Các bài toán và mô hình hay xuất hiện trong các kì thi lớn như HSG TP, HSG QG và các đề thi OLYMPIC QUỐC TẾ
Trang 1TRƯỜNG THPT CHUYÊN LÊ HỒNG PHONG
THÀNH PHỐ HỒ CHÍ MINH
CHUYÊN ĐỀ TOÁN CHUYÊN HỌC KỲ I
Họ và tên: Lớp:
LƯU HÀNH NỘI BỘ
Trang 2Tiết 1,2: Hàng điểm điều hòa
Sau khái niệm vectơ, chúng ta biết điều kiện để hai vectơ cùng phương Từ đó khái niệm trục số, độ dài đại số được thiết lập và khi xét mối quan hệ giữa các điểm, chúng
ta biết đến tỉ số đơn, tỷ số kép (của hàng điểm hay chùm đường thẳng) Từ đó khái niệm hàng điểm điều hòa được thiết lập và mở ra cho hình học phẳng một hướng rộng lớn trong việc chứng minh và sáng tạo các bài toán hình học Qua một số tiết dưới đây hi vọng phần nào các em nắm được thế mạnh của phương pháp này trong việc giải quyết các bài toán hình học phẳng từ đo có cái nhìn sâu sắc hơn về hình học phẳng
Trang 33 Hàng điểm điều hòa
♥ Định nghĩa: Nếu ABCD 1 thì hàng điểm A B C D, , , được gọi là hàng điểm
CB DB
Khi đó ta nói: cặp điểm A B, và cặp điểm C D, là hai cặp điểm liên hợp điều hòa
Lưu ý: Nếu ABCD 1 thì
CDAB BADC DCBA BACD ABDC 1
♥ Biểu thức tọa độ đối với hàng điểm điều hòa
Hệ thức 1: Nếu A a B b C c D d thì ( ), ( ), ( ), ( )
ABCD 1 2abcd ab c d
Chứng minh
Chọn một điểm O bất kỳ trên trục là gốc
Trang 5♥ Những hàng điểm điều hòa cơ bản
♥ Định lí 1 Nếu AD AE, theo thứ tự là phân giác trong và phân giác ngoài của tam giác ABC thì
Trang 7Để chứng minh định lý nầy ta cần sử dụng 3 bổ đề sau
Bổ đề 1 Qua điểm S không thuộc đường tròn O , kẻ một đường thẳng cắt O tại
,
M N Khi đó SM SN SO2 R 2
Bổ đề 2 Nếu các đường thẳng AB CD, cắt nhau tại S khác A B C D, , , thì A B C D, , ,
cùng thuộc một đường tròn khi và chỉ khi SA SB SC SD
Bổ đề 3 Nếu các đường thẳng AB SC, cắt nhau tại S khác A B, thì đường tròn ngoại
tiếp tam giác ABC tiếp xúc với SC khi và chỉ khi SA SB SC 2
Trang 8
Chứng minh
Gọi H là hình chiếu của O trên MN và K SOAB
Do IKOIHO (cùng bằng 90 0
) Suy ra tứ giác OHIK nội tiếp
Theo các bổ đề trên và theo hệ thức lượng trong tam giác vuông ta suy ra:
SM SN SA2 SK SO SI SH
Do H là trung điểm của MN nên theo hệ thức Maclaurin ta suy ra SIMN 1
B Ví dụ áp dụng
Bài 1 Cho A nằm ngoài đường tròn (O), từ A kẻ hai tiếp tuyến AB,AC trong đó B,C là
hai tiếp điểm Kẻ cát tuyến AMN bất kì trong đó N nằm giữa A và M AO cắt đoạn BC
và cung nhỏ BC lần lượt tại K và E Chứng minh rằng ME là phân giác của KMA
Trang 9
Bài 2 Cho hai đường tròn (O và 1) (O cắt nhau tại hai điểm E và F Lấy A trên tia EF 2) kéo dài và kẻ tiếp tuyến AM, AN với (O , tiếp tuyến AP, AQ với 1) (O Khi đó MN 2)
PQ, EF đồng quy
Bài tập
Bài 1 Đường tròn nội tiếp (I) của tam giác ABC theo thứ tự tiếp xúc với AC, AB tại E,
F BI cắt EF tại K Chứng minh rằng BKC 90
Bài 2 Từ điểm S ngoài đường tròn (O), kẻ tới (O) các tiếp tuyến SA, SB và cát tuyến
SMN (SM < SN) Đườn thẳng qua M, song song với SA theo thứ tự cắt AB, AN tại E,
F Chứng minh rằng ME = EF
Bài 3 Cho tứ giác ABCD ngoại tiếp đường tròn tâm (O) M,N,P,Q lần lượt là các tiếp
điểm của AB,BC,CD,DA với đường tròn Gọi K là giao điểm của MQ với NP và I là giao điểm của MP với QN Chứng minh rằng ( , , , )D B I K 1
Trang 10Tiết 3,4: Hàng điểm điều hòa (tiếp) Bài 1 D, E, F theo thứ tự là tiếp điểm của đường tròn nội tiếp của tam giác ABC với
các cạnh BC, CA, AB H là hình chiếu của D trên EF Chứng minh BHDCHD .
