1. Trang chủ
  2. » Luận Văn - Báo Cáo

Luận văn: MÔĐUN ĐỐI ĐỒNG ĐIỀU ĐỊA PHƯƠNG VÀ MỘT SỐ PHẠM TRÙ CON SERRE pdf

42 241 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 42
Dung lượng 552,21 KB

Nội dung

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM  PHẠM MAI LAN MÔĐUN ĐỐI ĐỒNG ĐIỀU ĐỊA PHƯƠNGMỘT SỐ PHẠM TRÙ CON SERRE Chuyªn ngµnh: Đại số lý thuyết số M· sè: 60.46.05 LUẬN VĂN THẠC SỸ KHOA HỌC GIÁO DỤC Ng-êi h-íng dÉn khoa häc: PGS TS LÊ THỊ THANH NHÀN Thái Nguyên, 2009 S C I S S S H i I (M) ∈ S i < n S S Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn R I R H i I (M) R M I M M M depth(I, M) M I i H i I (M) = 0; (R, m) dim M M i H i m (M) = 0. M r H r I (M) min{depth(M p ) + ht((I + p)/p) : p ⊇ I}. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn n H n I (M) depth(IR p , M p ) p ∈ Supp(M/IM) \ {m}. n f-depth(I, M) M I M I gdepth(I, M) gdepth(I, M) n Supp H n I (M) R 0 S H i I (M) ∈ S? n H n I (M) /∈ S S M R S S S R 0 S H i I (M) ∈ S? Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn n H n I (M) /∈ S S M R S S S S S H i I (M) ∈ S? Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn R M R S S R S R R 0 −→ M  −→ M −→ M  −→ 0 M ∈ S M  , M  ∈ S. S R S Ext i R (N, M) ∈ S R N M ∈ S. M ∈ S N Ext i R (N, M) ∈ S N R N . . . −→ F 2 −→ F 1 −→ F 0 −→ N −→ 0, Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn F i Hom(−, M) N 0 −→ Hom(F 0 , M) f 0 −→ Hom(F 1 , M) f 1 −→ Hom(F 2 , M) f 2 −→ . . . . Ext i R (N, M) = Ker f i / Im f i−1 , ∀i = 0, 1, 2, . . . i, F i F i ∼ = R n i . Hom(F i , M) = Hom(R n i , M) =  Hom(R, M)  n i = M n i . n i 0 −→ M n i −1 −→ M n i −→ M −→ 0 M n i ∈ S. Hom(F i , M) ∈ S. Ker f i ∈ S. Ext i R (N, M) ∈ S. R M M Supp M Supp M = {p ∈ Spec R | M p = 0}. R 0. R R R M R 0 0 M N M. N M Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn N M/N M N M/N N M N M/N M 0 ⊇ M 1 ⊇ . . . M. M 0 ∩N ⊇ M 1 ∩N ⊇ . . . N (M 0 + N)/N ⊇ (M 1 + N)/N ⊇ . . . M/N. N M/N k M n ∩ N = M k ∩ N (M n + N)/N = (M k + N)/N n ≥ k. n ≥ k. M k ⊇ M n . m ∈ M k . m+N ∈ (M k +N)/N = (M n +N)/N. m+N = x+a+N = x+N x ∈ M n , a ∈ N. m−x ∈ N∩M k = N∩M n . m−x ∈ M n . m ∈ M n . M k = M n n ≥ k. M M R N M. Supp M = Supp N ∪ Supp(M/N). M Supp N Supp(M/N) Supp N Supp(M/N) Supp M M M N M N M/N (M) = (N) + (M/N) < ∞. R p 0 ⊂ p 1 ⊂ . . . ⊂ p n R p i = p i+1 i n Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn R dim R, R dim R = sup{n | R n}. I R Var(I) R I. R M dim Supp M = sup{dim R/p : p ∈ Supp M}. dim Supp M M M M dim M R/ Ann M. M Supp M = Var(Ann M) dim Supp M = sup{dim(R/p) | p ∈ Supp M} = dim(R/ Ann M). M M dim M dim Supp M. M = 0 R Supp M R dim Supp M = 0. s R M dim Supp M  s R M R N M Supp M = Supp N ∪ Supp(M/N) dim Supp M = max{dim Supp N, dim Supp(M/N)}. dim Supp M  s dim Supp N  s dim Supp(M/N)  s M dim Supp M  s Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn [...]... các phạm trù con Serre ở Ví dụ 1.1.3, 1.1.5, 1.1.6, 1.1.7, 1.1.8, phạm trù con nào thỏa mãn điều kiện (CI ) 1.2.4 Ví dụ Các phạm trù con Serre của phạm trù các thỏa mãn điều kiện R -môđun sau đây (CI ) i) Phạm trù con Serre gồm một môđun ii) Phạm trù con Serre gồm các 0 R -môđun Artin iii) Phạm trù con Serre gồm các R -môđun M có giá Supp M là tập hữu hạn iv) Phạm trù con Serre gồm các sao cho R -môđun. .. phạm trù môđun con Serre của phạm trù các R -môđun Nhắc lại rằng với mỗi R -môđun M ta định nghĩa I (M ) = (0 :M I n ), trong đó 0 :M I n = {m M | I n m = 0} n0 1.2.1 Định nghĩa Ta nói rằng Cho S là