Kinh Tế - Quản Lý - Báo cáo khoa học, luận văn tiến sĩ, luận văn thạc sĩ, nghiên cứu - Quản trị kinh doanh Bài tập tính đơn điệu của hàm số tuhoctoan.edu.vn Bài 1. TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ A. TÓM TẮT LÝ THUYẾT 1. Định nghĩa : Giả sửK là một khoảng , một đoạn hoặc một nửa khoảng . Hàm sốf xác định trênK được gọi là : Đồng biến trênK nếu với mọi 1 2 1 2, ,x x K x x 1 2f x f x Nghịch biến trênK nếu với 1 2 1 2, ,x x K x x 1 2f x f x . 2. Điều kiện cần để hàm số đơn điệu : Giả sử hàm sốf có đạo hàm trên khoảngI Nếu hàm sốf đồng biến trên khoảngI thì '''' 0f x với mọix I Nếu hàm sốf nghịch biến trên khoảngI thì '''' 0f x với mọix I 3. Điều kiện đủ để hàm số đơn điệu : Định lý : Giả sửI là một khoảng hoặc nửa khoảng hoặc một đoạn ,f là hàm số liên tục trênI và có đạo hàm tại mọi điểm trong củaI ( tức là điểm thuộcI nhưng không phải đầu mút củaI ) .Khi đó : Nếu '''' 0f x với mọix I thì hàm sốf đồng biến trên khoảngI Nếu '''' 0f x với mọix I thì hàm sốf nghịch biến trên khoảngI Nếu '''' 0f x với mọix I thì hàm sốf không đổi trên khoảngI Chú ý : Nếu hàm sốf liên tục trên ;a b và có đạo hàm '''' 0f x trên khoảng ;a b thì hàm sốf đồng biến trên ;a b Nếu hàm sốf liên tục trên ;a b và có đạo hàm '''' 0f x trên khoảng ;a b thì hàm sốf nghịch biến trên ;a b . Ta có thể mở rộng định lí trên như sau Giả sử hàm sốf có đạo hàm trên khoảngI . Nếu''''( ) 0f x với x I ( hoặc''''( ) 0f x với x I ) và''''( ) 0f x tại một số hữu hạn điểm củaI thì hàm sốf đồng biến (hoặc nghịch biến) trênI . Chú ý. Vận dụng định lí trên vào các hàm số thường gặp trong chương trình. Nếu hàm số f là hàm đa thức (không kể hàm số hằng) hoặc f(x) = ( ) ( ) P x Q x (trong đó P(x) là đa thức bậc hai , Q(x) là đa thức bậc nhất và P(x) không chia hết cho Q(x) thì hàm số f đồng biến (nghịch biến ) trên K , ''''( ) 0 ( ''''( ) 0)x K f x f x . Nếu hàm số f là hàm nhất biến , ( ) ax b f x cx d với a,b,c,d là các số thực và ad – bc 0 thì hàm số f đồng biến (nghịch biến ) trên K , ''''( ) 0( ''''( ) 0).x K f x f x B. CÁC VÍ DỤ MINH HỌA: Ví dụ 1: Cho hàm số y f x có bảng biến thiên như hình dưới đây. Mệnh đề nào sau đây là đúng? Bài tập tính đơn điệu của hàm số tuhoctoan.edu.vn A. Hàm số đã cho đồng biến trên các khoảng 2; và ; 2 . B. Hàm số đã cho đồng biến trên ; 1 1;2 . C. Hàm số đã cho đồng biến trên khoảng 0;2 . D. Hàm số đã cho đồng biến trên 2;2 . Hướng dẫn giải: Vì 0;2 1;2 , mà hàm số đồng biến trên khoảng 1;2 nên suy ra C đúng. Chọn C. Ví dụ 2: Cho hàm số y f x xác định, liên tục trên và có đồ thị như hình vẽ bên. Khẳng định nào sau đây là sai? A. Hàm số đồng biến trên 1; . B. Hàm số đồng biến trên ; 1 và 1; . C. Hàm số