Bài 2 Gọi AD, BE, CF là các đường cao của tam giác nhọn ABC BC∩EF = P Đường thẳng qua D, song song với EF theo thứ tự cắt AB, AC tại Q, R Chứng minh rằng đường tròn (PQR) đi qua trung điểm của BC
Trang 11
Bài 3 Cho tam giác ABC Đường tròn nội tiếp (I) tiếp xúc với BC, CA, AB tại D, E, F
DI cắt EF tại M Chứng minh AM đi qua trung điểm BC
Bài tập
Bài 1 Cho tam giác ABC bất kì Lấy một điểm I trong đường tròn sao cho
IAB IBC và IAC ICB Lấy V là một điểm trên AI sao cho BVC 900 Chứng minh rằng BV là phân giác của ABI và CV là phân giác của ACI
Bài 2 Cho tam giác ABC vuông tại A; D AC và E đối xứng với A qua BD, F là giao
điểm của đường thẳng qua D vuông góc với BC và CE Chứng minh rằng AF; DE; BC đồng quy
Trang 12Tiết 5,6: Hàng điểm điều hòa Bài 1 Cho tứ giác ABCD nội tiếp có
AD BC E AB CD F AC EF R BD EF Q
Gọi M N, lần lượt là trung điểm của AC BD,
a) Chứng minh rằng M N R S, , , cùng thuộc một đường tròn
b) Chứng minh rằng EF là tiếp tuyến chung của hai đường tròn (EMN),(FMN )
Bài 2 Cho tứ giác ABCD ngoại tiếp đường tròn (O) Gọi E,F lần lượt là giao điểm AC với (O) Hạ OH DB Khi đó AHE CHF
Trang 13
Bài 3 Cho tam giac ABC nhọn nội tiếp (O) Các đường cao AD, BE, CF cắt nhau tại H
Gọi K là trung điểm BC Các tiếp tuyến với (O) tại B, C cắt nhau tại J Gọi {P} = EF
BC, chứng minh rằng DJ OP
Bài tập
Bài 1 Cho tam giác ABC có D E F, , lần lượt là tiếp điểm trên BC CA AB, , của đường
tròn nội tiếp tam giác Gọi X là một điểm bên trong tam giác ABC sao cho đường tròn nội tiếp tam giác XBC tiếp xúc với BC tại D, tiếp xúc với XB XC theo thứ tự tại ,, Y Z
Chứng minh E F Y Z, , , đồng viên
Bài 2 Từ một điểm A nằm ngoài đường tròn tâm O, kẻ tiếp tuyến AB và cát tuyến AIK
đến (O) với B là tiếp điểm, I nằm giữa A và K Đường thẳng qua K vuông góc với OA cắt tia AB, IB lần lượt tại C,E Chứng minh rằng C là trung điểm của KE
Trang 14Tiết 7,8: Hàng điểm điều hòa Bài 1 Cho đường tròn (O), day cung BC khác đường kính Điểm A thuộc cung lớn BC
Lấy S đối xứng O qua BC Lấy T trên OS sao cho AT, AS đối xứng nhau qua phân giác góc BAC Chứng minh T là tâm đường tròn ngoại tiếp tam giác OBC
Trang 15
Bài 2 Cho ABC đường tròn nội tiếp (I) tiếp xúc với các cạnh BC, CA và AB tương ứng tại D, E, F Đường thẳng EF cắt BC tại G Đường tròn đường kính GD cắt (I) tại R (R D) Gọi P, Q (P R, Q R) tương ứng là giao của (I) với BR, CR Hai đường thẳng
BQ và CP cắt nhau tại X Đường tròn (CDE) cắt QR tại M và đường tròn (BDF) cắt PR tại N Chứng minh rằng PM, QN và RX đồng quy
Bài tập
Bài 1 Cho tam giác ABC có I, J lần lượt là tâm đường tròn nội tiếp và bàng tiếp góc A
