LÍ DO CHỌN ĐỀ TÀI Trong chương trình vật lí phổ thông, giao thoa sóng ánh sáng chiếm một vị trí quan trọng trong các đề thi đại học và các đề thi học sinh giỏi, giao thoa sóng ánh sáng v
Trang 1PHẦN I PHẦN MỞ ĐẦU
I LÍ DO CHỌN ĐỀ TÀI
Trong chương trình vật lí phổ thông, giao thoa sóng ánh sáng chiếm một vị trí quan trọng trong các đề thi đại học và các đề thi học sinh giỏi, giao thoa sóng ánh sáng với nêm không khí và vân tròn Newton là một phần trong mảng kiến thức đó Thời gian phục vụ giảng dạy phần giao thoa sóng ánh sáng với nêm không khí và vân tròn Newton không nhiều cho nên khó có thể giúp học sinh hiểu đầy đủ và chọn vẹn được phần kiến thức này Chính vì lí do đó tôi viết chuyên đề này nhằm mục đích làm tư liệu giảng dạy cũng như để giúp các em học sinh giỏi có tài liệu để tham khảo
Chuyên đề này được viết có hệ thống, logic, các bài tập phong phú, đa dạng, có thể phục vụ cho học sinh giỏi chuẩn bị cho kì thi chọn vào đội tuyển và các thí sinh trong đội tuyển quốc gia
II ĐỐI TƯỢNG NGHIÊN CỨU
Hệ thống lí thuyết và bài tập giao thoa sóng ánh sáng với nêm không khí
và vân tròn Newton
III MỤC ĐÍCH VÀ NỘI DUNG NGHIÊN CỨU
- Khái quát hóa một số kiến thức cơ bản phần giao thoa sóng ánh sáng với vân tròn Newton
- Xây dựng được các dạng bài tập theo một hệ thống nhất định phục vụ cho việc giảng dạy lớp chuyên và đội tuyển
IV PHƯƠNG PHÁP NGHIÊN CỨU
1 Phương pháp nghiên cứu lí thuyết
- Phân tích và tổng hợp lí thuyết
- Xây dựng hệ thống bài tập chọn lọc nhằm đáp ứng được yêu cầu đã đề ra
2 Phương pháp nghiên cứu thực tiễn
- Sử dụng trực tiếp cho các lớp 11 chuyên lí, cho đội dự tuyển, đội tuyển HSG Quốc gia và dần đi tới hoàn thiện đề tài
Trang 2PHẦN II NỘI DUNG NGHIÊN CỨU Chương I
CƠ SỞ LÍ THUYẾT VỀ GIAO THOA SÓNG ÁNH SÁNG
I Sóng ánh sáng
I.1 Phương trình sóng ánh sáng
Thực tế chứng tổ các hiện tượng quang học xảy ra do tác dụng của véc tơ cường độ điện trường E trong số hai véc tơ E, H Véc tơ E còn gọi là dao động sáng
Sóng ánh sáng phát ra từ nguồn S biểu diễn bởi phương trình:
Trang 3Pha của sóng ánh sáng truyền qua mặt phân
giới không bị thay đổi
Sóng phản xạ:
+ Nếu n1 > n2: Sóng phản xạ cùng pha với sóng tới
+ Nếu n1 < n2: Sóng phản xạ ngược pha với sóng
tới (quang trình tăng thêm / 2)
I.4 Tổng hợp hai dao động sóng
Hai nguồn sóng S1 và S2 có phương trình:
E =E sin( t + )
E =E sin( t + )Sóng tổng hợp tại M:
Cường độ sáng tại M: I= + +I1 I2 2 I I cos(1 2 1− 2)
Thực tế các máy thu ánh sáng chỉ ghi nhận được giá trị trung bình của cường độ sáng trong thời gian quan sát nên
Hình 1
Trang 4b) Nếu ( 1− 2) thay đổi theo thời gian
cos( 1− 2)= = +0 I I1 I2
Khi đó mọi điểm trong không gian có cường độ sóng như nhau nên không gây ra hiện tượng giao thoa sóng ánh sáng
II Sự giao thoa ánh sáng trên nêm và vân tròn Newton
Nhìn vào bề mặt của các váng dầu, mỡ, bong bóng xà phòng, ta nhìn thấy