nghịch biến trên khoảng 1;1 . D. Hàm số đồng biến trên ; 1 1; . Hướng dẫn giải: Dựa vào đồ thị ta có kết quả: Hàm số đồng biến trên ; 1 và 1; , nghịch biến trên 1;1 nên các khẳng định A, B, C đúng. Theo định nghĩa hàm số đồng biến trên khoảng ;a b thì khẳng định D sai. Ví dụ 3 : Cho hàm số xác định trên và có đồ thị hàm số là đường cong trong hình bên. Mệnh đề nào dưới đây đúng ? A. Hàm số đồng biến trên khoảng .B. Hàm số nghịch biến trên khoảng . C. Hàm số đồng biến trên khoảng .D. Hàm số nghịch biến trên khoảng . Hướng dẫn giải: Chọn B. Dựa vào đồ thị hàm số ta có: và . Khi đó, hàm số đồng biến trên các khoảng hàm số nghịch biến trên các khoảng Ví dụ 4: Khoảng đồng biến của hàm số 3 3 4y x x là A. 0;1 . B. 0;2 . C. ; 1 và 1; . D. 1;1 Hướng dẫn giải:Chọn D f x y f x f x 1; 2 f x 0; 2 f x 2;1 f x 1;1 y f x 0 2;0 2;f x x 0 ; 2 0;2f x x y f x( 2;0), (2; + ) y f x( ; 2), (0; 2) Bài tập tính đơn điệu của hàm số tuhoctoan.edu.vn Ta có 2 '''' 3 3; '''' 0 1.y x y x Bảng xét dấu y’ Từ bảng xét dấu của y’ ta có hàm số đồng biến trên 1;1 . Ví dụ 5 : Cho hàm số 3 2 2 6 6 2017y x x x . Mệnh đề nào dưới đây sai? A. Hàm số đã cho đồng biến trên . B. Hàm số đã cho nghịch biến trên . C. Trên khoảng ; 2 hàm số đã cho đồng biến.D. Trên khoảng 2; hàm số đã cho đồng biến. Hướng dẫn giải:Chọn B + TXĐ: .D R + 22 6 12 6 6 1 0;y x x x x R (Dấu'''''''' '''''''' chỉ xảy ra tại 1x ) Suy ra hàm số đồng biến trên.R Ví dụ 6: Cho hàm số 3 2 3 4y x x . Mệnh đề nào dưới đây đúng? A. Hàm số nghịch biến trên khoảng 2;0 . B. Hàm số đồng biến trên khoảng 0; . C. Hàm số đồng biến trên khoảng ; 2 . D. Hàm số đồngbiến trên khoảng 2;0 . Hướng dẫn giải:Chọn D 2 2 3 6 , 0 0 x y x x y x Lập bảng biến thiên, hàm số đồng biến trên khoảng 2;0 . Ví dụ 7: Cho hàm số 4 2 8 4y x x . Các khoảng đồng biến của hàm số là A. 2;0 và 2; . B. 2;0 và 0;2 . C. ; 2 và 0;2 . D. ; 2 và 2; . Hướng dẫn giải:Chọn A Tập xác định:D . Đạo hàm 3 4 16y x x ; 3 0 0 4 16 0 2 x y x x x . Bảng biến thiên: Vậy hàm số đồng biến trên các khoảng 2;0 và 2; . Ví dụ 8: Hàm số 4 2 4 1y x x nghịch biến trên mỗi khoảng nào sau đây? A. 2; 2 .B. 3;0 ; 2; .C. 2;0 ; 2; D.( 2; ) . Hướng dẫn giải:Chọn C 3 4 8y x x , vậy 0 0 2 x y x Lập bảng biến thiên, suy ra hàm số nghịch biến trên mỗi khoảng 2;0 ; 2; Ví dụ 9: Cho hàm số 2 1 x y x . Xét các mệnh đề sau. Bài tập tính đơn điệu của hàm số tuhoctoan.edu.vn 1) Hàm số đã cho đồng biến trên ; 1 1; .2) Hàm số đã cho đồng biến trên \ 1 . 3) Hàm số đã cho đồng biến trên từng khoảng xác định. 4) Hàm số đã cho đồng biến trên các khoảng ; 1 và 1; . Số mệnh đề đúng là :A. 3. B. 2. C. 1. D. 4. Hướng dẫn giải:Chọn B Ta có 2 1 0 x 1 1 y x . Suy ra hàm số đã cho đồng biến các khoảng ; 1 và 1; . Do đó chỉ có mệnh đề 3 và 4 đúng nên chọn đáp án B Ví dụ 10 : Cho hàm số 3 . 