Qua I, J lần lượt kẻ các đường thẳng DE, FG song song với BC với D, F thuộc đường thẳng AB và E, G thuộc đường thẳng AC Chứng minh rằng : 1 1 2
Bài 2 Cho tam giác ABC có ba đường cao AD, BE, CF đồng quy tại H EF cắt BC tại
G Đường tròn tâm K đường kính BC cắt đường trung trực của BC tại L Đường tròn ngoại tiếp tam giác GDL có tâm N cắt tia CL tại điểm thứ hai M MK cắt (N) tại P, CN cắt (K) tại Q Chứng minh M, P, Q, Cđồng viên
Trang 16Tiết 9, 10: Chùm điều hòa
♥ Định lý 4: Cho a, b,c,d là chùm đường thẳng tâm O Đường thẳng không đi qua
O, theo thứ tự cắt a,b,c,d tại A,B,C, D Đường thẳng ' không đi qua O, theo thứ tự
cắt a, b,c tại A', B',C' Khi đó: '/ /d ABCD C' A'
C' B'
Trang 17♥ Định lý 5: Cho a, b,c,d là chùm đường thẳng tâm O Đường thẳng không đi qua
O, theo thứ tự cắt a,b,c,d tại A,B,C, D Đường thẳng ' không đi qua O, theo thứ tự cắt a, b,c,d tại A',B',C',D' Khi đó: ABCD A' B'C' D'
Định nghĩa 3: Số không đổi ABCD nói trên được gọi là tỉ số kép của chùm
a, b,c,d và được kí hiệu là abcd
2 Phép chiếu xuyên tâm
a) Định nghĩa: Cho hai đường thẳng , ' và điểm S không thuộc , ' Gọi K là điểm thuộc sao cho SK / / ' Gọi f là ánh xạ đi từ tập hợp các điểm thuộc \ K
tới tập hợp các điểm thuộc ' , xác định như sau: f M M' sao cho S,M,M' thẳng hàng Ánh xạ f được gọi là phép chiếu xuyên tâm đi từ \ K tới ' Điểm S được gọi là tâm của f
Lưu ý:
+ Nếu phép chiếu xuyên tâm f biến hàng điểm A,B,C,D thành hàng điểm
A', B',C',D' thì ABCD A' B' C' D' (hay phép chiếu xuyên tâm bảo toàn tỉ số kép)
Trang 18b) Các định lý
♥ Định lý 6: Cho hai đường thẳng , ' cắt nhau tại O Các điểm A,B,C thuộc
; các điểm A', B',C' thuộc ' Khi đó:
AA', BB',CC' hoặc đồng quy hoặc đôi một song song OABC OA' B'C'
♥ Định lý 7: Cho hai chùm O ABCO' và O' ABCO Khi đó:
A,B,C thẳng hàng O ABCO' O' ABCO
Trang 19♥ Định lý 9: Với chùm điều hòa a,b,c,d các điều kiện sau là tương đương
i) cd ii) c là một phân giác của các góc tạo bởi a,b
iii) d là một phân giác của các góc tạo bởi a,b
B Ví dụ áp dụng
Bài 1 Đường tròn nội tiếp (I) của tam giác ABC theo thứ tự tiếp xúc với BC, CA, AB
tại D, E, F AD lại cắt (I) tại K BC∩EF = L Chứng minh LK tiếp xúc với (I)
Trang 20
Bài 2 Cho hai điểm A, B nằm trên đường tròn (O) C là điểm đối xứng của A qua B
Qua C, kẻ tới (O) tiếp tuyến CT CT cắt tiếp tuyến với (O) tại A ở S SB lại cắt (O) tại
K Chứng minh KT // AB
Trang 21
Bài 3 Cho tứ giác ABCD nội tiếp đường tròn O AB,AC,AD theo thứ tự cắt
CD,DB,BC tại X, Y,Z Chứng minh rằng O là trực tâm tam giác XYZ
Bài tập
Bài 1 Cho tam giác ABC và điểm O nằm trong tam giác BO, CO theo thứ tự cắt AC,
AB tại M, N K là giao của OA và MN H là hình chiếu của K trên BC Chứng minh
Bài 2 M, N theo thứ tự là trung điểm của các cạnh AB, CD của tứ giác nội tiếp ABCD
