tiiraisooev
Experimental Section
Synthesis of polycation PVBTMAC
Vinyl benzyl trimethylammonium chloride (VBMA, 99% of analytical
purity, Sigma-Aldrich, St Louis, MO, USA) was applied without any
further purification 4-Cyanopentanoic acid dithiobenzoate (CPD),
synthesized following a previous method, was used as a chain
transfer agent." An initiator, 4,4-azobis(4-cyanovaleric acid)
(V-501, 98% of analytical purity), and a crosslinking agent,
N,N’-methylenebis(acrylamide) (BIS, 97% of analytical purity), were
purchased from Wako Pure Chemical (Osaka, Japan) and used
without any further treatment Water was purified using an
ion-exchange column.
PVBMA was synthesized via free radical polymerization (FRP) by
using BIS as a crosslinker The mixture including 18.10g of
monomer VBMA and 0.240g of V-501 and 1.32mg BIS was
dissolved in 42.80 mL of the deionized water Then the solution was
purged with argon gas for 30min The polymerization was
conducted at 60°C for 16h The reaction solution was dialyzed
(molecular weight cut-offs, MWCO: 5~ 1000) against the deionized
water for 2 days.
Synthesis of nanosized alpha-alumina
Nanosized alpha alumina (a-Al,03) particles were solvothermally
synthesized following the previous method and used as
adsorbents The NaOH pellets and (AI(NO,), (analytical reagent,
Merck, Germany) were used to respectively prepare 4M sodium
hydroxide (NaOH) and 1M aluminum nitrate (Al(NO;)3) solutions.
Then, the NaOH solution was added to the Al(NO;); solution to
form alumina hydroxide precipitation The Al(OH); precipitates were
centrifuged for 15 min Then, the collected Al(OH); suspensions
were raised with ultrapure water until reaching a neutral pH before
drying at 80°C for 24 h Finally, œ-Al;O; particles were formed based
on putting the Al(OH); in an oven at 1200°C for 12h The
synthesized ơ-Al;O; adsorbents were characterized to be spherical
particles with a nano-size of approximately 70nm of diameter
(Figure 10), and a specific surface area of 6.08 mˆg”' by
trans-mission electron microscopy (TEM, H7650, Hitachi, Japan) and
Brunauer-Emmett-Teller (BET) methods (AMI-300, Altamira
Instru-ments, USA), respectively.
The zeta (¢) potential of ơ-AlạO; was examined by Smoluchowski’s
equation by electrophoretic mobility using a Zetasizer Nano
(Malvern, England) at 1mM NaCl The É potential of a-Al,O; at
different pH was conducted to evaluate the surface charge of
a-Al,O3 (Figure 2(a)), and the point of zero charge was about 6.7 that
agreed well with its value of œ-Al;O;.
Figure 10 The TEM image of the ơ-Al;O; particle
Chem Asian J 2023, e202300404 (8 of 11)
AIl;O; particle surface Azo dye, acid orange G (AOG, purity > 99%,
Shangdong, China) with a molecular weight of 45.237 gmol”' was
applied as an adsorbate Stock solutions of 10* ppm of each PVBMA
and AOG were prepared Meanwhile, working solutions were prepared from stock solution dilution The chemical structures of polycation PVBMA and the AOG dye are indicated in Figure 11 lonic strength was controlled by using 0.1 and 1M NaCl solutions prepared from analytical reagent NaCl (Merck, Germany) Solutions including 0.1 M HCI and 0.1 M NaOH (Merck, Germany) were added
to experimental solutions to adjust pH under a pH meter (Hanna, California, USA) Ultrapure water (resistance of 18.2 MQcm, Labcon-
co, USA) was used to prepare all solutions.
Modification of ơ-Al;O; using the highly positively charged polycation
Modification of a-Al,O; by the PVBMA adsorption
Sonication of the synthesized ơ-Al;O; nanoparticles was conducted for about 20min to avoid particle aggregation In a surface modification, a suitable volume of the PVBMA stock solution was mixed with ơ-Al;O: in a 15 mL tube under the desired conditions Effect parameters including pH, NaCl concentration, and initial
PVBMA concentration were investigated The mixture was shaken
for approximately 2 h by a vertical shaker under different pH and ionic strength conditions Then, the PVBMA-modified ơ-Al;O;
suspension was collected and rinsed with ultrapure water to
remove excess polycation PVBMA after centrifuging for 15 min at
4000 rpm with a centrifuge (Hermle, Labortechnik, Wehingen,
Germany).
The ơ-Al;O: nanoparticles were modified by PVBMA sorption under
the same experimental conditions of 5mgmL * of the a-Al,O;
dosage, 50 ppm of the PVBMA initial concentration, 2h of the
contact time, at pH range 4-11 with 1 mM NaCl and in the NaC concentrations from 1 to 150 mM.
On the other hand, the experiments to clarify the PVBMA sorption isotherm models were conducted with varying conditions of pH 8,
contact time of 2h, the a-Al,0; dosage of 5mgmL', the initia
concentration range of 25-1000 ppm, and different ionic strengths
Trang 27ACES tiiraisooev
AOG adsorptive removal using synthesized-PVBTMAC-modified
a-Al,O; nanoparticles
The AOG dyes were adsorbed through the adsorption onto these
PVBMA-modified ơ-Al;O; nanoparticles under room temperature
and different investigated conditions, including ionic strength, pH,
contact time, adsorbent dosage and adsorbate dosage The
standard deviation of each result was calculated based on three
repeated experiments.
The pH and ionic strength effects on the AOG adsorption onto the
œ-Al;O: particles modified by polycation PVBMA was clarified with
varying experimental conditions of 5mgg ' of the a-Al,O;
adsorbent dosage, 10 ppm of the AOG initial concentration, 10 mM
NaCl, adsorption time of 2 h.
Methods
Ultraviolet-Visible (UV-Vis) spectroscopy
An Ultraviolet-Visible (UV-Vis) spectroscopy equipped with a
spectrophotometer (UV-1650 PC, Shimadzu, Japan) was used to
determine the concentrations of dye AOG and polycation PVBMA in
aqueous solutions The measurement wavelengths of the AOG and
PVBMA were 478 and 223 nm, respectively.
The PVBMA and AOG adsorption performances (H, %) were
calculated by equation (1) as below:
The PVBMA and AOG adsorption capacities onto the unmodified/
modified œ-Al;O; nanoparticles were determined by equation (2).
G- G
m
n= xV (2)
where q, is the adsorption capacity of polymer (mgg/') at a contact
time t (min), V is volume of polymer solution (L) and m is the
a-Al,O; mass (g).
PVBMA and AOG adsorption mechanisms
The adsorption isotherms of the PVBMA and AOG onto the
unmodified and modified ơ-Al;O; particles, respectively, were
suitably fitted with typical models of Langmuir, Freundlich, and
two-step with linear and non-linear regression.®! Each adsorption
isotherm model was described in detail below.
The Langmuir-type model specifies for mono adsorbed layer
formed on the a-Al,O; nanoparticle surface shown in equation (3).
The polymer adsorption favorite was evaluated according to
1
logq, = logK; + - logC, (5)
where K, is the Freundlich constant ((mgg ') (Lmg ')'”) and n is
the adsorbed layer number.
The two-step model with a general isotherm equation was:
đmaxKn C (+ k,C,""')
1+k,C.(1+k,C,""')
q (6)
where k, and k, are respectively the equilibrium constants for the
first and second polymer adsorption step.
PVBMA and AOG adsorption kinetics
The pseudo-first and -second models, suggested by Lagergren are
often proposed to describe the polymer adsorption kinetics of
In(qe — 4) = Inge — Kat (7)
mm
a K4 4 48)
where K, (min ') and K, (gmgˆ min) are respectively the reaction
rate constants of the pseudo-first and pseudo-second models.
Each standard deviation was calculated by at least triple
exper-imental values.
Fourier transform infrared (FT-IR) spectroscopy
The PVBMA and AOG adsorption mechanisms onto the unmodified and modified a-Al,O; nanoparticles were clarified based on the
functional group changes by the FT-IR spectra The PVBMA adsorption was conducted under experimental conditions of the
2h contact time, pH 8, 100 mM NaCl, the 5 mgg ' ơ-Al;O; particles, and the 10‘ ppm PVBMA concentration Meanwhile, the
nano-AOG adsorption was measured at the same initial conditions of the adsorbent dosage and the contact time, but with free salt and
pH 7 After that, the samples were centrifuged for 15 min at
4000 rpm to remove water Then, the a-Al,O; suspensions were collected and dried in an oven at 80°C The FT-IR spectra of the a- Al,03 nanoparticles, the synthesized polycation PVBMA, AOG dye, the a-Al,O; particles modified by PVBMA, and the PVBMA-modified- a-Al,O; particles adsorbed AOG, were carried out in the wave-
spectrophotom-eter (Shimadzu, Japan) at room temperature of 293 K.