2 x y x Khẳng định nào sau đây là khẳng định đúng: A. Hàm số đồng biến trên . B. Hàm số đồng biến trên khoảng ; 2 2; . C. Hàm số nghịch biến trên \ 2 .D. Hàm số nghịch biến trên mỗi khoảng ; 2 và 2; . Hướng dẫn giải:Chọn D 2 3 1 0 2 2 x y y x x Ví dụ 11: Hàm số 2 2y x x nghịch biến trên khoảng nào. A. 0;1 . B. ;1 . C. 1;2 . D. 1; . Hướng dẫn giải:Chọn C Tập xác định 0;2D . Ta có 2 1 2 x y x x ; 0 1y x . Bảng biến thiên: Vậy hàm số nghịch biến trên khoảng 1;2 Ví dụ 12 (ĐỀ CHÍNH THỨC 2016 – 2017) Cho hàm số 3 2 4 9 5y x mx m x vớim là tham số. Có bao nhiêu giá trị nguyên củam để hàm số nghịch biến trên khoảng ; ? A.4. B.6. C.7. D.5. Hướng dẫn giải: TXĐ:D . Đạo hàm 2 '''' 3 2 4 9.y x mx m Để hàm số đã cho nghịch biến trên khoảng ; thì '''' 0,y x ('''' 0y có hữu hạn nghiệm) 2 '''' 0 3 4 9 0 9 3m m m 9; 8;...; 3 .m m Chọn C. Sai lầm hay gặp là'''''''' Để hàm số đã cho nghịch biến trên khoảng ; thì '''' 0,y x'''''''' . Khi đó ra giải ra 9 3m và chọn D. 1 2 1 2 1 2 1 21 2 2 2 0 4 2 4 02 2 0 x x x x x x x xx x Bài tập tính đơn điệu của hàm số tuhoctoan.edu.vn 2 2 1 4 3 2 3 2 2 1 2. 4 0 3 3 m m m m 5 3 23 22 2 m m m . Chọn Ví dụ 13: Tìm tập hợp tất cả các giá trị của tham số thựcm để hàm số 3 21 4 3 y x mx x m đồng biến trên khoảng ; . A. ; 2 . B. 2; . C. 2;2 . D. ;2 . Hướng dẫn giải:Chọn C Ta có: 2 2 4y x mx . Hàm số đồng biến trên khoảng ; khi và chỉ khi 0, ;y x . 2 4 0 2 2m m . Ví dụ 14: GọiS là tập hợp các số nguyênm để hàm số 2 3 3 2 x m y x m đồng biến trên khoảng ; 14 . Tính tổngT của các phần tử trong.S A. 9.T B. 5.T C. 6.T D. 10.T Hướng dẫn giải: TXĐ: D \ 3 2m . Đạo hàm 2 5 5 '''' . 3 2 m y x m Hàm số đồng biến trên khoảng ; 14 '''' 0, ; 14y x 5 5 05 5 0 5 5 0 , 14 3 2 3 2 ; 14 3 2 14 mm m x x m m m 4 1 4; 3; 2; 1;0 10.m m m T Chọn D. Ví dụ 15: Có bao nhiêu giá trị nguyên của tham số thựcm thuộc khoảng 1000;1000 để hàm số 3 2 2 3 2 1 6 1 1y x m x m m x đồng biến trên khoảng 2; ? A.999. B.1001. C.998. D.1998. Hướng dẫn giải: Ta có 2 2 '''' 6 6 2 1 6 1 6. 2 1 1y x m x m m x m x m m . Xét phương trình 0y có 2 2 1 4 1 1 0, .m m m m Suy ra phương trình 0y luôn có hai nghiệm1 2x x với mọim . Theo định lí Viet, ta có 1 2 1 2 2 1 . 1 x x m x x m m Để hàm số đồng biến trên 2; phương trình 0y có hai nghiệm 1 2 2x x 1 2 1 2 1 2 1 21 2 2 2 0 4 2 1 4 1 2 4 0 1 2 2 1 4 02 2 0 x x x x m m x x x x m m mx x 999; 998;...;1 .m m Vậy có1001 số nguyênm thuộc khoảng 1000;1000 . Chọn B. Vậy hàm số luôn tăng trên ;1 và 1; với 1m . Bài tập tính đơn điệu của hàm số tuhoctoan.edu.vn Ví dụ 16: Cho hàm số y f x có đạo ...