Các đường tròn (ABN), (CDM) theo thứ tự lại cắt CD, AB tại P, Q Chứng minh rằng:
AC, BD, PQ đồng quy
Bài 3 Đường thẳng đi qua đỉnh A của hình bình hành ABCD, theo thứ tự cắt các đường thẳngBD,BC tại M, N Chứng minh rằng: 1 1 1
Bài 4 Các đường phân giác BE, CF của tam giác ABC cắt nhau tại I Đường thẳng qua
I, vuông góc với EF theo thứ tự cắt BC, EF tại P, Q Giả sử IP = 2IQ Tính BAC.
Trang 22Tiết 11,12: Chùm điều hòa (tiếp) Bài 1 Cho tam giác ABC và tâm nội tiếp (I) tâm I Gọi D là chân vuông góc của I
xuống BC, P là chân vuông góc của I xuống AD Chứng minh BPD CPD
Bài 2 Cho tam giác ABC và các điểm C , B ,A1 1 1 là các điểm lần lượt nằm trên các cạnh
AB, AC, BC sao cho 3 đường CC , BB , AA1 1 1 đồng quy tại P Tia B A1 1và B C1 1 cắt đường tròn ngoại tiếp tam giác ABC lần lượt tại A ,C2 2 Chứng minh rằng A; C; giao điểm của A C2 2 và BB1; trung điểm của A C2 2 cùng nằm trên một đường tròn
Trang 23
Bài 3 Cho hai đường tròn (O1) và (O2) cắt nhau tại A,B CD là tiếp tuyến chung của hai đường tròn (O1) và (O2) với C thuộc (O1) ; D thuộc (O2), B gần CD hơn A
a) Gọi E là giao điểm của BC và AD, F là giao điểm của BD và AC Chứng minh rằng
EF song song với CD
b) Gọi N là giao điểm của AB và EF Lấy K trên đoạn thẳng CD sao cho BAC =
DAK Chứng minh rằng KE=KF
Bài tập
Bài 1 Cho tam giác ABC nội tiếp đường tròn O Đường tròn I nội tiếp tam giác, tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F Gọi H là hình chiếu vuông góc của D trên EF; AH cắt lại đường tròn O tại điểm thứ hai G Tiếp tuyến với đường tròn O tại G cắt BC tại T Chứng minh rằng tam giác TDG cân
Bài 2 Cho tam giác ABC nhọn, không cân nội tiếp (O) với E, F lần lượt thay đổi trên
AC, AB sao cho AE = AF Gọi D là giao điểm của EF và BC Gọi K, L lần lượt là tâm (BDF) và (CDE) Gọi H là giao điểm của BE và CF AH cắt BC tại S G đối xứng D qua KL Gọi T là điểm thuộc DG sao cho TS BC M là trung điểm của ST Chứng minh rằng khi E, F thay đổi thì đường thẳng GM luôn đi qua một điểm cố định
Bài 3 Cho ∆ABC nội tiếp (O) Các đường cao AH, BK, CL cắt nhau tại X Gọi Q là
trung điểm AC, P=BO ∩ AC, T = HL ∩ BK Chứng minh TP// XQ
Trang 24Tiết 13,14: Chùm điều hòa Bài 1 Cho tam giác ABC có AB AC và đường tròn nội tiếp (I) tiếp xúc với cạnh BC
tại D Trên tia AD, lấy điểm M sao cho CM CD. Giả sử AD cắt (I) tại GD
Đường thẳng GB cắt CM tại K Chứng minh rằng M là trung điểm của CK
Bài 2 Cho hình thang ABCD có AB CD và BCBD Đường thẳng đối xứng với CA
qua CD cắt AD,BD lần lượt tại E,F Chứng minh rằng E là trung điểm của CF
Trang 25
Bài 3 Cho tam giác ABC nội tiếp (O) có T là giao điểm hai tiếp tuyến của (O) ở B,C.