© 2023 Wiley-VCH GmbH
Trang 28Asian Chemical
Editorial Society
ACE
Proton nuclear magnetic resonance ('H NMR) and
size-exclusion chromatography (SEC) measurements
The 'H NMR spectra of the polycation PVBTMAC were recorded by
a JNM-ECZ 400 MHz spectrometer (JEOL, Tokyo, Japan)
Number-average molecular weight (M,), Number-average molecular weight (M„), and
molecular weight distribution, M,/M, (Ð) of the PVBMA were
estimated by the SEC measurement equipped with a refractive
index (RI) detector operating at 40°C 0.3M Na,SO, with 0.5M
acetic acid was used as eluents for PVBMA samples at a flow rate of
0.6 mLminˆ1 at 40°C To estimate the M, and 9, a calibration curve
was constructed using poly(2-vinyl pyridine) standard samples.
Acknowledgements
This research has been done under the research project
QG22.17 of Vietnam Nation University, Hanoi.
We would like to thank Dr Johan Hunziker, IGEPP, INRAE,
Institut Agro, Univ Rennes, 29260, Ploudaniel, France for the
available comments and English check to improve our
manu-script.
Conflict of Interests
The authors declare no conflict of interest.
Data Availability Statement
The data that support the findings of this study are available
from the corresponding author upon reasonable request.
Keywords: alumina nanoparticle
-adsorption - polycation
azo dye acid orange G
-1] J Saini, V K Garg, R K Gupta, N Kataria, J Environ Chem Eng 2017, 5,
884-892.
2] A Fahdil, A.-N Amir, O Dawood, J Biochem Technol 2018, 9, 31-38.
3] 1 A Ike, S.L Foster, S R Shinn, S T Watson, J D Orbell, L F Greenlee,
M C Duke, J Environ Chem Eng 2017, 5, 4014-4023.
4] H Chamekh, M Chiha, F Ahmedchekkat, Environ Sci Eng 2021,
207-212.
5] T Mahvelati-Shamsabadi, E.K Goharshadi, M Shafaee, Z Niazi, Sep.
Purif Technol 2018, 202, 326-334.
6] S.H Sajjadi, E K Goharshadi, J Environ Chem Eng 2017, 5, 1096-1106.
7] V.P Dhawale, V Khobragade, S D Kulkarni, Int J Environ Chem 2018,
2,10.
8] E Khosla, Int J Basic Appl Chem Sci 2016, 5, 37-46.
9] J Torres-Pérez, N Medellin-Castillo, S.Y Reyes-Lépez, Adsorpt Sci.
Technol 2022, 2022, DOI 10.1155/2022/3786561.
[10] J W Ntalikwa, Bull Chem Soc Ethiop 2007, 21, 117-128.
[11] T Feininger, Can Mineral 2011, 49, 1335-1336.
[12] A Rana, K Qanungo, Mater Today: Proc 2021,
j.matpr.2021.04.230.
[13] H A Alhassani, M A Rauf, S S Ashraf, Dyes Pigm 2007, 75, 395-400.
[14] K Yamjala, M.S Nainar, N R Ramisetti, Food Chem 2016, 192, 813-824.
[15] R Ansari, Z Mosayebzadeh, Chem Pap 2011, 65, 1-8.
[16] M Neamtu, | Siminiceanu, A Yediler, A Kettrup, Dyes Pigm 2002, 53,
20 21
22
23 24 25.
26 27 28 29
30 31
38
39
40 41 42 43 44
54 55.
56 57.
R.O Alves deLima, A.P Bazo, D.M.F Salvadori, C.M Rech, D.
De Palma Oliveira, G De Aragão Umbuzeiro, Mutat Res Genet Toxicol Environ Mutagen 2007, 626, 53-60.
M Stylidi, D | Kondarides, X E Verykios, Appl Catal B 2003, 40,
T H Yen Doan, T H Hoang, V A Le, D.N Vu, T.N Vu, A L Srivastav,
T D Pham, Environ Res 2023, 216, 114618.
A Umar, M.M Sanagi, A.A Naim, W.N.W Ibrahim, A S.A Keyon,
W A W Ibrahim, J Teknol 2017, 79, 91-99.
Z.A Sutirman, M.M Sanagi, K.J Abd Karim, A Abu Naim, W A.
Wan Ibrahim, Int J Biol Macromol 2019, 133, 1260-1267.
R Ansari, Z Mosayebzadeh, Chem Pap 2011, 65, 1-8.
T D Pham, V P Bui, T N Pham, T M D Le, K T Nguyen, V H Bui, T D.
Nguyen, Polymers (Basel) 2021, 13, 1536.
C.P Chauret, in Encycl Food Microbiol Second Ed., Academic Press,
2014, pp 360-364.
J Fisher, in Encycl Food Sci Nutr., Academic Press, 2003, pp 1382-1385.
Y Nakama, in Cosmet Sci Technol Theor Princ Appl., Elsevier, 2017, pp.
231-244.
| D Mall, V C Srivastava, N K Agarwal, Dyes Pigm 2006, 69, 210-223.
T H Y Doan, Y Adachi, Colloids Surf A 2020, 603, 125208.
J.W Ntalikwa, Bull Chem Soc Ethiop 2007, 21,
bcse.v21i1.61391.
T D Pham, M Kobayashi, Y Adachi, Colloids Surf A 2013, 436, 148-157.
H.G.M Van de Steeg, M.A.C Stuart, A De keizer, B.H Bijsterbosch,
Langmuir 1992, 8, 2538-2546.
J Lyklema, L Deschénes, Adv Colloid Interface Sci 2011, 168, 135-148.
S Banerjee, M.C Chattopadhyaya, Y.C Sharma, J Water Sanit Hyg.
Dev 2015, 5, 235-243.
T.H.Y Doan, T.D Pham, J Hunziker, T.H Hoang, Polymers (Basel).
2021, 13, 2394.
S A.C Carabineiro, T Thavorn-Amornsri, M.F.R Pereira, J.L
Figueir-edo, Water Res 2011, 45, 4583-4591.
J Madhavan, F Grieser, M Ashokkumar, Ultrason Sonochem 2010, 17, 338-343.
M Cai, J Su, Y Zhu, X Wei, M Jin, H Zhang, C Dong, Z Wei, Ultrason.
Sonochem 2016, 28, 302-310.
P A Kralchevsky, K D Danov, E S Basheva, Curr Opin Colloid Interface
Sci 2011, 16, 517-524.
J A De Witt, T G M Van de Ven, Langmuir 1992, 8, 788-793.
L Liu, X B Luo, L Ding, S L Luo, in Nanomater Remov Pollut Resour Reutil., Elsevier, 2018, pp 83-147.
H Wang, A Zhou, F Peng, H Yu, J Yang, J Colloid Interface Sci 2007,
316, 277-283.
A Boumaza, A Djelloul, F Guerrab, Powder Technol 2010, 201, 177-180.
C Ma, Y Chang, W Ye, W Shang, C Wang, J Colloid Interface Sci 2008,
317, 148-154.
C.O M’Bareck, Q.T Nguyen, M Metayer, J.M Saiter, M.R Garda, Polymer 2004, 45, 4181-4187.
A.A Najafi Chaleshtori, F M Meghadddam, M M Sadeghi, R R Rahimi,
S Hemati, A A Ahmadi, J Environ Sci Manag 2017, 20, 9-16.
Y Ji, X Yang, Z Ji, L Zhu, N Ma, D Chen, X Jia, J Tang, Y Cao, ACS
Trang 29ACE Asian Chemical
63] Y S Ho, J F Porter, G McKay, Water Air Soil Pollut 2002, 141, 1-33.
64] Y S Ho, Water Res 2006, 40, 119-125.
Chem Asian J 2023, e202300404 (11 of 11)
Trang 30CHEMISTRY
ACES viitcriatsociety AN ASIAN JOURNAL
Research Article RESEARCH ARTICLE
Dr T H Yen Doan, V L Dang, T T.
Trang Truong, T N Vu, T S Le, T M.
Thu Nguyen, M N Nguyen, T T Pham, Prof S.-i Yusa, Assoc Prof T D Pham*
1-12
—_~> “ắc Removal of Acid Orange G AzoDye &
Low AOG removal performance, High AOG removal performance, by Polycation-Modified Alpha
pa pe? Alumina Nanoparticles
Polycation PVBMA was synthesized, were dominant The AOG adsorption
characterized, and applied as an was better suitable with Langmuir
effective œ-Al;O; modifier on adsorp- isotherm and pseudo-second models.
tive removal of azo dye AOG Approxi- The ơ-Al;O; adsorbent was highly
mately 98.9% of the AOG was reusable with about 90.1% of the AOG
excluded from aqueous solution The removal efficiency after 6 reused
PVBMA-AOG electrostatic attractions cycles.
| ## SPACE RESERVED FOR IMAGE AND LINK
Share your work on social media! Chemistry — An Asian Journal has added Twitter as a means to promote your article Twitter is an online microblogging service that enables its users to send and read short
messages and media, known as tweets Please check the pre-written tweet in the galley proofs for accuracy.