Trang 1Bài 1 TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ
A TÓM TẮT LÝ THUYẾT
1 Định nghĩa :
Giả sử K là một khoảng , một đoạn hoặc một nửa khoảng Hàm số f xác định trên K được gọi là :
Đồng biến trên K nếu với mọi x x1, 2K , x1x2f x 1 f x2
Nghịch biến trên K nếu với x x1, 2K x, 1x2 f x 1 f x 2
2 Điều kiện cần để hàm số đơn điệu :
Giả sử hàm số f có đạo hàm trên khoảng I
Nếu hàm số f đồng biến trên khoảng I thì f x' 0 với mọi x I
Nếu hàm số f nghịch biến trên khoảng I thì f x' 0 với mọi x I
3 Điều kiện đủ để hàm số đơn điệu :
Định lý :
Giả sử I là một khoảng hoặc nửa khoảng hoặc một đoạn , f là hàm số liên tục trên I và có đạo hàm tại mọi
điểm trong của I ( tức là điểm thuộc I nhưng không phải đầu mút của I ) Khi đó :
Nếu f x' 0 với mọi x I thì hàm số f đồng biến trên khoảng I
Nếu f x' 0 với mọi x I thì hàm số f nghịch biến trên khoảng I
Nếu f x' 0 với mọi x I thì hàm số f không đổi trên khoảng I
Chú ý :
Nếu hàm số f liên tục trên a b; và có đạo hàm f x' 0 trên khoảng a b; thì hàm số f đồng biến
trên a b;
Nếu hàm số f liên tục trên a b; và có đạo hàm f x' 0 trên khoảng a b; thì hàm số f nghịch biến
trên a b;
Ta có thể mở rộng định lí trên như sau
Giả sử hàm số f có đạo hàm trên khoảng I Nếu f x'( ) 0 với x I
( hoặc f x'( ) 0 với x I) và f x'( ) 0 tại một số hữu hạn điểm của I thì hàm số f đồng biến (hoặc nghịch biến) trên I
Chú ý Vận dụng định lí trên vào các hàm số thường gặp trong chương trình
*Nếu hàm số f là hàm đa thức (không kể hàm số hằng) hoặc f(x) = ( )
( )
P x
Q x (trong đó P(x) là đa thức bậc hai , Q(x) là đa thức bậc nhất và P(x) không chia hết cho Q(x) thì hàm số f đồng biến (nghịch biến ) trên K
x K f x, '( ) 0 ( '( ) 0) f x
( ) ax b
f x
cx d với a,b,c,d là các số thực và ad – bc 0 thì hàm số f đồng biến (nghịch biến ) trên K x K f x, '( ) 0( '( ) 0). f x
B CÁC VÍ DỤ MINH HỌA:
Ví dụ 1: Cho hàm số y f x có bảng biến thiên như hình dưới đây Mệnh đề nào sau đây là đúng?
Trang 2
A Hàm số đã cho đồng biến trên các khoảng 2; và ; 2
B Hàm số đã cho đồng biến trên ; 1 1;2
C Hàm số đã cho đồng biến trên khoảng 0;2 D Hàm số đã cho đồng biến trên 2;2
Hướng dẫn giải: Vì 0;2 1;2, mà hàm số đồng biến trên khoảng 1;2 nên suy ra C đúng Chọn
C
Ví dụ 2: Cho hàm số y f x xác định, liên tục trên và có đồ thị như hình vẽ bên
Khẳng định nào sau đây là sai?
A Hàm số đồng biến trên 1; B Hàm số đồng biến trên ; 1 và 1;
C Hàm số nghịch biến trên khoảng 1;1 D Hàm số đồng biến trên ; 1 1;
Hướng dẫn giải: Dựa vào đồ thị ta có kết quả: Hàm số đồng biến trên ; 1 và 1;, nghịch biến trên 1;1 nên các khẳng định A, B, C đúng
Theo định nghĩa hàm số đồng biến trên khoảng a b; thì khẳng định D sai
Ví dụ 3 : Cho hàm số xác định trên và có đồ thị hàm số là đường cong trong hình bên Mệnh đề nào dưới đây đúng ?
