GӵEiR1JKLrQFӭXFiFYҩQÿӅOӵDFKӑQSKѭѫQJSKiSGӵEiRSKKӧSFKRF{QJW\EiQOҿWUDQJVӭFFyKѫQFӱDKjQJWUrQWRjQTXӕFYӟLUҩWQKLӅX\ӃXWӕҧQKKѭӣQJ 1.2 Mөc tiêu luұQYăQ 0өFWLrXFӫDÿӅWjLQJKLrQFӭXQj\Oj - Chuҭn hoá quy
Trang 2&Ð1*75Î1+ĈѬӦ&+2¬17+¬1+7Ҥ, 75ѬӠ1*ĈҤ,+Ӑ&%È&+.+2$ ±Ĉ+4*-HCM
Trang 3ĈҤ,+Ӑ&48Ӕ&*,$73+&0
75ѬӠ1*ĈҤ,+Ӑ&%È&+.+2$ &Ӝ1*+Ñ$;+Ӝ,&+Ӫ1*+Ƭ$9,ӊ71$0 ĈӝFOұS- 7ӵGR- +ҥQKSK~F
NHIӊM VӨ LUҰ19Ă17+Ҥ&6Ƭ +ӑWrQKӑFYLrQ1*8<ӈ1 7+8ǣ'ѬѪ1* MSHV: 1970237
1Jj\WKiQJQăPVLQK04/09/1996 1ѫLVLQKBình 7KXұQ
Chuyên ngành: ӻ 7KXұW&{QJ1JKLӋS 0mVӕ : 8520117
I 7Ç1ĈӄTÀI : Phân WtFKNKҧRViWYj[iFÿӏQKP{KuQKGӵEiREiQKjQJFKRF{QJ W\EiQOҿWUDQJVӭF
II 1+,ӊ09Ө9¬1Ӝ,DUNG :
0өF WLrXFӫDÿӅWjLOjWuPKLӇXYӅTX\WuQKGӵEiRFӫDF{QJW\EiQOҿWUDQJVӭFYjSKkQ WtFKKLӋQWUҥQJWuPUDYҩQÿӅ7ӯÿyÿӅ[XҩW[k\GӵQJOҥLFiFEѭӟFWURQJTX\WUuQKGӵEiR ÿӇWuPUDP{KuQKGӵEiRSKKӧSFKRWӯQJQKyPWUDQJVӭFWKHRWӯQJWKӡLÿLӇPGӵbáo ĈӇWKӵFKLӋQPөFWLrXQKLӋPYөFӫDÿӅWjLOj - 7uPKLӇXFiFOêWKX\ӃWYjFiFQJKLrQFӭXOLrQTXDQÿӃQÿӅWjL - 3KkQWtFKÿӕLWѭӧQJ[iFÿӏQKYҩQÿӅSKkQWtFKKLӋQWUҥQJYjQJX\rQQKkQJk\UD FiFYҩQÿӅ - ;k\GӵQJTX\WUuQKGӵEiRÿӇWuPUDP{KuQKGӵEiRSKKӧS - 3KkQWtFKNӃWTXҧFӫDQJKLrQFӭXYjÿӅ[XҩWÿӏQKKѭӟQJ
III 1*¬<*,$21+,ӊ09Ө : 22/02/2021
IV 1*¬<+2¬17+¬1+1+,ӊ09Ө: 13/6/2021
V &È1%Ӝ+ѬӞ1*'Ү1
PGS76Ĉӛ1JӑF+LӅQ
PGS76/r1JӑF4XǤQK/DP
Tp HCM, ngày « tháng « QăP21
&È1%Ӝ+ѬӞ1*'Ү1 &È1%Ӝ+ѬӞ1*'Ү1 &+Ӫ1+,ӊ0%Ӝ0Ð1
PGS.TS Ĉӛ1JӑF+LӅQ PGS76/r1JӑF4XǤQK/DP
75ѬӢ1*.+2$&Ѫ.+Ë
Trang 4LӠI &È0Ѫ1
ChҷQJPҩ\FKӕFPj KӑFNǤ FXӕLVҳSNӃWWK~c, nhuQOҥLTXmQJWKӡLJLDQÿmTXDHPFҧPWKҩ\UҩW WUkQWUӑQJYj ELӃWѫQ QăPNK{QJSKҧLFKһQJÿѭӡQJGjLQKѭQJQKӳQJÿLӅXÿmKӑFÿѭӧFQKӳQJQJѭӡLFyFѫKӝLJһSJӥVӁOX{QOjNӹQLӋPÿiQJNKҳFJKLQăPJҳQEyFQJQJ{LWUѭӡQJQj\%iFK.KRDVӁOjQLӅPWӵKjRYuOѭXJLӳQKLӅXNKyNKăQNLrQWUuYjFӕJҳQJ
EP[LQFiPѫQFiF WKҫ\F{EӝP{Q.ӻWKXұW&{QJQJKLӋSÿmKӛWUӧFiFNLӃQWKӵFFKX\rQQJjQKEәtFK, OjPQӅQWҧQJFKRYLӋFWKӵFKLӋQOXұQYăQFNJQJQKѭiSGөQJKӳXtFKvào công YLӋF