If you, your team, or institution have a Twitter account, please include its handle @username Please use hashtags only for the most important keywords, such as #catalysis, #nanoparticles, or #proteindesign The ToC picture and a link to your article will be added automatically, so the tweet text must not exceed 250 characters This tweet will be posted on the journal's Twitter account (follow us @ChemAsianJ) upon publication of your article in its final form We recommend you to re-tweet it to alert more researchers about your publication, or to point it out to your institution's social media team.
ORCID (Open Researcher and Contributor ID)
Please check that the ORCID identifiers listed below are correct We encourage all authors to provide an ORCID identifier for each coauthor ORCID is a registry that provides researchers with a unique digital identifier Some funding agencies recommend or even require the inclusion of ORCID IDs in all published articles, and authors should consult their funding agency guidelines for details Registration is easy and free; for further information, see http://orcid.org/.
Dr Thi Hai Yen Doan Van Long Dang
Thi Thuy Trang Truong Thi Ngan Vu
Thanh Son Le Thi Minh Thu Nguyen
Minh Ngoc Nguyen
Thu Thao Pham http://orcid.org/0000-0002-9087-7417 Prof Shin-ichi Yusa
Assoc Prof Tien Duc Pham
Trang 31Journal of Molecular Structure 1304 (2024) 137619
Contents lists available at ScienceDirect
Journal of Molecular Structure
®
Check for
Surface modification of zeolite by cationic surfactant and the applicationon =
adsorptive removal of azo dye Ponceau 4R
Van Long Dang, Thu Trang Kieu, Thi Thu Thao Nguyen, Thi Thuy Trang Truong,
Duy Thanh Hoang, Thi Linh Chi Vu, Thi Minh Thu Nguyen, Thanh Son Le, Thi Hai Yen Doan 5
Tien Duc Pham ˆ
Faculty of Chemistry, University of Science, Vietnam National University, Hanoi - 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam
ARTICLE INFO ABSTRACT
Keywords: The zeolite Permutit (Per) with the cubic crystal, 1.66 of the SiO2/Al2O3 ratio, 44.81 m^„g 1 of the specific
Zeolite surface area, 1.7 nm of the average pore radius, and the typical bonds of Si-OH, Si-O-Si, Si-O-Al, and O-Si-O-Si
Dye removal was investigated in the present study The adsorptive removal efficiency of the azo dye PC4R was almost doubled
nàn nến from about 53.23% to 90.06% by Per surface modification with the cationic surfactant cetyltrimethylammonium
Ponceau 4R bromide (CTAB) as an effective and high-performance adsorbent The PC4R adsorptive removal was optimized at
independent variables of pH 4, the ionic strength of 10 mM NaCl, the Per dosage of 6 mg.mL~1, and the short
contact time of 15 min Both the Langmuir and Freundlich models were reasonable to describe the PC4R
adsorption isotherms on the CTAB@Per while the PC4R chemisorption kinetics were well accorded with the
pseudo-second-order model The PC4R multilayer adsorption capacity achieved an extrapolated maxima of
15.470 mg.g-! The PC4R adsorption mechanisms were demonstrated by the FT-IR measurement to be primarily
the electrostatic attractions between the CTAB and the PC4R, dipole-ion interactions, and hydrogen bondings between the PC4R molecules.
1 Introduction
In developing countries, environmental pollution has become a
serious problem due to fast industrialization, and population growth.
Recently, the rapid development of the textile and dyeing industries
might threaten aquatic life and human health if their effluents
con-taining toxic inorganic and organic components were unproperly treated
[1,2] It is pointed out in a recent statistic, about 20% of the nearly 30%
dye loss during operations were released into the effluents [3,4].
Meanwhile, the synthetic azo dyes specified by functional azo groups -N
= N- primarily account for approximately 50 — 70% of annual dye
ap-plications [5,6] The azo dyes were especially noticed to cause children’s
hyperactivity [7] For this reason, the dye level was authorized in the
foods and beverages, for example 50 — 500 mg.kgTM! of Ponceau 4R
(PC4R) maximum amount limited by the Codex General Standard for
Food Additives [8] It is evident that PC4R is an azo dye with diversely
used in many fields such as food and beverage colorings, and textile
pigments [9] Moreover, the PC4R is high stability under light, heat,
* Corresponding authors.
acid, and microorganisms due to the molecular structure of the aromatic
rings [10,11] Azo dye removal from aqueous solution has been cerned for many scientists Different removal techniques were thor- oughly studied to enhance the removal efficiencies of the azo dyes in common as well as the PC4R from aqueous media Nowadays, many available techniques involving coagulation [12], electro-oxidation [1 3],
con-photocatalyst [14,15], and adsorption [16,17] have been applied to
remove the PC4R One of the most common techniques is adsorption due
to its extensive advantages of low cost, simple design, easy operation,
high efficiency, and especially nontoxic sub-compound generation [3].
With an initial concentration of about 75 mg.L ~ Ì, the maximum PC4R
removal efficiency was achieved about 78.59 and 90.83% through adsorption using nanocrystalline granular ferric hydroxide (GFH), and almond shell-prepared activated charcoal, respectively [16,18].
In adsorption, adsorbent type significantly governs the pollutant removal efficiency Especially, the use of adsorbents similarly chemi- cally composed with natural components might cut down secondary emission sources in the environment Among different natural minerals,
E-mail addresses: haiyendoan90@gmail.com, doanthihaiyen@hus.edu.vn (T.H.Y Doan), tienducpham@hus.edu.vn, tienduchphn@gmail.com, ducpt@vnu.edu.vn (T.D Pham).
https://doi.org/10.1016/j.molstruc.2024.137619
Received 13 May 2023; Received in revised form 22 October 2023; Accepted 20 January 2024
Available online 26 January 2024
0022-2860/© 2024 Elsevier B.V All rights reserved.
Trang 32V.L Dang et al.
zeolite has been preferred employing as an effective adsorbent for
de-cades Zeolite was constructed by (AlOa)°~ and (SiO4)*~ tetrahedrons,
forming micropores, small cages, and narrow channels These structure
characteristics resulting in great porosity, and high specific surface area
were advantageous for the adsorptive removal of the pollutants [19].
However, it could selectively adsorb small molecules and effectively
reject big molecules [20,21] Whereby, to retouch this disadvantage, the
zeolite surface covered with cationic surfactant
cetyl-trimethylammonium bromide (CTAB) could be used to boost the
adsorptive removal efficiency of the negatively charged PC4R molecules
vice electrostatic attractions Whereas, clarifications of the PC4R
adsorption isotherms and kinetics are essential for adsorptive removal
control Generally, the PC4R adsorption isotherms on solid surfaces
were verified by the Langmuir, Freundlich, and two-step isotherms,
while the PC4R adsorption kinetics were revealed by the
pseudo-first-and -second-order models [16,22].
For the purpose of the PC4R removal enhancement in water
envi-ronment, the commercial artificial zeolite, Permutit was employed as an
effective adsorbent after surface modification by CTAB The
character-istics of the Permutit were evaluated by modern physicochemical
techniques The effective parameters, the mechanisms, and the kinetics
of both the CTAB and the PC4R adsorptive processes on the unmodified
and modified Per, respectively were comprehensively investigated The
high potential of the CTAB-modified Per adsorbents in the PC4R
adsorptive removal was also proved through the comparison with that
using the unmodified Per adsorbents.
2 Materials and methods
2.1 Materials
Commercial artificial zeolite, Permutit (Per, purity > 97%, Macklin
Co., Ltd, Shanghai, Chinese) with a chemical formula of (SiO2),(Al203)y
and a molecular weight of 218.24 g.mol~! was purchased and used as an
adsorbent To prepare the Per stock suspensions, 2.5 g of the Per
ad-sorbents were weighed and introduced into a 50 mL falcon The Per
materials were filled up with distilled water until the mark before
vigorously shaking for 2 h by an orbital shaker (Lauda, Berlin,
Ger-many) To prevent aggregation, the Per suspensions were daily shaken
for about 30 min before each adsorption experiment The Per was
modified by cationic surfactant, Cetyltrimethylammonium bromide
(CTAB, the molecular weight 364.45 g.mol}, purity > 99%, Mumbai,
India) An azo dye Ponceau 4R (PC4R, molecular weight 604.46 g.
mol}, purity > 82%, Merck, Germany) The stock solutions of the CTAB
and the PC4R with corresponding concentrations of 1 mol.L ~ 1 and 104
mg.L ~ Ì were prepared, respectively The chemical structures of the
CTAB and the PC4R were depicted in Fig 1 Solutions of 0.1 M NaCl, 1M
NaCl, 0.1 M NaOH, and 0.1 M HCl were used to adjust ionic strength and
Journal of Molecular Structure 1304 (2024) 137619
the solutions pH were prepared in proportion to NaCl, NaOH pellets, and HCI (analytical reagent, Merck, Germany) The daily working solutions were diluted from these stock solutions by the addition of double- distilled water.