phạm trù con Serre của phạm trù các R -môđun S thỏa mãn điều kiện (CI ) nếu M S với mọi R -môđun M thỏa mãn các tính chất M = I (M ) 0 :M I S Trước khi đưa ra một tiêu chuẩn để một phạm trù con Serre. .. q p Supp M thì 0 = Mp (Mq )pRq = Vì thế Mq = 0, tức là q Supp M Do đó theo Ví dụ 1.1.7 ta có phạm trù con Serre sau đây 1.1.8 Ví dụ Nếu Z Spec R là đóng với phép đặc biệt hóa thì lớp các R -môđun M với Supp M Z là một phạm trù con Serre 1.2 Cho Điều kiện (CI ) trên phạm trù con Serre S I là một iđêan cố định của R cho M là R -môđun Chúng ta sẽ xét một điều kiện hữu ích sau đây trên các phạm. .. nếu chỉ nếu nó là I -dãy lọc chính quy đối với M S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.Lrc-tnu.edu.vn 27 2.2 Điều kiện để i HI (M ) S với mọi cấp i 0 Khi đó môđun E = E(R/m) là môđun Artin thoả mãn các tính chất E = m (E) 0 :E m có độ dài hữu hạn Tuy nhiên E có độ dài vô hạn Chú ý rằng phạm trù Serre các phạm trù con Serre các R -môđun Noether xét trong Ví dụ 1.2.5 R -môđun. .. trong một iđêan I thông qua tính không triệt tiêu của đối đồng điều địa phương, độ sâu lọc cũng được đặc trưng thông qua tính Artin của môđun đối đồng điều địa phương như sau: i f-depth(I, M ) = inf{i | HI (M ) không Artin} i = inf{i | dim Supp HI (M ) > 0} 2.1.4 Ví dụ Cho M là một R -môđun hữu hạn sinh Cho S là phạm trù con Serre gồm các chỉ khi R -môđun Artin Khi đó x m là S -chính quy khi 0 :M... con Serre thoả mãn điều kiện (CI ), chúng ta cần nhắc lại một số khái niệm liên quan đến môđun nội xạ Một R -môđun E được gọi là S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn môđun nội xạ nếu với mỗi http://www.Lrc-tnu.edu.vn 12 đơn cấu f : N M mỗi đồng cấu g : N E , tồn tại một đồng cấu h : M E sao cho g = hf Cho E là một R -môđun M là môđun con của E Ta nói E là một mọi môđun con mở rộng cốt yếu... trù con Serre gồm các sao cho R -môđun nửa Artin (các R -môđun M Supp M Max R) v) Phạm trù con Serre gồm các trong đó R -môđun M với dim Supp M s, s 0 là một số nguyên cho trước vi) Phạm trù con Serre gồm các R -môđun M với Ass M Z, trong đó Z Spec R là một tập đóng dưới phép đặc biệt hoá Chứng minh (i) Vì bao nội xạ của môđun 0 là 0 nên phạm trù con này đóng với phép lấy bao nội xạ Vì thế theo Bổ đề... môđun có độ dài hữu hạn tất nhiên cũng là môđun Noether, nhưng bao nội xạ của nó không là môđun Noether vì thế nó có độ dài vô hạn 1.3 Môđun đối đồng điều địa phương Trong suốt tiết này luôn giả thiết là các R -môđun 1.3.1 Định nghĩa nghĩa R là vành giao hoán Noether M, N Cho I là iđêan của R Với mỗi R -môđun N ta định (0 :N I n ) Nếu f : N N là đồng cấu các R- I (N ) = n0 môđun thì ta có đồng. .. con Serre của phạm trù các R -môđun Khi đó S M thỏa mãn các tính chất thỏa mãn điều kiện đó trong (CI ) nếu chỉ nếu M S M = I (M ) 0 :M x S với mọi R -môđun với phần tử x nào I Chứng minh có tính chất Giả sử S thỏa mãn điều kiện (CI ) Cho M là một R -môđun M = I (M ) 0 :M x S với x I Vì 0 :M I 0 :M x S là phạm trù con Serre nên theo Bổ đề 1.1.2 ta có 0 :M I S Do S thỏa mãn điều kiện (CI . PHẠM MAI LAN MÔĐUN ĐỐI ĐỒNG ĐIỀU ĐỊA PHƯƠNG VÀ MỘT SỐ PHẠM TRÙ CON SERRE Chuyªn ngµnh: Đại số và lý thuyết số M· sè: 60.46.05 LUẬN VĂN THẠC SỸ KHOA HỌC GIÁO DỤC . Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM  PHẠM MAI LAN MÔĐUN ĐỐI. Thái Nguyên, 2009 S C I S S S H i I (M) ∈ S i < n S S Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn R I

Ngày đăng: 28/06/2014, 11:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w