/ӡLFiPѫQVkXVҳFÿӃQWKҫ\Ĉӛ 1JӑF+LӅQ vj cô Lê 1JӑF4XǤQK/DPÿmÿӏQKKѭӟQJÿӅtji CiPѫQWKҫ\ cô ÿmNLrQQKүn giҧLÿiSPӑLWKҳFPҳFWұQWunh chӍ dүQÿӇHPFy WKӇKRjn thjnh OXұQYăQ CiPѫQWҩWFҧ DQKFKӏ và các EҥQÿDQJKӑFWұSYjQJKLrQFӭXWҥLEӝ môn, PӑLQJѭӡLOX{QJL~Sÿӥ vj ÿӗng hành cQJHPWURQJVXӕWTXi trunh
Mһc d ÿmKӃWVӭFFӕJҳQJOXұQYăQYүQNK{QJWKӇWUiQKNKӓLQKӳQJWKLӃXVyW 0RQJQKұQÿѭӧFQKӳQJÿyQJJySTXêJLiWӯPӑLQJѭӡL
Tp HCM, ngày 31 tháng 7 QăP21
+͕FYLrQ
1JX\͍Q7KXǤ'˱˯QJ
Trang 5TÓM TҲT LUҰ19Ă1
1JKLrQFӭXQj\VӁWUuQKEj\PӝWTX\WUuQKGӵEiRÿѭӧFVӱGөQJWURQJPӝWF{QJW\EiQOҿÿӗWUDQJVӭF 1KyPKjQJ76&=ӣ+ӗ&Kt0LQKÿѭӧFOӵDFKӑQÿӇWKӵFKLӋQNKҧRViWYuWӹWUӑQJFDRQKҩWYӅVӕOѭӧQJEiQKjQJ
'RÿһFÿLӇPFӫDFKXӛLWKӡLJLDQFiFP{KuQKGӵEiRVӁÿѭӧFNKҧRViWWKHRTX\WUuQKÿӇOӵDFKӑQSKKӧSYjVӱGөQJ6RViQKSKѭѫQJSKiSGӵEiR6$5,0$Yj+ROW-Exponential
FiFKVRViQKÿӝFKtQK[iFFӫDGӵEiRÿӇWuPUDP{KuQKGӵEiRWӕWQKҩWFKRQJKLrQFӭX6DXNKLiSGөQJJLҧLSKiSWURQJÿӅWjLÿӝFKtQK[iFFӫDGӵEiRÿmWăQJOrQ.ӃWTXҧFӫDQJKLrQFӭXQj\FyWKӇÿѭӧFiSGөQJFKRFiFQKyPKjQJWUDQJVӭFNKiFYӟLPӝWVӕVӱDÿәLFҫQWKLӃW ĈLӅXQj\VӁJL~SQKjEiQOҿFKXҭQ EӏÿӫQăQJOӵFQJXӗQOӵF WURQJYLӋFOұSNӃKRҥFKKjQJKRiYjWjLFKtQK
Trang 6ABSTRACT
This study would present an enhancement of the forecast process that has been used in a jewelry retailer Group is TSCZ in Ho Chi Minh area which is the highest proportion Thus, TSCZ is chosen in this study
Due to basic characteristics of historical time series, appropriate theoretical forecast models are used Comparing SARIMA and Holt-Exponential Winter's Smoothing techniques in order to provide high-accuracy customer transaction forecasts They would be ranked by comparing forecast accuracy and forecast bias to find out which one is the best forecast model for the case study After applying the solution, the forecast accuracy was increased