2.2 Surface modification of Per by CTAB adsorption
Suitable volumes of the Per adsorbents and the cationic surfactant CTAB were added into a 15 ml falcon After that, a certain NaCl solution volume with an appropriate concentration was introduced to achieve desired ionic strength before pH adjustment The mixture was filled up with distilled water until 10 mL Then, the mixture was homogenously shaken with investigated contact time by using an orbital shaker (Var- ioshake, Mannheim, Germany) The suspensions and solution were separated after centrifuging for 15 min at 6000 rpm by a centrifuge (Hermle, Wehingen, Germany) The experiments were conducted with varying conditions of pH, ionic strength, and initial CTAB concentration
at room temperature The CTAB excesses were formed ion pairs with 200
uL of 0.1% picric acid solution dissolved in 2 mM NaOH solution Then the ion pairs were extracted by 1,2-dichloroethane solvent (analytical reagent, Merk, Darmstadt, Germany) before determining at 378 nm by Ultraviolet-visible (UV-Vis) spectroscopy equipped with a spectropho- tometer (UV-1650 PC, Shimadzu, Japan) [23-25] Meanwhile, the sus- pensions collected at optimal conditions were denoted as CTAB@Per adsorbent that is applied in the PC4R adsorptive removal and
Fourier-transform infrared (FT-IR) measurement.
2.3 PC4R adsorptive removal using the CTAB@Per adsorbents
A certain PC4R volume was adsorbed on the CTAB@Per at varying investigated conditions including pH, ionic strength, contact time, adsorbent dosage, and PC4R initial concentration in a 15 mL falcon The ionic strength and pH were adjusted before adding the distilled water until 10 mL Then the mixture was centrifuged for 15 min at 6000 rpm after shaking Furthermore, the solution of the PC4R excess obtained was measured at 508 nm by the UV-Vis spectroscopy Meanwhile, the suspensions of the PC4R-adsorbed CTAB@Per under optimal conditions were utilized for the FT-IR measurement.
All experiments were carried out at room temperature controlled by
an air conditioner Each experiment was replicated at least three times 2.4 Methods
2.4.1 Determination of characteristics of the Per adsorbents
The characteristics of the artificial Permutit including phase ture, chemical component, specific surface area, and morphology were
struc-analyzed by ray diffraction (XRD, Bruker D8 Advance, Germany),
X-ray fluorescence (XRF, Shimadzu, Japan), Brunauer-Emmett-Teller
(b)
Fig 1 Chemical structures of (a) the cationic surfactant CTAB and (b) the azo dye PC4R.
Trang 33V.L Dang et al.
(BET, AMI-300, Altamira Instruments, USA) and Scanning electron
mi-croscope (SEM, S-4800, Hitachi, Japan), respectively.
2.4.2 Determination of adsorption performance and adsorption capacity
The adsorption performances of the CTAB and the PC4R on the Per
unmodified and modified by CTAB were calculated as follows in Eq (1).
_— C¡ —C
i
where P (%) is the adsorption performance while C; and Œt (mg.L ~ 1) are
the CTAB or PC4R concentrations before and after the contact time, t
(min), respectively.
The adsorption capacities of the CTAB and the PC4R on the Per
surfaces unmodified and modified by the CTAB were calculated by
Equation (2).
G — Cc,
Q= x M x 1000 (2)
m
where Q (mg.g 1) is the surfactant adsorption capacity, M (g.mol"”) is
the adsorbate molecular weight, and m (mg.mL~?) is the Per dosage.
2.4.3 Adsorption isotherms
Langmuir and Freundlich adsorption models were commonly used to
fit the adsorption isotherms of the CTAB and the PC4R on the
unmodi-fied and modiunmodi-fied Per surfaces [26,27].
Formerly, monolayer adsorption was depicted by the Langmuir-type
model in Eq (3) The adsorption favorite was evaluated by the value of
the dimensionless factor of separation (Ry) in Eq (4) [26].
where Qnax (mg.g ~ Ù) is the maximum adsorption capacity, and K, (L.
mg) is the Langmuir constant.
Furthermore, multilayer adsorption on the heterogeneous adsorbent
surface was assessed by the Freundlich model based on the experimental
data in Eq (5) [28].
1
logQ, = logKp + nIosCc @®)
where Kp (mg"*!.g-.L-") is the Freundlich constant, and n is the
number of adsorbed layers.
2.4.4, Adsorption kinetics
Pseudo-first and -second models expressed in Eqs (6) and (7) were
typically used to clarify the polyelectrolyte adsorption kinetics [29].
Ln(Q — Q,) = InQ, — Kat (6)
t 1 1
Q Ke Q! ”
where Kg (min }) and Kp (g.mg"! min") are the reaction rate constants
of the pseudo-first and pseudo-second models, respectively.
2.4.5 Adsorption mechanisms
The spectra of pure Per adsorbents, pure CTAB, pure PC4R,
CTAB@Per, and PC4R-adsorbed CTAB@Per (collected above) were
recorded in the wavenumber range of 400 — 4000 cmTM! by an
Affinity-1S spectrophotometer (Perkin Elmer, USA) with scans of averagely 20 at
room temperature Adsorption mechanisms were suggested based on the
functional group changes and adsorption isotherms.
Journal of Molecular Structure 1304 (2024) 137619
3 Results and discussions 3.1 Characterization of the Per adsorbent
The Per was constituted by primarily about 61.98% SiO2, 37.25% AlzOas, and minorly 0.16% K20, 0.46% CaO, 0.08% Fe203, 0.07% CuO that was determined by the XRF measurement (Table 1) Two major constructing chemical elements of the Per were silicon (Si), and aluminum (Al) (Fig 2(a)) Accordingly, the Per material was composed
of the Si02/Al203 ratio of 1.66 and the Si/Al ratio of 1.47 (Table 1) On the other hand, the Per chemical formula of (SiO2)2 26(Al203)o,g1 was extrapolated based on the chemical compositions.
The sharp peaks with specific p-spacing values appeared at 7.18° (d=
12.30 A), 10.15 (d = 8.70 A), 20.35° (d = 4.36 A), 21.63° (d = 4.11 A), 22.75 (d = 3.91 A), 23.91° (d = 3.72 A), 26.08 (d = 3.41 A), 27.04° (d= 3.30 A), and 29.89° (d = 2.99 A) characterized for crystalline Per phase
(Fig 2(b)) [30-32] Moreover, no hump background reflected no amorphous Per conversed from the crystal Per [33] Thus, the Per was completely crystallized.
In Fig 2(c), the appearance of a broad band in the range of 3000
-3700 cm! indicated Si-OH stretching vibration in the Per structure
[34] A small peak of -OH bending vibration due to the presence of water
at 1653 cm! [34] In addition, an intensive peak observed at 1004 cm!
specified asymmetric stretching vibrations overlap between bridging Si-O (Si-O-Si) and non-bridging Si-O” (Si-O-Al) [31] Additionally, a
small peak of 555 cm”! was attributed to the symmetric stretching of
bridging Si-O-Si and bending vibrations of O-Si-O [35] Meanwhile,
O-Si-O bending vibrations were indicated at 469 cm! [36].
The Per was characterized with a specific surface area of 44.81 m2.g
~1 pore sizes of 1.70 nm average pore radius and 2.98 nm average half pore width, and total pore volume of 0.01 cm*.g ~ Ì by some different
methods such as BET, Barret-Joyner-Halenda (BJH), Redushkevich (DR), and Dollimore-Heal (DH), respectively On the other hand, the Na adsorption-desorption isotherm followed type II (defined by IUPAC), implying that the Per was microporous (Fig 2(d)) The Per specific surface area obtained was lower than previous findings, bringing disadvantages for adsorption efficiency [37] Therefore, sur- face modification of Per is necessary for the PC4R adsorptive removal enhancement.
Dubinin-Besides, the Per adsorbents were cubic crystals with each cubic edge
of about 24.64 A determined by the SEM (Fig 3) and the XRD methods.
3.2 Investigation of effect variables on the CTAB adsorption on the Per
3.2.1 Effects of pH and ionic strength
The effects of pH and the ionic strength on the CTAB adsorption on the Per were determined at the same experimental conditions of 5 mg.
mL of the Per dosage, 120 min of the contact time, 0.1 mM of the
CTAB initial concentration, and various pH of 4 - 11 and 100 mM NaCl
(Fig 4(a)), and different strengths of 0 - 100 mM NaCl and pH 9 (Fig 4
Table 1 Chemical composition of the Per adsorbents determined by
the XRF method.