vuông góc với BC cắt AT ở N Chứng minh rằng N thuộc đường trung bình của tam giác TDE
Trang 26
Bài tập
Bài 1 Cho tam giác ABC nội tiếp đường tròn O D là điểm đối xứng với A qua O Tiếp tuyến với O tại D cắt BC tại E OE theo thứ tự cắt AB,AC tại M, N Chứng minh rằng OM ON
Bài 2 Cho tam giác ABC nhọn, không cân nội tiếp (O) Một đường tròn (O’) thay đổi
đi qua B, C, cắt AB, AC lần lượt tại E, F khác A (AEF) cắt (O) tại K, K ≠ A KE, KF lần lượt cắt (O) tại Q, P khác K Gọi T = BQ CP Gọi M, N lần lượt là giao điểm của
BF, CE
a) Chứng minh rằng A, O, T thẳng hàng
b) Chứng minh rằng KA tiếp xúc với (AMN)
Bài 3 Cho (O) và hai điểm B, C thuộc (O) sao cho BC không là đường kính Gọi T là
giao điểm của hai tiếp tuyến tại B và C của (O) Qua T kẻ cát tuyến TDA Đường thẳng qua A vuông góc với AT cắt BC, (O) lần lượt tại P, Q Chứng minh rằng:
a) QD ⊥ PT
b) QC, BD, PT đồng quy
Bài 4 Cho đường tròn (O;R) và một điểm I cố định ở trong đường tròn (IO), đường thẳng qua I vuông góc với OI cắt đường tròn tại C và D; A là một điểm nằm trên đường tròn, tia đối xứng với tia IA qua đường thẳng CD cắt đường tròn tại B Gọi M là trung điểm của AB
a) Chứng minh đường thẳng AB đi qua một điểm cố định L khi A thay đổi trên đường tròn (O;R)
b) Gọi N, P là giao điểm của đường thẳng OM với đường tròn (O) Đường thẳng CN
và DP cắt nhau ở Q Chứng minh rằng các điểm Q, N là những tâm của đường tròn nội tiếp và bàng tiếp của tam giác CMD
Trang 27Tiết 15, 16: Chùm điều hòa (tiếp) Bài 1 Cho tam giác ABC Đường trung tuyến AM, đường phân giác trong góc A là AN
(N thuộc BC) Đường thẳng vuông góc với AN tại N cắt AB tại P, cắt AM tại Q Đường thẳng vuông góc với AB tại P cắt AN tại I Chứng minh rằng đường thẳng IQ vuông góc với đường thẳng BC
Trang 28
Bài 2 Cho tam giác ABC nhọn với AB AC và trực tâm H AH,BH,CHlần lượt cắt các cạnh BC,CA, AB tại D,E,F EFcắt BCtại G K là hình chiếu của H lên AG AH
cắt EFtại L.Trung trực LD cắt GHtại P,N là trung điểm của EF Chứng minh rằng đường tròn ngoại tiếp các tam giác KGNvà DPL tiếp xúc nhau
Bài tập
Bài 1 Cho tam giác ABC nội tiếp đường tròn (O) và tâm nội tiếp I Đường tròn bàng
tiếp (L) tại đỉnh C của tam giác ABC tiếp xúc với AB tại M MI cắt BC tại N P là hình chiếu của C lên LB Chứng minh rằng AI và PN cắt nhau trên đường tròn (O)
Bài 2 Cho tam giác ABC nhọn, đường cao BD cắt đường tròn đường kính AC tại N, Q
(Q nằm ngoài tam giác); đường cao CE cắt đường tròn đường kính AB tại M, P (P nằm ngoài tam giác) Gọi H là trực tâm tam giác ABC
a) Chứng minh PN, MQ , BC đồng quy tại điểm K
b) Chứng minh BM, CN và HK đồng quy
Trang 29Tiết 17, 18: Tứ giác điều hòa
1) Định nghĩa