by 10% The results of this study could be applied to other group with some necessary modifications The findings would assist in more accurate financial planning and budgeting when the demand forecast was done better
Trang 7LӠI &$0Ĉ2$1
Tôi [LQFDPÿRDQÿӅWjLOXұQYăQ³Phân WtFKNKҧRViWYj[iFÿӏQKP{KuQKGӵEiR EiQKjQJFKRF{QJW\EiQOҿWUDQJVӭF´ OjF{QJWUuQKQJKLrQFӭXFiQKkQFӫDW{L
WURQJWKӡLJLDQTXD0ӑLVӕOLӋXVӱGөQJYjNӃWTXҧQWKXÿѭӧFOjGRW{LWKӵFKLӋQWuP KLӇXYjQJKLrQFӭXNKiFKTXDQFyQJXӗQJӕFYj FKѭDÿѭӧFF{QJEӕ7{L[LQFKӏX KRjQWRjQWUiFKQKLӋPYӟLWK{QJWLQÿѭӧFVӱGөQJWURQJÿӅWjLQj\
Tp HCM, ngày 31 tháng 7 QăP21
+͕FYLrQ
1JX\͍Q7KXǤ'˱˯QJ
Trang 8MӨC LӨC
1+,͎09ͬ/8̴19Ă17+̨&6Ƭ ii
/ͤ, &È0ˮ1 iii
TÓM 7̶7/8̴19Ă1 iv
ABSTRACT v
/ͤ, &$0Ĉ2$1 vi
0ͬ&/ͬ& vii
'$1+6È&+%̪1*%,͊8 ix
'$1+6È&++Î1+̪1+ x
'$1+6È&+9,͆77̶7± 7+8̴71*Ͷ xi
&+˰ˮ1* 1: *,͢,7+,͎8 Ĉ͈7¬, 1
1.1 ĈӕLWѭӧQJQJKLrQFӭX 1
1.2 0өFWLrXOXұQYăQ 2
1.3 3KҥPYLYjJLӟLKҥQ 2
1.4 &ҩXWU~FFӫDOXұQYăQ 2
&+˰ˮ1* &ˮ 6ͦ/é7+8<͆73+˰ˮ1*3+È3/8̴1 3
2.1 &ѫVӣOêWKX\ӃW 3
2.1.1 ĈӏQKQJKƭD 3
2.1.2 Phân ORҥL 3
2.1.3 0{KuQKWӵKӗLTX\$XWRUHJUHVVLYHPRGHO-AR) 4
2.1.4 0{KuQKWUXQJEuQKÿӝQJ0RYLQJDYHUDJHPRGHO- MA) 5
2.1.5 Mô hình ARMA ( Autoregressive - Moving average) 5
2.1.6 7ӏQKKRiGӳOLӋX 6
2.1.7 Mô hình ARIMA (Autoregressive Intergrated Moving Average) 6
2.1.8 0{KuQKKjPPNJ:LQWHUV 7
2.1.9 6DLVӕGӵEiR 8
2.1.10 ĈӝFKtQK[iFGӵEiR± IRUHFDVWDFFXUDQF\)$Yj[XKѭӟQJGӵEiR± forecast bias FB 10
2.1.11 1J{QQJӳOұSWUuQK3\WKRQ 10
2.1.12 4X\WUuQKGӵEiR 11
2.2 3KѭѫQJ SKiSOXұQ 11
2.2.1 *LDLÿRҥQ7LӃSFұQYҩQÿӅ 13
2.2.2 *LDLÿRҥQ;iFÿӏQKFiF\ӃXWӕҧQKKѭӣQJ 13
2.2.3 *LDLÿRҥQĈӅ[XҩWP{KuQKGӵEiR 13
2.2.4 *LDLÿRҥQ3KkQWtFKNӃWTXҧ 14
2.2.5 &iFQJKLrQFӭXOLrQTXDQ 14
&+˰ˮ1* Ĉ͘,7˰ͪ1*1*+,Ç1&Ͱ8 15
Trang 93.1 7әQJTXDQ 15
3.1.1 7әQJTXDQYӅF{QJW\ 15
3.1.2 7әQJTXDQYӅVҧQSKҭP 16
3.1.3 7әQJTXDQYӅTX\WUuQKGӵEiR 17