Oxides Chemical composition
(wt%)
SiOz 61.98 AlaOs 37.25
KạO 0.16
CaO 0.46 FeaOs 0.08 CuO 0.07
Si02/Al,03 1.66
Si/Al 1.47
x 2.26
y 0.81
Trang 34Fig 2 The characterization of the Per measured by: (a) XRF, (b) XRD, (c) FT-IR, and (d) BET methods.
Fig 3 The Per morphology was imagined by the SEM method with different magnifications of: (a) 5 x 10°, and (b) 1 x 10°.
(b)), respectively.
As shown in Fig 4(a), the CTAB adsorption performance on the Per
was dramatically raised from about (19.26 + 4.98) to (53.89 + 3.28)%
with the pH increment from 2 - 9, then kept relatively stable with
continuous pH increment It should be noted that the Per surface charge
density depended on pH, although the Per was negative charge at a large
PH range [38] On the other hand, the CTAB was ever positively charged
at all pH due to -N*(CH3)3 presence At acidic conditions, the Per was
less negatively charged due to more -OH$ groups generated from
orig-inal -OH functional groups of the Per [39] Also, the Per could be partly
dissolved in acidic conditions [40] As a result, less cationic CTAB
adsorbed onto the Per surface due to electrostatic repulsions Whereas,
at basic conditions, the Per was more negatively charged due to the original -OH functional groups of the Per deprotonated to form more -O groups, promoting the CTAB adsorption due to electrostatic attrac- tions [39] Therefore, pH 9 was chosen to optimize the CTAB adsorption
Trang 35Fig 4 The CTAB adsorption performances on the Per at various: (a) pH, and (b) the ionic strengths.
on the Per due to the maximum CTAB performance achievement of
nearly 53.89%.
The CTAB adsorption performance enhanced remarkably from
approximately (46.36 + 3.16) to (75.66 + 7.25)% while the ionic
strength increased from 0 - 1 mM NaCl, then slightly moved down with
continuously increasing ionic strength until 200 mM NaCl (Fig 4(b)) It
implies the contribution of hydrophobic interactions on the CTAB
adsorption process besides the electrostatic attractions Following the
electrolyte shielding effect, two phenomena were proposed with higher
NaCl concentrations [41,42] Firstly, electrolyte ions impulsed the
hy-drophobic interactions established among long hyhy-drophobic tails of the
CTAB molecules Secondly, the electrolyte ions obstructed the
electro-static attractions between the positively charged CTAB heads and the
Per negative charges.
3.2.2 CTAB adsorption isotherm
The CTAB adsorption isotherms on the Per adsorbents were clarified
at various experimental conditions of pH 9, 1 mM NaCl, 5 mg.mL~ of
the Per dosage, contact time of 120 min with the CTAB initial
concen-tration from 0.01 to 10 mM.
It was investigated that the CTAB adsorption capacity increased from
about (0.0019 + 0.0001) to (0.16 + 0.05) mg.g ~ Ì with arising the
initial CTAB concentration from 0.01 — 100 mM It could be explained by
Langmuir model with a lower correlation efficiency of 0.6670 (Fig 5).
Therefore, it affirms to form multiple adsorbed layers of the CTAB on the Per surface In addition, the CTAB molecules were adsorbed on the Per surfaces due to not only electrostatic attractions between the CTAB-Per
but also hydrophobic interactions between the long hydrophobic tails
[20] Moreover, the CTAB adsorbed layer number was determined to be approximately (2.54 + 0.29) by the Freundlich model On the other hand, a maximum CTAB adsorption capacity of approximately (0.18 +
0.04) mg.g ~ Ì extrapolated by Langmuir isotherm was nearly close to of the experimental value of (0.16 + 0.05) mg.g ~ †,
The experimental conditions for Per surface modification were
optimized and fixed for further study as of pH 9, 1 mM NaCl, 5 mg.mLÌ
of Per dosage, 120 min of the contact time, and 10 mM of the CTAB initial concentration.
Trang 36V.L Dang et al.
3.3 Investigation of effective conditions on the PC4R removal using
CTAB@Per adsorbents
3.3.1 pH effect
The pH effect on the PC4R removal using the Per adsorbents without
and with surface modification by the CTAB adsorption was investigated
at various experimental conditions of the pH range from 2 - 11, 1 mM
NaCl, 5 mg.mL"! of the Per dosage, 120 min of the contact time, and 20
mg.L ~ Ì of the PC4R initial concentration.
Fig 6 shows that the PC4R removal efficiencies were more
notice-ably obtained with the Per surface modification than without the Per
modification at all pH ranges The PC4R removal increased almost
twofold from nearly (53.23 + 5.39) to (90.06 + 3.88)% corresponding
with using the Per and the CTAB@Per adsorbents at pH 4 It reveals the
highly adsorptive potential of the modified surface adsorbents on the
PC4R removal from aqueous media.
It should be noted that the PC4R charge density was also dependent
on protonation of the -N = N- and -OH groups although the PC4R
molecule was always negatively charged in the investigated pH range of
2 — 11 due to its acid dissociation constants of 2.9 (pKa) and 11.38
(pKaz) [46] With CTAB modified Per surface, the PC4R removal
effi-ciency decreased from approximately (90.06 + 3.88) to (74.58 +
1.50)% while pH decreased from 4 - 2 (Fig 6) The reason could be that
more -N=(H)N‘- and -OH3appropriately protonated from the -N =
N-and -OH groups of the PC4R molecule repulsed the amine group
-N*(CH3)3 of the cationic CTAB while pH was lower than pKại of the
PC4R [47,48] On the other hand, the larger number of the CTAB
mol-ecules was adsorbed on the Per surfaces (investigated above), and the
PC4R molecule became more negatively charged due to more
-O-generated from -OH while the pH changed from 4 to 11 [47] It should
be supposed that the result in an increment of the PC4R removal is due to
more electrostatic attractions between the adsorbed CTAB and the PC4R
with the pH increment of 4 - 11 Oppositely, the experimental data
showed that the PC4R removal efficiency declined from about (90.06 +
3.88) to (66.61 + 3.17)% (Fig 6) It suggested the contribution of other
extramolecular interactions between the PC4R molecules on the
adsor-bent surfaces The cause of this phenomenon could be that less -OH3 and
more -OH or -O— were formed in the PC4R molecules with pH increment,
reducing hydrogen bondings between -OH undissociated or dipole-ion
attractions between -N = N- and -OH$, and enhancing more
re-pulsions between -O and -N = N- between the PC4R molecules [47].
After surface modification with CTAB, interactions between the Per
adsorbents and the PC4R were enhanced by more -OH group
dissocia-tion and protonadissocia-tion to generate -O” and -OH3 groups [47,48].
Fig 6 The PC4R removal efficiencies on the Per adsorbents: without (black)
and with the surface modification by the CTAB adsorption (grey) at
various pHs.
Journal of Molecular Structure 1304 (2024) 137619
Therefore, the PC4R strongly repulsed the Per Especially, the PC4R
positive charge density was more enhanced due to more
-N=(H)N'-formations while the pH was lower than pKại of the PC4R [48] As a
result, the PC4R removal efficiency reached a maximum of mately (53.23 + 5.39)% at pH 4 and correspondingly decreased to about (4.46 + 2.50)% and nearly (0.99 + 0.40)% while pH was greater and lower than 4 (Fig 6).
approxi-3.3.2 Ionic strength effect
The ionic strength effect on the PC4R removal on the Per adsorbents without and with surface modification by the CTAB was investigated at various experimental conditions of the NaCl range from 0 - 150 mM
NaCl, pH 4, 5 mg.mL~! of the Per dosage, 120 min of the contact time, and 20 mg.L ~ ! of the PC4R initial concentration.
Fig 7 shows that the PC4R removal efficiency using the CTAB@Per adsorbents rose from approximately (80.82 + 1.76) to (95.12 + 0.61)% while the NaCl concentration increased from 0 to 10 mM, implying that the important role of the non-electrostatic interactions such as dipole- ion bondings among the PC4R molecules (mentioned above) More- over, the PC4R adsorptive removal efficiency was slightly reduced nearly by 10% with a 15-fold increment of the NaCl concentration from
10 to 150 mM, suggesting the electrostatic attractions declined due to the electrolyte ion shielding effect (Fig 7) [49] The optimal ionic strength was 10 mM NaCl due to the highest achievement of the PC4R adsorption performance with a low standard deviation Conclusively, the PC4R adsorption process on the CTAB@Per surfaces was ably gov- erned by the electrostatic, dipole-ion interactions and hydrogen bondings.