Tứ giác nội tiếp ABCD được gọi là điều hòa nếu tồn tại điểm M thuộc đường tròn
ngoại tiếp tứ giác sao cho M(ACBD) = - 1
Nhận xét: Tứ giác ABCD là điều hòa thì với mọi điểm M thuộc (O) ta đều có
M(ACBD) = - 1
2) Tính chất
a) Tứ giác ABCD điều hòaAB CD AD CB
Nhận xét: 1) Áp dụng định lí Ptolemy cho tứ giác điều hòa ABCD ta có:
2 2
AC BD AB CD AD CB
2) Vì tính chất này tương đương với AB CB
AD CD nên ta đã sử dụng thuật ngữ
“Tứ giác điều hòa”
b) Tứ giác ABCD điều hòa khi và chỉ khi A, C,BD đồng quy hoặc đôi một song
song Trong đó A, C lần lượt là tiếp tuyến tại A và C của (O)
c) Tứ giác điều hòa ABCD nội tiếp (O) có Chứng minh rằng (O) trực giao với đường
tròn Apollonius tỉ số k dựng trên đoạn AC
d) Cho tứ giác điều hòa ABCD Gọi N là giao điểm của AC và BD Chứng minh
Trang 303) Ví dụ áp dụng
Bài 1 Cho tứ giác điều hòa ABCD nội tiếp (O); M là giao điểm hai tiếp tuyến tại B, D
của (O) Đường thẳng song song với MD kẻ qua C cắt DB, DA lần lượt ở H, K Chứng minh rằng HC=HK
Bài 2 Cho tứ giác điều hòa ABCD nội tiếp (O), gọi M là giao điểm hai tiếp tuyến tại B,
D của (O) Gọi I là giao điểm của OM và BD Khi ấy IB là phân giác của góc AIC
Trang 31Bài 3 Cho tam giác ABC, D là trung điểm của cạnh BC và E, Z là hình chiếu của D
trên AB, AC Gọi T là giao điểm của các tiếp tuyến tại E, Z của đường tròn đường kính
AD Chứng minh rằng: TB=TC
Bài tập
Bài 1 Cho tứ giác ABCD nội tiếp (O) AB CD S , ADBC F , ACBD E Tiếp tuyến SM, SN với đường tròn Chứng minh rằng E, F, M, N thẳng hàng
Bài 2 Cho tứ giác ABCD ngoại tiếp (O) M, N, P, Q là tiếp điểm của (O) với AB, BC,
CD, AD Chứng minh rằng AC, BD, MP, NQ đồng quy
Bài 3 Cho tam giác nhọn ABC D là một điểm thuộc đoạn AC Giả sử đường tròn
ngoại tiếp tam giác ABD cắt đoạn thẳng BC tại E khác B Tiếp tuyến tại B, D của đường tròn ngoại tiếp tam giác ABD cắt nhau tại T AT cắt đường tròn ngoại tiếp tam giác ABD ở F khác A Gọi M là trung điểm của AF và CF giao DE tại G, AG giao BC tại H, AE giao MD tại N Chứng minh rằng HN // AT
Trang 32Tiết 19, 20: Tứ giác điều hòa (tiếp) 4) Ứng dụng
Bài 1 Cho tam giác ABC không cân tại A, nội tiếp đường tròn (O), M là trung điểm
của BC Các đoạn N, P thuộc đoạn BC sao cho MN=MP Các đường thẳng AM, AN,
AP theo thứ tự cắt (O) tại X, Y, Z Chứng minh rằng: BC, YZ và tiếp tuyến tại X của (O) đồng quy
Bài 2 Cho tam giác ABC và điểm M Các đường thẳng AM, BM, CM theo thứ tự cắt
BC, CA, AB tại D, E, F Lấy X thuộc BC sao cho 90o
AMX Y, Z theo thứ tự là điểm đối xứng của M qua DE, DF Chứng minh rằng X, Y, Z thẳng hàng
Trang 33
Bài 3 Cho tam giác ABC nội tiếp đường tròn (O) có A cố định và B, C thay đổi trên