3.1.4 7KXWKұSVӕOLӋX 20
3.1.5 ;ӱOêVӕOLӋXYj[iFÿӏQKYҩQÿӅ 20
3.1.6 ;iFÿӏQKQJX\rQQKkQ 22
&+˰ˮ1* 7+,͆7.͆9¬;Æ<'1*48<75Î1+ 24
4.1 ;k\GӵQJP{KuQKJLҧLSKiS 24
4.1.1 <rXFҫXFӫDJLҧLSKiS 24
4.1.2 /ӵDFKӑQP{KuQKJLҧLSKiS 24
4.2 ;k\GӵQJP{KuQKEjLWRiQ 26
4.2.1 *LӟLWKLӋXP{LWUѭӡQJOұSWUuQK&RODE 26
4.2.2 /ѭXÿӗWKXұWWRiQVӱGөQJFKRYLӋF[k\GӵQJYjNKҧRViWP{KuQKGӵEiR 27
4.2.3 &ұSQKұWYj[ӱOêGӳOLӋX 29
4.2.4 9LVXDOL]DWLRQGӳOLӋXYj[iFÿӏQKRXWOLQHU 30
4.2.5 LӇPÿӏQKWtQKGӯQJ 31
4.2.6 3KkQUmFKXӛLWKӡLJLDQÿӇ[iFÿӏQKFiFWtQKFKҩWFӫDGӳOLӋX 34
4.2.7 7KXұWWRiQVӱGөQJWURQJFKѭѫQJWUuQK 36
4.2.8 &KX\ӇQÿәLGӳOLӋXGӵEiRYӅWӹOӋEDQÿҫXFKRP{KuQK 42
4.3 LӇPFKӭQJFKѭѫQJWUuQKYjÿiQKJLiKLӋXTXҧJLҧLSKiS 44
4.4 LӇPFKӭQJTX\WUuQKGӵEiRFKRQKyP hàng khác 45
&+˰ˮ1* ͆7/8̴1.,͆11*+͒9¬Ĉ͒1++˰͢1*3+È775,͊1 46
5.1 ӃWOXұQ 46
5.2 LӃQQJKӏYjÿӏQKKѭӟQJSKiWWULӇQ 47
7¬,/,͎87+$0.+̪2 49
3+ͬ/ͬ& 51
3KөOөF$&KѭѫQJWuQKVӱGөQJQJ{QQJӳ3\WKRQOұS 51
3KөOөF%+ѭӟQJGүQVӱGөQJ**&RODE 63
Trang 10DANH SÁCH BҦNG BIӆU
Bҧng 2.1&kXKӓLFiFEӝSKұQOLrQTXDQÿӇWLӃSFұQYҩQÿӅ 13
Bҧng 3.1&iFFkXKӓL:K\ÿӇ[iFÿӏQKYҩQÿӅ 23
Bҧng 4.1&iFKOӵDFKӑQSKѭѫQJSKiSGӵEiRGӵDYjRÿһFWtQKFӫDGӳOLӋX 25
Bҧng 4.2'ӳOLӋXEiQKjQJFӫD76&=WӯÿӃQ 29
Bҧng 4.3'ӳOLӋXEiQKjQJ-11/2018 29
Bҧng 4.4.ӃWTXҧNLӇPÿӏQK'LFNH\B)XOOHU 33
Bҧng 4.5.ӃWTXҧNLӇPÿӏFK'LFFNH\B)XOOHUVDXNKLOҩ\VDLSKkQOҫQ 33
Bҧng 4.6 %ҧQJNKҧRViWFKӍVӕSGT3'46 38
Bҧng 4.8&KӍVӕ)$)%FӫD6DULPDYj Winter 44
Bҧng 4.9.ӃWTXҧWHVW'LFNH\- )XOOHUFӫD76(=VDXVDLSKkQOҫQ 45
Bҧng 5.1%ҧQJÿiQKJLiFiFWLrXFKtÿmÿӅUD 47
Trang 11DANH SÁCH HÌNH ҦNH
Hunh 2.13KkQORҥLFiFSKѭѫQJSKiSGӵEiR[5] 4
Hunh 2.24X\WUuQKGӵEiR 11
Hunh 2.36ѫÿӗSKѭѫQJSKiSOXұQFӫDÿӅWjL 12
Hunh 3.1: M{WҧWәQJTXiW6,32&FӫDTX\WUuQKGӵEiRVӵWѭѫQJTXDQJLӳDFiFEӝSKұQ 18
Hunh 3.2)$)%WUXQJEuQKFӫDFiFQKyPKjQJWKHRWKӡLJLDQ 19
Hunh 3.37ӹWUӑQJEiQKjQJFӫDFiFNKXYӵF 20
Hunh 3.47ӹWUӑQJEiQKjQJFӫDFiFQKyPKjQJ 21