3.3.3 Effects of the Per dosage and contact time
The effects of the Per dosage and the contact time on the PC4R removal were performed at various experimental conditions of pH 4, 10
mM NaCl, 20 mg.L 1 of the PC4R initial concentration, the Per dosage range of 1-8 mg.mL"! (Fig 8(a)), and 0 - 2 h of the contact time (Fig 8
@®)).
The Per dosage noticeably changed 6-fold from 1 to 6 mg.mL"},
attributing more available active Per surface sites for the CTAB adsorption Correspondingly, more the PC4R adsorbed onto the CTAB@Per as well as the PC4R adsorption performance was attained from (62.48 + 3.34) to (91.73 + 3.09)% (Fig 8) Whereas, the PC4R solution was immediately discolored with nearly 90.07% of the PC4R removal efficiency as soon as the mixing event It implies that strong interactions between the PC4R and the CTAB@Per surfaces occurred An
Trang 37Fig 8 The PC4R removal efficiencies using the CTAB@Per adsorbents at various conditions of: (a) the Per dosage, and (b) the contact time.
equilibrium of the PC4R adsorption fast reached after 15 min of the
contact time.
3.4 PC4R adsorption isotherms on the CTAB@Per adsorbents
To better understand the PC4R adsorption mechanism, the
adsorp-tion isotherms were fitted with two general models including Langmuir,
and Freundlich The fitting parameters were listed in Table 2.
The separation dimensionless factors, Rị of 0.11 - 0.93 were in the
range of 0 - 1, indicating that the PC4R adsorption was favorable
(Table 2) [16] On the other hand, the coefficient, 1/n of 0.35 was close
to zero, implying that the adsorbent surface was heterogenic [50] The
PC4R adsorption was relatively better fitted with the Freundlich
isotherm with a larger correlation efficiency of 0.8888 than the
Lang-muir isotherm with a smaller correlation efficiency of 0.8402 (Fig 9).
Accordingly, it proposes that PC4R adsorbed layers on the modified
adsorbents were multiple [51] On the other hand, the PC4R adsorbed
layer number, n of approximately 2.84 was extrapolated by the
Freundlich isotherm model (Table 2) Additionally, a maximum PC4R
adsorption capacity of 15.470 mg.g~ Ì was extrapolated from Langmuir
isotherm On the other hand, the PC4R adsorption performance by the
use of the CTAB@Per adsorbents was found to be greater than some
common adsorbents (Table 3) It implies that cationic surfactant CTAB
applied as a surface modifier created more active sites for the PC4R
removal from aqueous media.
3.5 PC4R adsorption kinetics on the CTAB@Per
The PC4R adsorption kinetics on the CTAB@Per were fitted by the
pseudo-first and pseudo-second models under the fixed conditions of pH
4, 10 mM NaCl, 6 mg.mL of the Per dosage, 10 mg.L ~ Ì of the PC4R
initial concentration, and the contact time from 0 — 120 min (Table 4).
As depicted in Fig 10, the pseudo-second model achieved a higher
correlation coefficient, R? of 0.9995 which was more suitable for the
PC4R adsorption kinetic than the pseudo-first model with a lower R2 of
0.1648 In addition, the calculated equilibrium adsorption capacity
obtained from the pseudo-second model was better matched with the
(Table 4) It was emphasized that the PC4R adsorption was basically chemisorbed on the CTAB@Per surface [16,53].
3.6 PC4R adsorption mechanism on the CTAB@Per clarified by the
FT-IR measurement
As shown in Fig 11, the symmetric Si-O-Al stretching vibration was
assigned at 651.94 cm”! while the Si-O-Al asymmetric one was pointed out at 694.37 cm”! in the Per spectrum Meanwhile, the stretching vi-
brations of Si-Al-O and Si-O-Si were designated at 549.71 and 1180.44
cm} respectively [54,55].
As a result of cation exchange between metal cation on the Per and
the cation CTAB, the Si-O-metal stretching vibrated at 464.84 cm! in the CTAB spectrum was attributed at 457.13 em Ì in the CTAB@Per
spectrum The Si-OH and C—N* stretching vibrations in the Per and the
CTAB spectra appeared at the same wavenumber of 962.48 cmTM!
slightly shifted to 958.62 cm7! in the CTAB@Per spectrum [54,55].
Also, the presence of the CTAB molecules on the Per surface was
demonstrated by the appearance of a small peak at 3014.74 cmTM!
rep-resenting for the C—NT stretching vibration in the CTAB molecule.
The C—N' stretching vibrated at 962.48 em” in the CTAB spectrum was relocated at 1002.98 cm Ì in the PC4R-adsorbed CTAB@Per spec-
trum [56,57] The -CH; stretching vibrations located at 2848.86 and
2918.30 em in the CTAB spectrum were correspondingly shifted to 2899.01 and 2989.66 cm Ì in the PC4R-adsorbed CTAB@Per spectrum
[58] It implies that the CTAB interacted with the PC4R vice (CH3)3N+
SO3 electrostatic attraction The peaks of -OH stretching vibrations
specified at 1489.05 and 3417.86 cm! in the PC4R spectrum moved to 1475.54 cm Ì and disappeared in the PC4R-adsorbed CTAB@Per spectrum [59] Meanwhile, a sharp peak at 1629.85 cmTM! attributed to
O—H blending vibration in the PC4R molecule was slightly displaced to
be at 1643.35 cm, All changes in the -OH group vibrations, suggesting
that the able hydrogen bonding formation of the -OH groups between
the PC4R molecules Moreover, the wavenumber at 1039.63 cm Ì
rep-resenting the -SO3 stretching vibration in the PC4R molecule was
transferred to 1045.42 cm Ì in the PC4R-adsorbed CTAB@Per
spec-trum The -S = O stretching vibrations revealed at 1143.79 and 1174.65
1
experiment value than that achieved from the pseudo-first model cm ~ were not observed in the PC4R-adsorbed CTAB@Per spectrum
Table 2
The fitting parameters of the PC4R adsorption isotherms on the CTAB@Per.
Isotherms Langmuir Freundlich
Fitting parameter R? KL Qmax R, R? Kr (mạ! 1⁄n n
(Lmg"?) (mg.g~ 1) img 1=)
Value 0.8402 0.015 + 0.005 15.470 + 1.915 0.11 - 0.93 0.8888 1.57 + 0.23 0.35 + 0.04 2.84 + 0.29
Trang 38Maximum PC4R adsorption capacities using different adsorbents.
Adsorbents Qmax References
(mgg_ ”)
CTAB@Per adsorbents 15.470 This study
Walnut shell-prepared activated carbons 2.0 [52]
Poplar-prepared activated carbons 3.91 [50]
Almond shell-prepared activated carbons 10.752 [18]
Table 4
The parameters of the PC4R adsorption kinetics on the CTAB@Per adsorbents
following the pseudo-first and -second models.
[60-62] These changes in the -SO3 functional groups of the PC4R
molecule demonstrated that the electrostatic attractions were formed
between the PC4R and the adsorbed CTAB on the modified Per surfaces.
On the other hand, the -N = N- stretching vibration located at 1421.54
cm Ì in the PC4R spectrum was absent in the PC4R-adsorbed
CTAB@Per spectrum [63] It was probable that the dipole-ion
in-teractions of -N = N- and -OH3between PC4R molecules.
4 Conclusions
The zeolite, Permutit was modified through the CTAB adsorption and used as an effective adsorbent on the PC4R adsorptive removal from aqueous media The Per characterizations of the cubic crystal, 1.66 of
the SiOz/AlaOa ratio, 44.81 mổ.g ~ 1 of the specific surface area, 1.7 nm
of the average pore radius, and typical bonds of Si-Si, Si-Al, and Si-O-Si were correspondingly determined by the measurements of XRD, XRF, BET, and FT-IR The experimental conditions were optimized to be
O-pH 4, 10 mM NaCl of the ionic strength, 6 mg.mL of the Per dosage,
and 15 min of the contact time The PC4R adsorption was followed by both Langmuir and Freundlich isotherms The multiple adsorbed layers
of the PC4R were formed while 15.48 mg.g ~ Ì of the maximum PC4R
adsorption capacity was obtained on the CTAB@Per surfaces The PC4R adsorption was chemisorption and better fitted with the pseudo-second- order model The electrostatic attractions between the CTAB-PC4R molecules, the dipole-ion interactions, and hydrogen bondings be- tween PC4R molecules primarily controlled the PC4R adsorption pro- cess demonstrated by the FT-IR measurement A nearly 90.06% PC4R adsorptive removal efficiency was significantly achieved by using the
50 40
2 30 D
Trang 39CRediT authorship contribution statement
Van Long Dang: Data curation, Formal analysis, Funding
acquisi-tion, Investigaacquisi-tion, Methodology, Project administraacquisi-tion, Software,
Validation, Visualization, Writing - original draft, Writing - review &
editing Thu Trang Kieu: Investigation, Software Thi Thu Thao
Nguyen: Investigation, Software Thi Thuy Trang Truong: Data
cura-tion, Formal analysis Duy Thanh Hoang: Investigation Thi Linh Chi
Vu: Investigation Thi Minh Thu Nguyen: Formal analysis, Resources,
Visualization Thanh Son Le: Formal analysis, Resources, Writing —
review & editing Thi Hai Yen Doan: Conceptualization, Data curation,
Funding acquisition, Methodology, Project administration, Supervision,
Validation, Visualization, Writing - original draft, Writing - review &
editing Tien Duc Pham: Conceptualization, Funding acquisition,
Methodology, Supervision, Validation, Visualization, Writing - review
& editing.