có những quầng màu rực rỡ Đó là những vân giao thoa trên các bản mỏng Các vân này chỉ xuất hiện trên các bản mỏng Đó là vân định xứ
II.1 Nêm
Ta hãy giải thích sự giao thoa ánh sáng trên các váng dầu
Một vùng nhỏ của váng dầu coi như một lớp mỏng có chiết suất n và có hai mặt phẳng làm với nhau một góc rất nhỏ, tạo thành một cái nêm bằng dầu Nguồn sáng là một nguồn sáng trắng rất rộng và nằm xa điểm mà ta quan sát trên váng dầu Mắt người quan sát cũng ở xa điểm đó (hình 3a)
Một tia sáng đơn sắc ( ) phát ra từ một đểm sáng S ở nguồn, chiếu đến mặt nêm (tia số 1) Tia này khúc xạ, truyền vào trong nêm, phản xạ ở mặt dưới của nêm, trở lại mặt trên tại điểm C, rồi đi ra ngoài không khí Góc ló bằng góc tới
Một tia sáng đơn sắc thứ hai () phát ra từ S (tia số 2) chiếu đến mặt nêm tại C, gặp tia số 1 tại đó và giao thoa với nhau (vì đó là hai tia kết hợp) Tín hiệu
về trạng thái giao thoa sẽ được truyền đến mắt theo một chùm tia rất hẹp 1, 2 Thực tế, chỉ có một cặp tia 1, 2 đi từ nguồn, phản xạ trên mặt nêm tại C rồi đi vào mắt theo phương nói trên
Trang 5Một vùng rất nhỏ của váng dầu quanh điểm C coi như một bản mặt song song có bề dày d Các tia tới 1 và 2 coi như song song với nhau, với góc tới là i Hai tia đi vào mắt coi như trùng nhau (hình 3b)
Hiệu quang trình giữa hai tia là:
Đặc biệt, nếu nêm có dạng hai mặt phẳng
giao nhau (hình 4), thì cực đại giao thoa có dạng
những dải sáng màu nằm song song với cạnh
nêm Cực tiểu giao thoa có dạng những vạch tối
nằm song song với cạnh nêm và cách nhau đều
đặn Ngay tại cạnh nêm là một vân tối
Nếu quan sát theo phương vuông góc với cạnh nêm, thì khoảng vân tối
Hình 4
l
Trang 6II.2 Vân tròn Niu-tơn
Thiết bị tạo vân tròn Niu-tơn gồm một
thấu kính hội tụ, một mặt phẳng, một mặt cầu,
đặt trên một tấm thủy tinh phẳng (hình 5)
Mặt cầu của thấu kính tiếp xúc với tấm thủy
tinh Lớp không khí nằm xen giữa thấu kính
và tấm thủy tinh tạo ra một bản mỏng không
khí
Xét trường hợp một chùm sáng song
song, đơn sắc, chiếu vuông góc vào mặt
phẳng của thấu kính
Hiệu quang trình giữa tia sáng phản xạ ở mặt trên và tia sáng phản xạ ở
mặt dưới của lớp không khí, tại điểm có bề dày d là: 2d
Trang 7Chương II
HỆ THỐNG BÀI TẬP
Bài 1: Một chùm sáng song song có bước sóng = 0,6mm, chiếu vuông góc
với mặt nêm không khí Tìm góc nghiêng của nêm Cho biết độ rộng của 10 khoảng vân kế tiếp là b = 10mm
Độ dày của nêm không khí tại vị trí
vân tối thứ k +10: dk+10 = (k 10)
2
+
Bài 2: Một chùm ánh sáng đơn sắc, song song có bước sóng = 0,5mm
chiếu vuông góc với một mặt nêm của không khí Quan sát trong anh sáng phản
xạ, người ta đo được độ rộng của mỗi vân giao thoa bằng i = 0,5mm
a) Xác định góc nghiêng của nêm
b) Chiếu đồng thời vào mặt nêm không khí hai chùm tia sáng đơn sắc có bước sóng lần lượt là 1 = 0,5mm, 2 = 0,6mm Tìm vị trí tại đó các vân tối cho bởi hai chùm sáng trên trùng nhau Coi cạnh của bản mỏng không khí là vân tối bậc không