Hunh 3.5%LӇXÿӗWKӇKLӋQSKkQEӕVӕOѭӧQJEiQKjQJWKHRWKӡLJLDQ 21
Hunh 3.6%LӇXÿӗ[ѭѫQJFiSKkQWtFKQJX\rQQKkQYҩQÿӅ 23
Hunh 4.1*LDRGLӋQJJFRODE 27
Hunh 4.2/ѭXÿӗVӱGөQJWKXұWWRiQWURQJÿӅWjL 28
Hunh 4.3%LӇXÿӗSKkQEӕVӕOѭӧQJEiQKjQJWKHRWKӡLJLDQFӫD76&= 30
Hunh 4.4%LӇXÿӗ%R[SORW[iFÿӏQKRXWOLQHU 31
Hunh 4.5%LӇXÿӗ$&)3$&)FӫDGӳOLӋX76&= 32
Hunh 4.6%LӇXÿӗ$&)3$&)FӫDGӳOLӋXVDXNKLGӯQJ 34
Hunh 4.7%LӇXÿӗSKkQUmFKXӛLWKӡLJLDQFӫDGӳOLӋX 35
Hunh 4.84X\WuQKNKҧRViWFiFP{KuQKGӵEiRWURQJÿӅWjL 36
Hunh 4.9%LӅXÿӗP{KuQKGӵEiR$XWR$ULPD 39
Hunh 4.11%LӇXÿӗWKӇKLӋQVDLVӕFӫDWRjQEӝGӳOLӋXEDQÿҫX 39
Hunh 4.170{KuQKGӵEiR:LQWHU 42
Hunh 4.18%LӅXÿӗWKӇKLӋQVDLVӕP{KuQK6DULPD (12)
HuQK%LӇXÿӗWKӇKLӋQVDLVӕP{KuQK6DULPD 43
Hunh 4.20%LӇXÿӗWKӇKLӋQVDLVӕP{KuQK:LQWHUVRYӟLGӳOLӋXEDQÿҫX 43
Hunh 4.21%LӇXÿӗWKӇKLӋQ)$)%FӫD6DULPDYj:LQWHU 44
Hunh 4.22%LӇXÿӗ$&)3$&)FӫDGӳOLӋXFyWtQKGӯQJ76(= 46
Trang 12DANH SÁCH VIӂT TҲT ± THUҰT NGӲ
5 ARMA Autoregressive - Moving average 0{ KuQK Wӵ KӗL TX\ - trung bình
ÿӝQJ
6 ARIMA Autoregressive Intergrated
Moving Average
0{KuQKWӵKӗLTX\NӃWKӧSWUXQJEuQKÿӝQJ
7 SARIMA Seasonal Autoregressive
Integrated Moving Average
Seasonal Autoregressive Integrated Moving Average
8 MAE Mean Absolute Error 6DLVӕWX\ӋWÿӕLWUXQJEuQK
9 MSE Mean Squared Error 6DLVӕEuQKSKѭѫQJWUXQJEuQK
10 MAPE Mean Absolute Percent Error 6DLVӕWѭѫQJÿӕLWUXQJEuQK
11 RMSE Root Mean Squared Error &ăQFӫDVDLVӕEuQKSKѭѫQJWUXQJ
bình
12 RSS Residual Sum of Squares 7әQJEuQKSKѭѫQJSKҫQGѭ
13 AIC Akaike Information Criterion 7LrXFKXҭQWK{QJWLQ$NDLNH
14 BIC Bayers Information Criterion 7LrXFKXҭQWK{QJWLQ%D\HUV
15 SKU Stock Keeping Unit ĈѫQYӏSKkQORҥLKjQJKRi
16 PNJ Phu Nhuan Jewelry Joint Stock
Company
&{QJW\FәSKҫQ9jQJEҥFĈiTXê3K~1KXұQ
17 KPI Key Performance Indicator ChӍ VӕÿiQKJLiKLӋXTXҧF{QJYLӋF