Declaration of competing interest
The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.
Data availability
Data will be made available on request.
Acknowledgments
This research has been done under the research project QG.22.17 of
Vietnam National University, Hanoi.
We would like to thank Dr Johan Hunziker, IGEPP, INRAE, Institut
Agro, Univ Rennes, 29260, Ploudaniel, France for the available
com-ments and English check to improve our manuscript.
Supplementary materials
Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.molstruc.2024.137619.
References
[10 {11
W Konicki, M Aleksandrzak, D Moszynski, E Mijowska, Adsorption of anionic
azo-dyes from aqueous solutions onto graphene oxide: equilibrium, kinetic and thermodynamic studies, J Colloid Interface Sci 496 (2017) 188-200, https://doi.
org/10.1016/j.jcis.2017.02.031.
E.M Sahin, T Tongur, E Ayranci, Removal of azo dyes from aqueous solutions by
adsorption and electrosorption as monitored with in-situ UV-visible spectroscopy,
Sep Sci Technol 55 (2020) 3287-3298, https://doi.org/10.1080/
01496395.2019.1676786.
C.J Ogugbue, T Sawidis, Bioremediation and Detoxification of Synthetic Wastewater Containing Triarylmethane Dyes by Aeromonas hydrophila Isolated from Industrial Effluent, Biotechnol Res Int (2011) 1-11, https://doi.org/
J Abbey, B Fields, M O’Mullane, L.D Tomaska, Food additives: colorants, Encycl Food Saf., Acad Press (2014) 459-465, https://doi.org/10.1016/B978-0-12-
378612-8.00225-0.
P da S Rodrigues, A de O Rios, F Cladera-Olivera, Estimation of theoretical
intake of synthetic food colours Azorubine, Erythrosine, Indigotine, and Ponceau 4R by the Brazilian population, Food Sci Technol 42 (2022) e17821, https://doi.
org/10.1590/fst.17821.
J Konig, Food colour additives of synthetic origin Colour Addit Foods Beverages, Woodhead Publishing, 2015, pp 36-60, https://doi.org/10.1016/B978-1-78242-
011-8.00002-7.
E Demirbas, M.Z Nas, Batch kinetic and equilibrium studies of adsorption of
Reactive Blue 21 by fly ash and sepiolite, Desalination 243 (2009) 8-21, https:// doi.org/10.1016/j.desal.2008.04.011.
J Ooi, L.Y Lee, B.Y.Z Hiew, S Thangalazhy-Gopakumar, S.S Lim, S Gan, Assessment of fish scales waste as a low cost and eco-friendly adsorbent for removal of an azo dye: equilibrium, kinetic and thermodynamic studies, Bioresour Technol 245 (2017) 656-664, https://doi.org/10.1016/j.biortech.2017.08.153.
B Goudarzi, K Dindarloo, H.R Ghaffari, A Tajvar, A Ghanbarnejad, Acid red 18 dye removal from aqueous solution using combined process of coagulation and nanoparticle zero valent iron (nZVD), Int J Eng Sci 6 (2017) 74-79.
Z Yousefi, A Zafarzadeh, R.A Mohammadpour, E Zarei, N Mengelizadeh,
A Ghezel, Electrochemical removal of acid red 18 dye from synthetic wastewater
using a three-dimensional electrochemical reactor, Desalin Water Treat 165 (2019) 352-361, https://doi.org/10.5004/dwt.2019.24502.
M Malakootian, A Smith, M.A Gharaghani, H Mahdizadeh, A Nasiri,
G Yazdanpanah, Decoloration of textile Acid Red 18 dye by hybrid UV/COP advanced oxidation process using ZnO as a catalyst immobilized on a stone surface, Desalin Water Treat 182 (2020) 385-394, https://doi.org/10.5004/
dwt.2020.25216.
A Shokri, S Karimi, Degradation of acid red 18 in an aqueous environment by
TiO2 /zeolite nano photocatalyst, J Water Environ Nanotechnol 6 (2021)
326-337, https://doi.org/10.22090/jwent.2021.04.004.
Trang 40F, Hamidi, M.H Dehghani, M Kasraee, M Salari, L Shiri, A.H Mahvi, Acid red 18
removal from aqueous solution by nanocrystalline granular ferric hydroxide
(GFH); optimization by response surface methodology & genetic-algorithm, Sci.
Rep 12 (2022) 1-15, https://doi.org/10.1038/s41598-022-08769-x.
S Wang, Y.Y Zhai, Q Gao, W.J Luo, H Xia, C.G Zhou, Highly efficient removal of
acid red 18 from aqueous solution by magnetically retrievable chitosan/carbon
nanotube: batch study, isotherms, kinetics, and thermodynamics, J Chem Eng.
Data 59 (2014) 39-51, https://doi.org/10.1021/je400700c.
A.A Ahmadi, Akram Najafi Chaleshtori, Fazel Mohammadi-Moghadam,
Mehraban Sadeghi, Removal of acid red 18 (Azo-dye) from aqueous solution by
adsorption onto activated charcoal prepared from almond shell, J Environ Sci.
Manag 20 (2017) 9-16.
M Moshoeshoe, M.S Nadiye-Tabbiruka, V Obuseng, A Review of the Chemistry,
Structure, Properties and Applications of Zeolites, Am J Mater Sci 7 (2017)
196-221, https://doi.org/10.5923/J.MATERIALS.20170705.12.
J Shi, Z Yang, H Dai, X Lu, L Peng, X Tan, L Shi, R Fahim, Preparation and
application of modified zeolites as adsorbents in wastewater treatment, Water Sci.
Technol (2017) 621-635, https://doi.org/10.2166/wst.2018.249, 2017.
M Andrunik, T Bajda, Removal of pesticides from waters by adsorption:
comparison between synthetic zeolites and mesoporous silica materials A review,
Materials (Basel) 14 (2021) 3532, https://doi.org/10.3390/ma14133532.
A Najafi Chaleshtori, F.M Meghaddam, M Sadeghi, R Rahimi, S Hemati,
A Ahmadi, Removal of acid red 18 (azo-dye) from aqueous solution by adsorption
onto activated charcoal prepared from almond shell, J Environ Sci Manag 20
(2017) 9-16, https://doi.org/10.47125/jesam/2017_2/02.
M Yalcin, A Giirses, C Dogar, M SOZBiLir, The adsorption kinetics of
cethyltrimethylammonium bromide (CTAB) onto powdered active carbon,
Adsorption 10 (2005) 339-348, https://doi.org/10.1007/s10450-005-4819-9.
T.D Dinh, M.N Phan, D.T Nguyen, T.M.D Le, A.K Nadda, A.L Srivastav, T.N.
M Pham, T.D Pham, Removal of beta-lactam antibiotic in water environment by
adsorption technique using cationic surfactant functionalized nanosilica rice husk,
Environ Res 210 (2022) 112943, https://doi.org/10.1016/j.envres.2022.112943,
T.D Le, D.T Nguyen, Q.L Nguyen, V.D Duong, T.H.Y Doan, A.K Nadda,
S Sharma, T.S Le, T.D Pham, Adsorptive removal of dichlorophenoxyacetic acid
(2,4-D) using novel nanoparticles based on cationic surfactant-coated titania
nanoparticles, Environ Sci Pollut Res 30 (2023) 42367-42377, https://doi.org/
10.1007/s11356-023-25312-1.
A Ebrahimian, E Saberikhah, Biosorption of methylene blue onto foumanat tea
waste: equilibrium and thermodynamic studies, Cellul Chem Technol 47 (2013)
657-666.
T.H Dao, T.Q.M Vu, N.T Nguyen, T.T Pham, T.L Nguyen, S.I Yusa, T.D Pham,
Adsorption characteristics of synthesized polyelectrolytes onto alumina
nanoparticles and their application in antibiotic removal, Langmuir 36 (2020)
13001-13011, https://doi.org/10.1021/acs.langmuir.0c02352.
S Hong, W Um, Top-down synthesis of nap zeolite from natural zeolite for the
higher removal efficiency of Cs, Sr, and Ni, Minerals 11 (2021) 1-15, https://doi.
org/10.3390/min11030252.