Trang 8Độ rộng của một vân giao thoa: i = dk 1 dk
có góc nghiêng rất nhỏ nên: sin = k ki
mặt của một nêm không khí và quan sát ánh sáng phản xạ trên mặt nêm, người
ta thấy bề rộng của mỗi vân bằng 0,05cm
1 Tìm góc nghiêng giữa hai mặt nêm
2 Nếu chiếu đồng thời hai chùm tia sáng đơn sắc (bước sóng lần lượt bằng
=
;
2 2
i 2
Trang 9+ Các vân tối của hai hệ thống vân trùng nhau khi:
2 2
k 2
- Một ống hình trụ rỗng (B) bằng thuỷ tinh, có
chiều dài L' = 11 cm và có đường kính lớn hơn đường
kính của ống hợp kim Hai đáy cũng được mài phẳng,
vuông góc với trục của ống Ống thuỷ tinh lồng bên
ngoài ống hợp kim Hai ống đặt trên một giá nằm
ngang
- Hai tấm thuỷ tinh mỏng, phẳng, hai mặt song
song với nhau Một tấm có chiều dài bằng đường kính
của ống thuỷ tinh và được đặt trên mặt ống này
Tấm kia có chiều dài bằng đường kính của ống hợp kim và được đặt trên mặt ống này Người ta kê một mẩu giấy nhỏ ở một đầu tấm thuỷ tinh này làm cho nó hơi nghiêng đi chút ít
Chiếu một chùm sáng song song, đơn sắc, có bước sóng = 0,6 m vuông góc vào mặt tấm thuỷ tinh trên, khi đó xuất hiện một hệ thống vân giao thoa
Trang 10Tăng dần nhiệt độ của hệ thống, ta thấy hệ thống vân sẽ dịch chuyển, nhưng khoảng vân không đổi Khi nhiệt độ tăng t thì hệ vân dịch chuyển được N khoảng vân
a) Giải thích hiện tượng trên Cho biết chiều dịch chuyển của hệ vân?
b) Thiết lập công thức tính hệ số nở dài của hợp kim
c) Áp dụng bằng số: t = 10 K; N = 5 khoảng vân; hệ số nở dài của thuỷ tinh 8,5.10-6K-1 Tính hệ số nở dài của hợp kim
Giải:
a) Lớp không khí nằm giữa hai tấm thuỷ tinh tạo
thành một cái nêm Các tia sáng phản xạ trên mặt
trên và mặt dưới của nêm không khí, gặp nhau ở mặt
trên của nêm, giao thoa với nhau và cho hệ thống vân
thẳng song song với cạnh nêm (Hình 8) Cạnh nêm là
giao tuyến của mặt trên và mặt dưới của nêm
Khi nhiệt độ tăng, các hình trụ rỗng đỡ hai tấm thuỷ tinh đều dãn nở Tuy nhiên, vì hợp kim dãn nở nhiều hơn thuỷ tinh, nên bề dày của nêm sẽ giảm đi, trong khi góc giữa hai mặt nêm vẫn không thay đổi Do đó, hệ vân sẽ dịch chuyển theo hướng ra xa cạnh nêm, nhưng khoảng vân không thay đổi
b) Hiệu quang trình giữa hai tia phản xạ ở mặt dưới và mặt trên của nêm tại
điểm M của nêm là: = 2d +
2
(d là bề dày của nêm tại M) Chú ý rằng chỉ có tia phản xạ ở mặt dưới của nêm bị “mất nửa sóng” Giả
sử tại M có một vân tối Hiệu quang trình tại M sẽ là :
d
M
Hình 8
Trang 11Gọi L0, L1 và L2 là độ dài của ống hợp kim ở 0oC, t1oC và t2oC, ta có:
với L là độ tăng chiều dài của ống hợp kim và t là độ tăng nhiệt độ; là hệ số
nở dài của hợp kim mà ta phải đo; L1 = 10cm
Tương tự, đối với ống thuỷ tinh, ta có:
' ' '
1
L =L với t ' 6 1 '
18,5.10 K ;L 11cm
1 1
L 2L t
+
với t = 10 K và N = 5, ta được: = 10,85.10-6K-1
Bài 5: Các vân giao thoa có độ dày
bằng nhau được quan sát trên bề mặt
của nêm không khí giữa hai bản thủy
tinh với góc ở đỉnh = 1’ Vạch thu