19 SQL Structured Query Language 1J{QQJӳWUX\YҩQFyFҩXWU~F
20 ACF Auto-correlation function %LӇXÿӗWӵWѭѫQJTXDQ
21 PACF Partial autocorrelation function %LӇXÿӗWӵWѭѫQJTXDQULrQJSKҫQ
Trang 13&+ѬѪ1* 1: GIӞI THIӊU Ĉӄ TÀI
7URQJQӅQNLQKWӃSKiWWULӇQQKDQKYjFyQKLӅXP{KuQKNLQKGRDQKP{KuQKFiFFӱDKjQJEiQOҿÿDQJSKiWWULӇQQKDQKFKyQJWURQJUҩWQKLӅXOƭQKYӵF&yWKӇNӇ ÿӃQFiFFKXӛLFӱDKjQJ VLrXWKӏFӫD7KӃJLӟL'LÿӝQJ9LQPDUW« &iFFKXӛLFӱDKjQJEiQOҿWURQJOƭQKYӵFWKӡLWUDQJQKѭ+ 0&DUWLHU=DUD« [1] 9LӋW1DPÿmÿҥWÿѭӧFWӕFÿӝWăQJWUѭӣQJFDRWURQJOƭQKYӵFEiQ OҿQKӳQJQăPJҫQÿk\GRTX\P{GkQVӕOӟQYӟLKѫQWULӋXQJѭӡLWKHRVӕOLӋXPӟLQKҩWQăP FѫFҩXGkQVӕWUҿGkQVӕӣÿӝWXәL-50 ) [2] 7UrQWKӵFWӃFXӝFFiFKPҥQJF{QJQJKLӋSWURQJOƭQKYӵFEiQOҿÿDQJkPWKҫPGLӉQUDYjWҥRQKLӅXFѫKӝLSKiWWULӇQFKR9LӋW1DPYӟLQKӳQJWKD\ÿәLÿӝWSKiWӯQKӳQJWLrXFKXҭQGӏFKYөÿDGҥQJKLӋXTXҧYjQKDQKFKyQJGӵDWUrQQӅQWҧQJF{QJQJKӋVӕ [3]
ĈӇWKtFKQJKLYjSKiWWULӇQWURQJPӝWWKӏWUѭӡQJWKD\ÿәLQKDQKFKyQJYLӋFQҳPEҳWYjGӵEiRQKXFҫXÿӇWӗQWҥLOjPӝWYҩQÿӅUҩWÿѭӧFTXDQWkP1ӃXGӵEiRFKtQK[iFQKXFҫXFӫDNKiFKKjQJF{QJW\FyWKӇFKXҭQEӏÿѭӧFWLӅPOӵFYjSKkQEәNKҧQăQJÿӇYѭѫQOrQQҳPEҳW[XKѭӟQJYjGүQÿҫXWKӏWUѭӡQJ 9uWKӃYLӋFQJKLrQFӭXYjFҧLWKLӋQFiFP{KuQKGӵEiRYjÿiQKJLiNӃWTXҧFӫDFK~QJÿDQJUҩWÿѭӧFTXDQWkP [4]
.KRҧQJJҫQWKӏSKҫQWKӏWUѭӡQJWUDQJVӭFYjQJKLӋQYүQQҵPӣSKkQNK~FFӫDFiFFӱDWLӋPYjQJWUX\ӅQWKӕQJWX\QKLrQWKӏSKҫQFӫDFiFGRDQKQJKLӋSWUDQJVӭFOӟQ± kinh GRDQKGzQJKjQJFDRFҩSÿDQJWăQJOrQQKDQKTXDPӛLQăPKLӋQÿmӣPӭFKѫQ Vì Yұ\ GRDQKQJKLӋSFҫQFyNӃKRҥFKVҧQ[XҩWYjPXDKjQJÿ~QJÿӫNӏSWKӡLÿiSӭQJQKXFҫXNKiFKKjQJ
HànJWӗQNKRKjQJEiQFKұPӣFiFFӱDKjQJEiQOҿYjӣNKRGӵWUӳӣWUXQJWkPFKLӃPKѫQWәQJVӕOѭӧQJKjQJKRi+jQJKRiFyJLiWUӏOӟQOjPWӗQYӕQҧQKKѭӟQJ[ҩXÿӃQWuQKKuQKWjLFKtQKĈӝFKtQK[iFFӫDGӵEiRWURQJWKiQJWKiQJWKiQJQăP FKӍFKLӃPKѫQ- NK{QJÿiSӭQJQKXFҫXFӫDFӫDNKiFKKjQJYj.3,FӫDEӝSKұQ)RUHFDVWDFFXUDQF\GӵEiRSKҧLWUrQ
1.1 ĈӕLWѭӧng nghiên cӭu