A Hàm số đồng biến trên khoảng B.Hàm số nghịch biến trên khoảng
C Hàm số đồng biến trên khoảng D Hàm số nghịch biến trên khoảng
Hướng dẫn giải: Chọn B
Dựa vào đồ thị hàm số ta có:
Khi đó, hàm số đồng biến trên các khoảng
hàm số nghịch biến trên các khoảng
Ví dụ 4: Khoảng đồng biến của hàm số 3
3 4
A 0;1 B 0;2 C ; 1và1; D 1;1
Hướng dẫn giải:Chọn D
y f x
f x x f x 0 x ; 2 0; 2
y f x ( 2; 0), (2; + )
y f x ( ; 2), (0; 2)
Trang 3Ta có 2
' 3 3; ' 0 1
Từ bảng xét dấu của y’ ta có hàm số đồng biến trên 1;1
Ví dụ 5 : Cho hàm số 3 2
2 6 6 2017
y x x x Mệnh đề nào dưới đây sai?
nghịch biến trên
C Trên khoảng ; 2 hàm số đã cho đồng biến.D Trên khoảng 2; hàm số đã cho đồng biến
Hướng dẫn giải:Chọn B
+ TXĐ: D R
+ 2 2
6 12 6 6 1 0;
y x x x x R (Dấu '' '' chỉ xảy ra tại x 1 )
Suy ra hàm số đồng biến trên R
Ví dụ 6: Cho hàm số 3 2
3 4
y x x Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng 2;0 B Hàm số đồng biến trên khoảng 0;
C Hàm số đồng biến trên khoảng ; 2 D Hàm số đồngbiến trên khoảng 2;0
Hướng dẫn giải:Chọn D
2 2
0
x
x
Lập bảng biến thiên, hàm số đồng biến trên khoảng 2;0
8 4
y x x Các khoảng đồng biến của hàm số là
A 2;0 và 2; B 2;0 và 0;2
C ; 2 và 0;2 D ; 2 và 2;
Hướng dẫn giải:Chọn A
Tập xác định: D
Đạo hàm 3
4 16
2
x
x
Bảng biến thiên:
Vậy hàm số đồng biến trên các khoảng 2;0 và 2;
Ví dụ 8: Hàm số 4 2
4 1
y x x nghịch biến trên mỗi khoảng nào sau đây?
A 2; 2.B 3;0; 2;.C 2;0 ; 2;D ( 2;)
Hướng dẫn giải:Chọn C
3
4 8
0 0
2
x y
x
Lập bảng biến thiên, suy ra hàm số nghịch biến trên mỗi khoảng 2;0 ; 2;
Ví dụ 9: Cho hàm số
2 1
x y
x Xét các mệnh đề sau
Trang 41) Hàm số đã cho đồng biến trên ; 1 1; .2) Hàm số đã cho đồng biến trên \ 1
3) Hàm số đã cho đồng biến trên từng khoảng xác định
4) Hàm số đã cho đồng biến trên các khoảng ; 1 và 1;
Số mệnh đề đúng là :A 3 B 2 C 1 D 4
Hướng dẫn giải:Chọn B
Ta có
1
0 x 1 1
y
Suy ra hàm số đã cho đồng biến các khoảng ; 1 và 1;
Do đó chỉ có mệnh đề 3 và 4 đúng nên chọn đáp án B
Ví dụ 10 : Cho hàm số
3 2
x y
x Khẳng định nào sau đây là khẳng định đúng:
A Hàm số đồng biến trên B Hàm số đồng biến trên khoảng ; 2 2;
C Hàm số nghịch biến trên \ 2 .D Hàm số nghịch biến trên mỗi khoảng ; 2 và 2;
Hướng dẫn giải:Chọn D
0
x
2
y x x nghịch biến trên khoảng nào
Hướng dẫn giải:Chọn C
Tập xác định D 0;2
Ta có
2
1 2
x y
x x
; y 0 x 1 Bảng biến thiên:
Vậy hàm số nghịch biến trên khoảng 1;2
Ví dụ 12 (ĐỀ CHÍNH THỨC 2016 – 2017) Cho hàm số y x3 mx24m9x5 với m là tham số
Có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng ; ?