được trong ánh sáng của vạch màu lục
của thủy ngân có bước song = 546,1
nm và chiều rộng = 0,01 nm Xác
định:
a) khoảng cách l giữa hai dải sáng liền kề
b) Số lượng N vân tối đa có thể nhìn thấy nếu kích thước của nêm không giới hạn
O
Hình 9
Trang 12c) Khoảng cách x từ đỉnh của nêm đến vân cuối cùng và độ dày h của nêm tại điểm này
d) Góc mở cực đại có thể chấp nhận được max của chùm tia mà ở đó có thể quan sát được tất cả các dải
Giải:
Chúng ta sẽ giả định rằng việc quan sát các sọc trên bề mặt của hình nêm được thực hiện khi nó được chiếu sáng bởi một chùm ánh sáng song song vuông góc với bề mặt:
a) Vì góc giữa chùm giao thoa 1 và 2 là 2 =
Dễ tính được khoảng cách giữa hai vân của hệ vân giao thoa trên mặt nêm
c) Dải sáng cuối cùng trong số các dải quan sát được ở cách đỉnh của nêm ở
khoảng cách tối đa:
max
х m= l 51.3 m,
Và độ dày của cái nêm tại vị trí này là:
2 max
Trang 13Bài 6: Phía trên một vật hình lập phương bằng thủy tinh gọt nhẵn, cạnh
2cm, người ta đặt một bản mỏng mài nhẵn song song với mặt trên của hình lập phương sao cho giữa chúng tạo nên một lớp không khí mỏng giao thoa
Nếu chiếu từ trên xuống theo phương vuông góc bản mỏng một bức xạ 0,4µm ≤ ≤ 1,15µm là những bước sóng mà bản mỏng cho truyền qua, thì điều kiện các cực đại của cường độ ánh sáng chỉ đạt được đối với hai bước sóng nằm trong khoảng đó, cụ thể đối với = 0,4μm và một bước sóng khác nữa Hãy xác định giá trị của bước sóng đó Hãy tính xem cần phải tăng nhiệt độ của hình lập phương lên bao nhiêu độ để nó áp sát vào bản mỏng Biết αtt = 8,6.10-6K-1 Chiết suất không khí n = 1 Coi khoảng cách từ đáy hình lập phương tới bản mỏng coi như không đổi
Với d là chiều dày lớp không khí, n là chiết suất không khí, k là bậc giao thoa
Gọi ’; p là bước sóng 1,15 µm và 0,4 µm (p là số nguyên chưa biết biểu diễn bậc giao thoa)
p phải thỏa mãn điều kiện: 4dn=(2p 1)− p (2)
Từ (1) d không đổi, tăng dần theo sự giảm dần theo sự giảm dần của k
và ngược lại Theo đầu bài:
Trang 14Thay vào (2) ta được:
p p
0d
Bài 7: Cho một nêm quang học làm
bằng chất trong suốt, đồng tính và có tiết
diện thẳng là tam giác vuông KPQ (Hình
11) Hai mặt phẳng KP và QP hợp với nhau
góc rất nhỏ Biết chiết suất của nêm đối
với ánh sáng đơn sắc có bước sóng
0,6 m
= là n= 3
Hình 11
Trang 151 Bức xạ đơn sắc trên được phát ra từ nguồn sáng điểm S đặt cách mặt phẳng PK của nêm một khoảng H Xét chùm sáng hẹp đi từ nguồn S tới mặt nghiêng của nêm tại vị trí D với góc tới 0
60
= , bề dày của nêm là e Chùm sáng sau khi qua nêm tới vuông góc với màn M tại điểm O Biết O cũng cách mặt phẳng PK của nêm một đoạn H Tìm bề dày e nhỏ nhất để tại điểm O ta thu được vân sáng
2 Chiếu chùm sáng đơn sắc bước sóng trên vào mặt nêm QP theo phương gần như vuông góc với QP Quan sát hệ vân giao thoa trên mặt nêm người ta thấy khoảng cách giữa hai vân sáng liên tiếp là i = 0,10 mm Xác định góc nghiêng của nêm