ĈӅWjLVӁWKӵFKLӋQSKkQWtFKYjNKҧRViWFiFP{KuQKGӵEiRVӕOѭӧQJEiQKjQJFӫDPӝWF{QJW\EiQOҿWUDQJVӭF, cҧL WKLӋQÿӝFKtQK[iFFӫDNӃKRҥFKÿһWKjQJEҵQJSKѭѫQJSKiS
Trang 14GӵEiR1JKLrQFӭXFiFYҩQÿӅOӵDFKӑQSKѭѫQJSKiSGӵEiRSKKӧSFKRF{QJW\EiQOҿWUDQJVӭFFyKѫQFӱDKjQJWUrQWRjQTXӕFYӟLUҩWQKLӅX\ӃXWӕҧQKKѭӣQJ
1.2 Mөc tiêu luұQYăQ
0өFWLrXFӫDÿӅWjLQJKLrQFӭXQj\Oj
- Chuҭn hoá quy trình các thao tác thӵc hiӋn dӵ báo
- Phát triӇn mô hình dӵ báo phù hӧp cho công ty bҧn lҿ trang sӭc vӟLKѫQFӱa hàng trên toàn quӕFÿӇ giҧm thiӇu forecast error
- Thao tác thӵc hiӋn giӳa các nhân viên chênh lӋch không quá 10%
- Forecast accurancy ܨܣ ͺͷΨ
- Forecast bias ܨܤ ʹͲΨ
1.3 Phҥm vi và giӟi hҥn
- Phҥm vi thӡi gian: 6 tháng thӵc hiӋn
- Phҥm vi không gian: thӵc hiӋQÿӅ tài tҥi phòng cung ӭng cӫa mӝt công ty bán lҿ trang sӭc vӟLTX\P{KѫQFӱa hàng bán lҿ trên toàn quӕc
- Phҥm vi sӕ liӋu: thu thұp sӕ liӋXWURQJQăP
- Thӵc hiӋn sӕ liӋu dӵ báo cho 1 tháng vӟi lead time dӵ báo là 2 tháng
- ĈiQKJLiÿӝ chính xác cӫa sӕ liӋu dӵ báo tháng hiӋn tҥi
- Bӣi vì tính bҧo mұt cӫa công ty, mӝt sӕ thông sӕ kӻ thuұt không thӇ chia sҿ
- Mӝt sӕ hình ҧnh vӅ máy móc công cөÿLӅu khoҧn bҧo mұt cӫa công ty sӁ ÿѭӧc miêu
Trình bày các lê thuyӃWÿѭӧc nghiên cӭu, sӱ dөQJYjSKѭѫQJSKiSWKӵc hiӋn nghiên cӭu
- &KѭѫQJĈӕLWѭӧng nghiên cӭu
Trang 15Giӟi thiӋXVѫOѭӧc vӅ ÿӕLWѭӧQJÿѭӧc nghiên cӭu; hoҥWÿӝng vұn hành, hiӋn trҥng và vҩn
ÿӅ cҫQÿѭӧc giҧi quyӃt cӫDÿӕLWѭӧng 6DXNKL[iFÿӏQKÿѭӧc vҩQÿӅÿӅ tài sӁ ÿLVkXYjRviӋc phân tích và tìm hiӇu QJX\rQQKkQFNJQJQKѭÿӅ xuҩWSKѭѫQJiQNKҳc phөc, giҧi quyӃt cho vҩQÿӅ
- &KѭѫQJThiӃt kӃ và xây dӵng quy trình
Lӵa chӑn mô hình giҧi pháp cho vҩQÿӅ ÿѭӧFÿӅ ra, thiӃt kӃ chi tiӃt và xây dӵng mô hình
áp dөng cho bài toán thӵc tiӉn
- &KѭѫQJ5: KӃt luұn và kiӃn nghӏ