Hướng dẫn giải: TXĐ: D Đạo hàm 2
' 3 2 4 9
Để hàm số đã cho nghịch biến trên khoảng ; thì y' 0, x (y' 0 có hữu hạn nghiệm)
' 0 m 3 4m 9 0 9 m 3
m m 9; 8; ; 3 Chọn C
Sai lầm hay gặp là ''Để hàm số đã cho nghịch biến trên khoảng ; thì y' 0, x '' Khi đó
ra giải ra 9 m 3 và chọn D
Trang 5
2
4 3
m
5
3 2
3
2 2
2
m
m
Ví dụ 13: Tìm tập hợp tất cả các giá trị của tham số thực m để hàm số 1 3 2
4 3
y x mx x m đồng biến trên khoảng ;
A ; 2 B 2; C 2;2 D ;2
Hướng dẫn giải:Chọn C
Ta có: 2
Hàm số đồng biến trên khoảng ; khi và chỉ khi y 0, x ;
Ví dụ 14: Gọi S là tập hợp các số nguyên m để hàm số
2 3
3 2
y
x m đồng biến trên khoảng ; 14
Tính tổng T của các phần tử trong S. A T 9. B T 5. C T 6 D T 10
Hướng dẫn giải: TXĐ:D \ 3 m2 Đạo hàm
m y
Hàm số đồng biến trên khoảng ; 14 y' 0, x ; 14
m
x
4 m 1 m m 4; 3; 2; 1;0 T 10. Chọn D
Ví dụ 15: Có bao nhiêu giá trị nguyên của tham số thực m thuộc khoảng 1000;1000 để hàm số
y x m x m m x đồng biến trên khoảng 2;?
A 999 B 1001 C 998 D 1998
Xét phương trình /
0
y có 2
2m 1 4m m 1 1 0, m Suy ra phương trình /
0
y luôn có hai nghiệm x1x2 với mọi m
Theo định lí Viet, ta có
1 2
1
x x m m
Để hàm số đồng biến trên 2; phương trình /
0
y có hai nghiệm x1x2 2
1
m
m m 999; 998; ;1
Vậy có 1001 số nguyên m thuộc khoảng 1000;1000 Chọn B
Vậy hàm số luôn tăng trên ;1 và 1; với m1
Trang 6Ví dụ 16: Cho hàm số y f x có đạo hàm trên Đường cong trong
hình vẽ bên là đồ thị của hàm số yf x , f x liên tục trên Xét
hàm số 2
2
g x f x Mệnh đề nào dưới đây sai?
A Hàm số g x nghịch biến trên khoảng ; 2
B Hàm số g x đồng biến trên khoảng 2;
C Hàm số g x nghịch biến trên khoảng 1;0
D Hàm số g x nghịch biến trên khoảng 0;2
Hướng dẫn giải: Giả sử 2
2
x
x
Do đó hàm số g x nghịch biến trên khoảng 0;2 và ; 2 Chọn C
C BÀI TẬP TRẮC NGHIỆM:
Câu1: Khoảng đồng biến của hàm số 3
3 4
A 0;1 B 0;2 C ; 1và1; D 1;1
Câu 2: Hàm số 3 2
y x x x đồng biến trên những khoảng nào sau đây?
Câu 3 Cho hàm số 3 2
2 6 6 2017
y x x x Mệnh đề nào dưới đây sai?
nghịch biến trên
C Trên khoảng ; 2 hàm số đã cho đồng biến
D Trên khoảng 2; hàm số đã cho đồng biến
Câu 4 Hàm số 3 2
3 9 4
y x x x nghịch biến trên:
A 3; .B ;1 C 3;1 D ; 3; 1;
Câu 5 Cho hàm số 3 2
3 4
y x x Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng 2;0 B Hàm số đồng biến trên khoảng 0;
C Hàm số đồng biến trên khoảng ; 2 D Hàm số đồngbiến trên khoảng 2;0
Câu 6 Khoảng đồng biến của hàm số 3 2
3 9 4
A ; 3 B 3;1 C 3; D 1;3
Câu 7 Cho hàm số 4 2
8 4
y x x Các khoảng đồng biến của hàm số là
A. 2;0 và 2; B 2;0 và 0;2
C ; 2 và 0;2 D ; 2 và 2;
Câu 8 Hàm số 3 2
y x x x đồng biến trên những khoảng nào sau đây?
Câu 9 Cho hàm số yf x 2x33x212x5 Mệnh đề nào sau đây sai?