* Giả sử độ dày của nêm tại điểm đang xét là e1 tương
ứng với vân sáng bậc k, khi đó:
M
N
e 2
α
E
e 1
Trang 16II.2 Bài tập vân tròn Niu tơn
Bài 1: Chỏm của một thấu kính phẳng – lồi được mài thành một đường tròn
bán kính R0 = 3mm rồi đặt lên một tấm kính phẳng Chiếu sáng bằng một chùm sáng có bước sóng λ = 0,656μm theo phương vuông góc với mặt phẳng của thấu kính Người ta quan sát được một hệ vân giao thoa Tính bán kính vân giao thoa: vân tối thứ 10 và vân sáng thứ 6 biết bán kính mặt lồi của thấu kính là R = 1,5m
Trang 17suy ra: r =
Bán kính của vân sáng thứ sáu: r6 = 3,8mm
Bài 2: Hai thấu kính mỏng giống nhau, một
mặt phẳng một mặt lồi, được đặt tiếp xúc với nhau
ở các mặt cầu của chúng (Hình 12) Xác định độ
tụ của thấu kính trên, biết rằng nếu quan sát vân
phản chiếu với ánh sáng có bước sóng
0,6 m
= thì đường kính của vân tròn sáng
Newton thứ 5 bằng k =1,5mm Cho biết chiết
suất của thủy tinh là n=1,5
Giải:
Coi hệ thống như một nêm không khí Hiệu
quang lộ của các tia phản xạ tại điểm giao thoa
Trang 18Bài 3: Một chùm sáng đơn sắc song song chiếu vuông góc với mặt phẳng
của bản mỏng không khí nằm giữa bản thuỷ tinh phẳng đặt tiếp xúc với mặt cong của thấu kính phẳng, lồi Bán kính mặt lồi thấu kính là R = 6,4m Quan sát
hệ vân tròn Niutơn trong chùm sáng phản xạ người ta đo được bán kính của hai vân tối kế tiếp lần lượt là 4mm và 4,38mm Xác định bước sóng của chùm sáng chiếu tới và số thứ tự của các vân nói trên
Giải:
Bán kính của vân tối kế tiếp thứ k và k + 1 trong hệ vân tròn Niutơn được xác định bởi công thức:
rk = kR và rk+1 = (k 1)R+ Bước sóng chùm sáng chiếu tới
Số thứ tự của vân tối kế tiếp là 6
mỏng, hai mặt lõm, cùng bán kính R2 Cả hai cùng bằng thuỷ tinh chiết suất n, được đặt đồng trục và tiếp xúc với nhau Chiếu sáng hệ bằng một chùm sáng đơn sắc rộng, bước sóng và quan sát ánh sáng phản xạ theo phương trục chính, người ta quan sát được một hệ vân Niu-tơn Vân sáng thứ 6 và vân sáng thứ 16 tính từ trong ra có bán kính lần lượt là ρ1, ρ2 Một vật phẳng AB đặt trước hệ, cách hệ một khoảng d Xác định vị trí, bản chất số phóng đại của ảnh A’B’ của
vật qua hệ Cho biết: = 456 nm; ρ1 = 1,855 mm, ρ2 = 3,161 mm, n = 1,5;
d = 0,8 m
Giải:
Giữa đỉnh hai thấu kính có một lớp không khí mỏng độ dày e Ở cách tâm r
bề dày lớp khí là d Vì tại đó có vân tối:
Trang 19Bài 5: Một thiết bị vân tròn Niu-tơn gồm một thấu kính phẳng - lồi mà mặt
cầu được đặt tiếp xúc với một tấm kính phẳng Chiếu một chùm sáng song song, đơn sắc, = 0,50 m, vuông góc với mặt phẳng của thấu kính Vì có một vết bẩn nhỏ nằm ở đỉnh thấu kính, nên thấu kính không thật sự tiếp xúc với tấm kính phẳng Vân tối thứ nhất có bán kính 1,5mm và vân tối thứ 21 có bán kính 2,5mm Xác định bán kính R của mặt cầu thấu kính Có cách nào xác định được
bề dày của vết bẩn dựa vào thí nghiệm vân tròn Niu-tơn?
Giải:
Gọi h là bề dày của vết bẩn, dk là
khoảng cách từ đỉnh thấu kính đến vân tối