Áp dөng mô hình vào mӝt sӕ bài toán cө thӇ YjÿiQKJLiVӵ vұn hành, hiӋu quҧ cӫa mô hình dӵDWUrQWLrXFKtÿӅ ra Ghi nhұn lҥi nhӳQJJuPjP{KuQKÿҥWÿѭӧc, sӵ thiӃu sót, bàn luұQYjÿӇ xuҩt nhӳng cҧi tiӃQWURQJWѭѫQJODL
&+ѬѪ1* &Ѫ SӢ LÝ THUYӂ73+ѬѪ1*3+È3/8ҰN
2.1 &ѫVӣ lý thuyӃt
2.1.1 ĈӏQKQJKƭD
'ӵEiROjPӝWNKRDKӑFYjQJKӋWKXұWWLrQÿRiQQKӳQJVӵYLӋFVӁ[ҧ\UDWURQJWѭѫQJODLWUrQFѫVӣSKkQWtFKNKRDKӑFYӅFiFGӳOLӋXÿmWKXWKұSÿѭӧF.KLWLӃQKjQKGӵEiRQJѭӡLWDWKѭӡQJFăQFӭYjRGӳOLӋXTXiNKӭYjKLӋQWҥLÿӇ[iFÿӏQK[XKѭӟQJYұQÿӝQJFӫDFiFKLӋQWѭӧQJWURQJWѭѫQJODLQKӡYjRPӝWVӕP{KuQKWRiQKӑF1JRjLUDQJѭӡLWDFzQGӵDWUrQNLQKQJKLӋPKRһFWUӵFJLiFYӅWѭѫQJODLÿӇWLӃQKjQKGӵEiRKRһFÿLӅXFKӍQKNӃWTXҧGӵEiRWӯP{KuQKWRiQ7KHRQKұQÿӏQKFӫD+DQNHYj:LFKHUQ WKuYDLWUzFӫDGӵEiRQJj\FjQJWăQJ YjKҫXKӃFiFOƭQKYӵFFӫDÿӡLVӕQJÿӅXVӱGөQJNӻWKXұWGӵEiR [5]
2.1.2 Phân loҥi
'ӵDWUrQWLrXFKtWKӡLJLDQQJѭӡLWDFKLDGӵEiRWKjQKEDORҥL
'jLK̩Q7KӡLJLDQGӵEiRWӯQăPWUӣOrQWKѭӡQJGùQJÿӇGӵEiRQKӳQJPөFtiêu,
FKLӃQOѭӧFYӅNLQKWӃFKtQKWUӏNKRDKӑFNӻWKXұWWURQJWKӡLJLDQGjLӣWҫPYƭP{7URQJNKXYӵFVҧQ[XҩWQJѭӡLWDVӱGөQJGӵEiRGjLKҥQÿӇTX\ӃWÿӏQK[k\GӵQJQKjPi\SKiWWULӇQVҧQSKҭP
7UXQJK̩Q7KӡLJLDQGӵEiRWӯWKiQJÿӃQQăPSKөFYө FKRYLӋF[k\GӵQJNӃ
Trang 16KRҥFKWUXQJKҥQYӅNLQKWӃ[mKӝLNӃKRҥFKWKӏWUѭӡQJNӃKRҥFKVҧQ[XҩW
1J̷QK̩Q7KӡLJLDQGӵEiRWӕLÿDQăPWKѭӡQJQKӓKѫQWKiQJVӱGөQJNӃWTXҧ
GӵEiRÿӇOұSFiFNӃKRҥFKNLQKWӃYăQKyD[mKӝLSKөFYөFKRF{QJWiFFKӍÿҥRNӏSWKӡLѭӟFOѭӧQJYLӋFWLӃQWULӇQFiFFKӍWLrXӢNKXYӵFVҧQ[XҩWVӱGөQJNӃWTXҧQJҳQKҥQÿӇGӵWUNLQKSKtÿһWKjQJÿLӅXÿӝ'ӵEiRQJҳQKҥQWKѭӡQJFKRNӃWTXҧFKtQK[iFKѫQGӵEiRGjL KҥQ
'ӵDWUrQWLrXFKtSKѭѫQJSKiSWLӃQKjQKGӵEiRQJѭӡL WDFKLDGӵEiRWKjQKKDLORҥL QKѭ sau:
Hunh 2.13KkQOR̩LFiFSK˱˯QJSKiSGEiR [5]
7URQJQJKLrQFӭXQj\WDVӱGөQJSKѭѫQJSKiSGӵEiRÿӏQKOѭӧQJÿӇQJKLrQFӭXXây GӵQJFiFP{KuQKGӵEiRGӵDYjRGӳOLӋXEiQKjQJOӏFKVӱ;k\GӵQJPӝWTX\WUuQKSKKӧSÿӇNKҧRViWYjOӵDFKӑQÿѭӧFP{KuQKGӵEiRQjRFyKLӋXTXҧQKҩWWҥLWKӡLÿLӇPGӵbáo
2.1.3 Mô hình tӵ hӗi quy (Autoregressive model -AR)
0{KuQKWӵKӗLTX\WәQJTXiWEұFS$5S