A f x đồng biến trên khoảng 0;2 B f x đồng biến trên khoảng 1;1
C f x nghịch biến trên khoảng 1; D f x nghịch biến trên khoảng ; 3
Câu 10 Cho hàm số 1 3 2
2 3 1 3
y x x x Tìm mệnh đề đúng:
A Hàm số đồng biến trên khoảng 3; B Hàm số nghịch biến trên khoảng ;1
Trang 7C Hàm số đồng biến trên khoảng ;1 D Hàm số nghịch biến trên khoảng 1;3
Câu 11 Hàm số 1 4 2
3 5 2
y x x đồng biến trong khoảng nào sau đây?
A 0; B ;0 C ; 3 D 1;5
Câu 12 Hàm số 4 2
4 1
y x x nghịch biến trên mỗi khoảng nào sau đây?
C 2;0 ; 2; D ( 2;)
Câu 13 Hàm số y x4 8x26 đồng biến trên khoảng nào dưới đây?
A ( 2;2). B ( ; 2) và (0;2)
C ( ; 2) và (2;) D ( 2;0) và (2;)
Câu 14 Hàm số yx42x21 đồng biến trên khoảng nào trong các khoảng sau?
A 4; 3 B 1;0 C 0;1 D ; 1
Câu 15 Cho hàm số
2 1
x y
x Xét các mệnh đề sau
1) Hàm số đã cho đồng biến trên ; 1 1; 2) Hàm số đã cho đồng biến trên \ 1 3) Hàm số đã cho đồng biến trên từng khoảng xác định
4) Hàm số đã cho đồng biến trên các khoảng ; 1 và 1;
Số mệnh đề đúng là
Câu 16 Cho hàm số 2
x y
x Mệnh đề nào đưới đây là đúng?
A Hàm số nghịch biến trên tập xác định.B Hàm số nghịch biến trên hai khoảng ;0 và 0;
C Hàm số đồng biến trên ;0 0;
D Hàm số đồng biến trên hai khoảng ;0 và 0;
Câu 17 Cho hàm số
3 2
x y
x Khẳng định nào sau đây là khẳng định đúng:
A Hàm số đồng biến trên B Hàm số đồng biến trên khoảng ; 2 2;
C Hàm số nghịch biến trên \ 2 .D Hàm số nghịch biến trên mỗi khoảng ; 2 và 2;
Câu 18 Cho hàm số
2 1
x y
x Khẳng định nào sau đây đúng?
A Hàm số đồng biến trên mỗi khoảng ;1 và 1;
B Hàm số nghịch biến trên mỗi khoảng ;1 và 1;
C Hàm số đồng biến trên \ 1 D Hàm số đồng biến với mọi x1
Câu 19 Cho hàm số
2 1
x y
x Khẳng định nào dưới đây là khẳng định đúng
A Hàm số đồng biến trên mỗi (từng) khoảng ;1 và 1;
B Hàm số nghịch biến trên mỗi (từng) khoảng ;1 và 1;
C Hàm số nghịch biến trên \ 1 D Hàm số nghịch biến với mọi x1 Câu 20 Xét tính đơn điệu của hàm số
2 1 1
x y x
A Hàm số đồng biến trên các khoảng ;1 1;
B Hàm số nghịch biến trên các khoảng ;1 và 1;
Trang 8C Hàm số nghịch biến trên tập xác định D \ 1 D Hàm số nghịch biến trên khoảng ; .
Câu 21 Cho hàm số
2 1
x y
x Khẳng định nào sau đây đúng?
A Hàm số đồng biến trên mỗi khoảng ;1 và 1;
B Hàm số nghịch biến trên mỗi khoảng ;1 và 1;
C Hàm số đồng biến trên \ 1 D Hàm số đồng biến với mọi x1
Câu 22 Hàm số 2
2
y x x nghịch biến trên khoảng nào
Câu 23 Hàm số
2
2 3 1
x y
x nghịch biến trên khoảng nào trong các khoảng dưới đây?
A ; 1 và ;
3 1
2 B ;
3
3 1
2 D ; 1
Câu 24 Cho các hàm sốyx5x32 ;x yx31;y x3 x 4sinx Trong các hàm số trên có bao nhiêu hàm số đồng biến trên tập xác định của chúng
Câu 25 Hình vẽ dưới đây là đồ thị hàm số
ax b
Mệnh đề nào dưới đây đúng?