(O) và luôn song song với một đường thẳng cố định cho trước Các tiếp tuyến của (O) tại B, C cắt nhau tại K Gọi M là trung điểm của BC, N là giao điểm của AM với (O) Chứng minh rằng đường thẳng KN luôn đi qua một điểm cố định
Bài 4 Hai đường tròn (O) và (O’) cắt nhau tại hai điểm phân biệt A, B Lấy M thuộc
(O), MA, MB cắt (O’) tại N, P Gọi Q là trung điểm của NP Chứng minh rằng MQ luôn đi qua một điểm cố định
Trang 34
Bài tập
Bài 1 Cho tam giác ABC nhọn Gọi D, M, H lần lượt là chân đường cao hạ từ A, trung
điểm của BC, trực tâm tam giác ABC.Kẻ đường cao AK Đường thẳng MH cắt đường tròn ngoại tiếp tam giác ABC tại điểm thứ hai là E Đường thẳng ED cắt đường tròn
ngoại tiếp tam giác ABC tại điểm thứ hai là F Chứng minh rằng BF AB
CF AC
Bài 2 Cho tam giác ABC nhọn, ABAC DAC sao cho BD AC , EAB sao
cho CE AB Gọi M, N, P lần lượt là trung điểm BC, MD, ME SPN BC Gọi T
là điểm thuộc DE sao cho AT / /BC Chứng minh rằng ST tiếp xúc (ADE)
Bài 3 Trên mặt phẳng, cho đường tròn (O) và hai điểm cố định B, C trên đường tròn
này sao cho BC không là đường kính của (O) Gọi A là một điểm di động trên đường tròn (O) và A không trùng với hai điểm B, C Gọi D, K, J lần lượt là trung điểm của
BC, CA, AB và E, M, N lần lượt là hình chiếu vuông góc của A, B, C trên BC, DJ, DK Chứng minh rằng các tiếp tuyến tại M, N của đường tròn ngoại tiếp tam giác EMN luôn cắt nhau tại điểm T cố định khi A thay đổi trên (O)
Trang 35Tiết 21, 22: Tứ giác điều hòa (tiếp) c) Một số ứng dụng khác
Bài 1 Xét tam giác không cân ABC có đường tròn nội tiếp tâm I tiếp xúc với các cạnh
BC, AC, AB lần lượt tại D, E, F Đường tròn bàng tiếp góc A tiếp xúc với cạnh BC tại
N Đặt T là giao điểm gần N của AN với đường tròn nội tiếp tam giác ABC, K là giao điểm của DT và EF Chứng minh rằng AK // BC
Bài 2 Đường tròn nội tiếp (I) của tam giác ABC theo thứ tự tiếp xúc với BC, CA tại D,
E AD cắt lại (I) tại P Giả sử BPC900 Chứng minh rằng EAAPPD
Trang 36
Bài 3 Cho tam giác ABC, đường cao AH, E là trung điểm của AH Đường tròn nội tiếp
(I) tiếp xúc với BC tại D DE cắt lại (I) tại F Chứng minh rằng FD là phân giác của góc BFC
Bài tập
Bài 1 Cho tứ giác nội tiếp ABCD Đặt E ACBD F; ADBC M là trung điểm
của CD EF cắt đường tròn ngoại tiếp tam giác MAB tại N (M, N thuộc hai nửa mặt phẳng khác nhau bờ AB) Chứng minh rằng: MA NA
MB NB
Bài 2 Cho tam giác ABC, P là điểm bất kì nằm trong tam giác ABC Gọi B’, C’ lần
lượt là điểm đối xứng với P qua AC, AB; E, F lần lượt là hình chiếu của P trên AC, AB Gọi X là giao điểm khác A của hai đường tròn (AB’C’) và đường tròn đường kính AP Chứng minh rằng tứ giác PEXF là tứ giác điều hòa
Bài 3 Cho tam giác ABC nhọn không cân, nội tiếp (O) Hai tiếp tuyến của (O) tại B và