T.H Yen Doan, T.H Hoang, V.A Le, D.N Vu, T.N Vu, A.L Srivastav, T.D Pham,
Adsorption and transformation of tetracyclines on alpha alumina particles with
surface modification by anionic surfactant, Environ Res 216 (2023) 114618,
https://doi.org/10.1016/j.envres.2022.114618.
R.F.L Rahmayani, Y Arryanto, I Kartini, The effect of alkaline activation on the
zeolite binding properties toward dissolved irons, J Phys Conf Ser., IOP
Publishing (2020) 12084, https://doi.org/10.1088/1742-6596/1460/1/012084.
B Kwakye-Awuah, E Von-Kiti, I Nkrumah, R.Erdoo Ikyreve, I Radecka,
C Williams, Parametric, equilibrium, and kinetic study of the removal of salt ions
from Ghanaian seawater by adsorption onto zeolite X, Desalin Water Treat 57
(2016) 21654-21663, https://doi.org/10.1080/19443994.2015.1128361.
Q Li, Y Zhang, Z Cao, W Gao, L Cui, Crystallization behavior of zeolite beta from
acid-leached metakaolin, Pet Sci 7 (2010) 541-546, https://doi.org/10.1007/
s12182-010-0106-9.
J Gu, J Lin, A.J Smith, S Soontaranon, S Rugmai, C Kongmark, M.O Coppens,
G Sankar, Towards understanding mesopore formation in zeolite Y crystals using
alkaline additives via in situ small-angle X-ray scattering, Microporous Mesoporous
Mater 338 (2022) 111867, https://doi.org/10.1016/j.micromeso.2022.111867.
M Krol, W Mozgawa, W Jastrzbski, K Barczyk, Application of IR spectra in the
studies of zeolites from D4R and D6R structural groups, Microporous Mesoporous
Mater 156 (2012) 181-188, https://doi.org/10.1016/j.micromeso.2012.02.040.
W Mozgawa, M Krol, K Barczyk, FT-IR studies of zeolites from different structural
groups, Chemik 65 (2011) 671-674.
E.M FLANIGEN, H KHATAMI, H.A SZYMANSKI, Infrared structural studies of
zeolite frameworks, Adv Chem (1974) 201-229,
https://doi.org/10.1021/ba-1971-0101.ch016.
M.A.A Musa, C.Y Yin, R.M Savory, Analysis of the textural characteristics and
pore size distribution of a commercial zeolite using various adsorption models,
J Appl Sci 11 (2011) 3650-3654, https://doi.org/10.3923/jas.2011.3650.3654,
J Dickson, N.A Conroy, Y Xie, B.A Powell, J.C Seaman, M.I Boyanov, K.
M Kemner, D.I Kaplan, Surfactant-modified siliceous zeolite Y for pertechnetate
remediation, Chem Eng J 402 (2020) 126268, https://doi.org/10.1016/j.
cej.2020.126268.
C.E.C Barola, I.F.C Dusaban, E.M Olegario-Sanchez, H.D Mendoza, The effect on
the zeta potential of surface modified Philippine natural zeolites (SM-PNZ) for the
adsorption of anionic solutions, in: IOP Conference Series Materials Science and
Engineering, IOP Publishing, 2019 012039, https://doi.org/10.1088/1757-899X/
[49
[50
[51
[52 [53 [54 [55 [56 [57 [58
[59
[60
[61 [62 [63
Journal of Molecular Structure 1304 (2024) 137619
R.L Hartman, H.S Fogler, Understanding the dissolution of zeolites, Langmuir 23
(2007) 5477-5484, https://doi.org/10.1021/1a063699g.
T.H.Y Doan, Y Adachi, Relaxation of adsorbed layer thickness and electrophoresis
of polystyrene latex particles after overshooting of polyelectrolytes with different
charge density, Colloids Surf A Physicochem Eng Asp 603 (2020) 125208,
https://doi.org/10.1016/j.colsurfa.2020.125208.
T.H.Y Doan, V.H Lim, Y Adachi, T.D Pham, Adsorption of binary mixture of
highly positively charged PTMA5M and partially negatively charged PAA onto PSL particles studied by means of brownian motion particle tracking and
electrophoresis, Langmuir 37 (2021) 12204-12212, https://doi.org/10.1021/acs.
J.A De Witt, T.G.M Van de Ven, Kinetics and reversibility of the adsorption of poly
(vinyl alcohol) onto polystyrene latex particles, Langmuir 8 (1992) 788-793, https://doi.org/10.1021/1a00039a011.
Y A, T Matsumoto, Dynamics of initial stage flocculation of polystyrene latex spheres with polyelectrolytes, Colloids Surf A Physicochem Eng Asp 113 (1996)
A.R Kennedy, L.K Conway, J.B.A Kirkhouse, K.M McCarney, O Puissegur,
E Staunton, S.J Teat, J.E Warren, Monosulfonated AZO dyes: a crystallographic study of the molecular structures of the free acid, anionic and dianionic forms, Crystals 10 (2020) 1-17, https://doi.org/10.3390/cryst10080662.
T.H.Y Doan, T.D Pham, J Hunziker, T.H Hoang, Temporal changes of adsorbed layer thickness and electrophoresis of polystyrene sulfate latex particles after long incubation of oppositely charged polyelectrolytes with different charge densities,
Polymers (Basel) 13 (2021) 2394, https://doi.org/10.3390/polym13152394.
B Heibati, S Rodriguez-Couto, M.A Al-Ghouti, M Asif, I Tyagi, S Agarwal, V.
K Gupta, Kinetics and thermodynamics of enhanced adsorption of the dye AR 18
using activated carbons prepared from walnut and poplar woods, J Mol Lig 208
(2015) 99-105, https://doi.org/10.1016/j.molliq.2015.03.057.
S.A.C Carabineiro, T Thavorn-Amornsri, M.F.R Pereira, J.L Figueiredo,
Adsorption of ciprofloxacin on surface-modified carbon materials, Water Res 45
(2011) 4583-4591, https://doi.org/10.1016/j.watres.2011.06.008.
R Garousin, A Bozorghi, S.J Moradi, Removal of environmental pollutants azo
dye Acid Red 18 in aqueous solution using adsorbent activated carbon of walnut
shell, J Biodivers Environ Sci 7 (2015) 120-127.
R.A Sims, S.L Harmer, J.S Quinton, The role of physisorption and chemisorption
in the oscillatory adsorption of organosilanes on aluminium oxide, Polymers
10.1039/C9NJO1795J.
Y Ji, X Yang, Z Ji, L Zhu, N Ma, D Chen, X Jia, J Tang, Y Cao, DFT-calculated
IR spectrum amide I, II, and II band contributions of N-methylacetamide fine components, ACS Omega 5 (2020) 8572-8578, https://doi.org/10.1021/
acsomega.9b04421.
M.S Agashe, C.I Jose, Characteristic vibrations of - N(CH3)2 and - N +(CH3)3
groups in dimethyl aminophenols and their methiodides, J Chem Soc Faraday
Trans 2 Mol Chem Phys 73 (1977) 1232-1237, https://doi.org/10.1039/
F29777301232.
G Quan, X Pan, Z Wang, Q Wu, G Li, L Dian, B Chen, C Wu, Lactosaminated
mesoporous silica nanoparticles for asialoglycoprotein receptor targeted anticancer drug delivery, J Nanobiotechnol 13 (2015) 1-12, https://doi.org/10.1186/
$12951-015-0068-6/TABLES/1.
B Krishnappa, J Mannekote Shivanna, M Naik, P De Padova, G Hegde, Acid
Orange-7 uptake on spherical-shaped nanocarbons, Nanomater Nanotechnol 11 (2021) 1-10, https://doi.org/10.1177/18479804211055031.
S.B Brijmohan, S Swier, R.A Weiss, M.T Shaw, Synthesis and characterization of cross-linked sulfonated polystyrene nanoparticles, Ind Eng Chem Res 44 (2005) 8039-8045, https://doi.org/10.1021/ie050703v.
C.O M'Bareck, Q.T Nguyen, M Metayer, J.M Saiter, M.R Garda, Poly (acrylic acid) and poly (sodium styrenesulfonate) compatibility by Fourier transform
infrared and differential scanning calorimetry, Polymer (Guildf) 45 (2004) 4181-4187, https://doi.org/10.1016/j.polymer.2004.03.044.
M Wawrzkiewicz, B Podkoácielna, P Podkoscielny, Application of functionalized dvb-co-gma polymeric microspheres in the enhanced sorption process of hazardous
dyes from dyeing baths, Molecules 25 (2020) 5247, https://doi.org/10.3390/
molecules25225247.
M.P Shah, Bioremedial application of Bacillus megaterium PMS82 in microbial degradation of acid orange dye, Int J Environ Bioremed Biodegrad 2 (2014) 93-99, https://doi.org/10.12691/IJEBB-2-3-1.