A ad0 và bd0 B ad0 và ab0 C bd0 và ab0 D ad0 và ab0
Câu 26 Biết rằng bảng biến thiên sau là bảng biến thiên của một hàm số trong các hàm số được liệt kê ở các phương án A, B, C, D dưới đây Hỏi hàm số đó là hàm số nào?
Câu 27 Bảng biến thiên ở hình dưới là của một trong bốn hàm số được liệt kê dưới đây Hãy tìm hàm số
đó
2 3
1
x
y
2 3 1
x y
2 3 1
x y
1 2
x y
x
Câu 28 Hàm số nào sau đây luôn nghịch biến trên từng khoảng xác định của nó?
1 2
x
y
x
2 1 2
x y x
2 5 2
x y x
3 2
x y x
y
1
+ ∞
Trang 9A
8
3
x
y
3 1 1
x y
1 3
x y
3 2
5 7
x y
x
Câu 29 Hàm số nào sau đây đồng biến trên ; ?
A yx4x22 B yx3 x 2 C yx2 x 1 D yx3 x 1
Câu 30 Hàm số nào dưới đây đồng biến trên tập ?
Câu 31 Hàm số nào sau đây đồng biến trên ?
A
1
2
x
y
x .B yx34x23 – 1x C yx4 – 2x2 – 1.D 1 31 2
3 1
3 2
Câu 32 Trong các hàm số sau, hàm số nào nghịch biến trên khoảng 1;1?
A y1
3 1
y x x C y 12
x D y 1
x
Câu 33 Hàm số nào sau đây đồng biến trên ?
1
2
x
y
x .B yx34x23 – 1x C yx4 – 2x2 – 1.D 1 31 2
3 1
3 2
Câu 34: Cho hàm số y f x( ) có bảng xét dấu đạo hàm như sau
Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng ( 2;0) B Hàm số đồng biến trên khoảng (;0)
C Hàm số nghịch biến trên khoảng (0;2) D Hàm số nghịch biến trên khoảng ( ; 2) Câu 35 : Cho hàm sốy f x có đạo hàm 2
1
f x x , x Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng ;0 B Hàm số nghịch biến trên khoảng 1;
C Hàm số nghịch biến trên khoảng 1;1 D Hàm số đồng biến trên khoảng ;
Câu 36: Cho hàm số xác định trên , liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau
Chọn khẳng định đúng?
A.Hàm số nghịch biến trên (;0) (1; ) B Hàm số nghịch biến trên (0;1)
C.Hàm số đồng biến trên khoảng (1;) D Hàm số đồng biến trên (0;1)
Câu 37: Cho hàm số y f x có đồ thị như hình vẽ bên
Nhận xét nào sau đây là sai ?
A Hàm số nghịch biến trên khoảng 0;1
B Hàm số đồng biến trên khoảng 1;
C Hàm số đồng biến trên mỗi khoảng khoảng ;0 và
1;
D Hàm số đồng biến trên khoảng ;3 và 1;
Câu 38 Tìm tất các các giá trị thực của tham số m để hàm số yx33x2mx m đồng biến trên tập xác định
A m1 B m3 C 1 m 3 D m3
2
1
1
y x
( )
y
x
-1 -1
3 2 1
O 1
Trang 10Câu 39 Có bao nhiêu giá trị nguyên của tham số thực m thuộc khoảng 1000;1000 để hàm số
y x m x m m x đồng biến trên khoảng 2;?
A 999 B 1001 C 998 D 1998
Câu 40 (ĐỀ CHÍNH THỨC 2016 – 2017) Cho hàm số
2 3
y
x m với m là tham số thực Gọi S
là tập hợp tất cả các giá trị nguyên của m để hàm số đồng biến trên các khoảng xác định Tìm số phần tử
của S
A 5 B 4 C Vô số D 3
Câu 41 Nếu hàm số y f x đồng biến trên khoảng 0;2 thì hàm số y f 2x đồng biến trên khoảng nào?
A 0;2 B 0;4 C 0;1 D 2;0
Câu 42 : ( Đề chính chức 2019) : Cho hàm số f x , bảng xét dấu f x như sau:
Hàm số yf5 2 x nghịch biến trên khoảng nào dưới đây?
A 5; B 2;3 C 0;2 D 3;5
BẢNG ĐÁP ÁN
41 42
C C