C cắt nhau tại D AO cắt BC tại E Gọi M là trung điểm BC, AM cắt (O) tại điểm thứ
Trang 37Tiết 23, 24: Tứ giác điều hòa (tiếp) Bài 1: Trong mặt phẳng cho hai đường tròn 1 và 2cắt nhau tại A, B Một tiếp tuyến chung của hai đường tròn tiếp xúc với 1 ở P và 2ở T Các tiếp tuyến tại P và T của đường tròn ngoại tiếp tam giác APT cắt nhau tại S Gọi H là điểm đối xứng của B qua
PT Chứng minh rằng A, H, S thẳng hàng
Bài 2: Trong mặt phẳng cho hai đường tròn 1 tâm O và 2 tâm O’ cắt nhau tại hai điểm A, B Các tiếp tuyến tại A, B của 1 cắt nhau tại K Giả sử M là một điểm nằm trên 1 nhưng không trùng với A và B Đường thẳng AM cắt lại 2 tại P, đường thẳng
KM cắt 1 tại C và đường thẳng AC cắt 2 tại Q
a) Chứng minh rằng trung điểm PQ thuộc đường thẳng MC
b) Đường thẳng PQ luôn đi qua một điểm cố định khi M di chuyển trên 1
Trang 38
Bài 3 Từ điểm A nằm ngoài (O) kẻ các tiếp tuyến AB, AC (B, C là các tiếp điểm) Lấy
T bất kì thuộc cung nhỏ BC Kẻ TH vuông góc với BC (tại H) Chứng minh TH là phân giác của góc MHN (M, N là giao điểm của tiếp tuyến tại T của (O) với AB, AC)
Bài 4 Từ A nằm ngoài (O) kẻ hai tiếp tuyến AB, AC (B, C là tiếp điểm) AO cắt (O) ở
D Kẻ BX vuông góc với CD (X thuộc CD) Gọi Y là trung điểm của XB, YD cắt (O) tại điểm thứ hai Z Chứng minh rằng AZC90o
Trang 39
Bài tập
Bài 1 Cho tam giác ABC, đường cao AH, K là trung điểm của AH Đường tròn nội tiếp
(I) tiếp xúc với BC tại D DK cắt lại (I) tại T Chứng minh rằng đường tròn nội tiếp tam giác TBC tiếp xúc với (I)
Bài 2 Cho tam giác ABC nội tiếp (O), các đường cao AD, BE, CF AA’ là đường kính
của (O) A’B, A’C cắt AC, AB lần lượt ở M, N P, Q thuộc EF sao cho PB, QC vuông góc với BC Đường thẳng qua A vuông góc với QN, PM lần lượt cắt (O) tại X, Y Tiếp tuyến của (O) tại X, Y cắt nhau tại J Chứng minh rằng JA’ vuông góc BC
Bài 3 Cho tam giác ABC nội tiếp đường tròn (O) (AB AC) Tiếp tuyến với (O) tại A cắt BC tại D DO theo thứ tự cắt AB, AC tại E, F M, N theo thứ tự là trung điểm của
AB, AC Chứng minh rằng AO, EN, FM đồng quy
Trang 40Tiết 25, 26: Tứ giác điều hòa (tiếp) Bài 1 Cho tam giác ABC nội tiếp ( )O có T là giao điểm hai tiếp tuyến của ( )O ở
,
B C Một đường thẳng d bất kỳ qua T cắt AB AC, lần lượt tại D E, Gọi M là trung điểm của DE và MA cắt ( ) O tại K Chứng minh rằng đường tròn ( MTK tiếp xúc với )( ).O
Bài 2 Cho đoạn thẳng AD cố định và hai điểm B C, thay đổi sao cho D luôn là trung điểm của BC và B C A D, , , không thẳng hàng Gọi M N, lần lượt là hình chiếu của D
lên AB AC Gọi , ,, R S I lần lượt là trung điểm AB AC MN và RS cắt MN tại , , K Gọi
E là điểm đối xứng với D qua RS Chứng minh rằng đường tròn ( IKE luôn đi qua )hai điểm cố định