1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tạo tình huống có vấn đề trong dạy học môn Toán/Bài toán chưa có thuật giải pptx

4 1,3K 9

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 136,66 KB

Nội dung

Ví dụ 2: Hình thành khái niệm phương trình tổng quát của đường thẳng Bài toán: “Cho đường thẳng d đi qua điểm và có vectơ pháp tuyến.. Điểm M1;2 có nằm trên đường thẳng d không?” Từ đó

Trang 1

Tạo tình huống có vấn đề trong dạy học môn

Toán/Bài toán chưa có thuật giải

Yêu cầu học sinh giải bài toán mà họ chưa biết thuật toán để giải

nó có thể là một tình huống gợi vấn đề

Ví dụ 1:

Hình thành phương pháp chứng minh

Bài toán: Cho A = 2000.2000 và B = 1999.2001 Hãy tìm cách

nhanh nhất để so sánh hai phép tính trên

Bài toán này đòi hỏi học sinh phải phát hiện đặc điểm của các số

đã cho:

Nếu đặt 2000 = n thì A = n2 còn B = (n - 1)(n + 1) = n2 - 1

Như vậy A lớn hơn B một đơn vị

Ví dụ 2:

Hình thành khái niệm phương trình tổng quát của đường thẳng

Bài toán: “Cho đường thẳng d đi qua điểm và có vectơ pháp tuyến Điểm M(1;2) có nằm trên đường thẳng d

không?”

Từ đó dẫn đến giải quyết bài toán tổng quát hơn đó là: “Tìm

điều kiện để một điểm M(x;y) nằm trên đường thẳng d biết vectơ

pháp tuyến và một điểm mà nó đi qua.”

Ví dụ 3:

Hình thành phép cộng hai số nguyên khác dấu

Trang 2

Kiểm tra bài cũ: “Cộng hai số nguyên cùng dấu”:

Bài tập 26: “Nhiệt độ hiện tại của phòng là -5°C Nhiệt độ sắp tới tại đó là bao nhiêu biết nhiệt độ giảm 7°C?”

Sau đó giáo viên đặt vấn đề (vừa phát biểu và dùng phấn sửa dấu trừ thành dấu cộng):

 “Vậy nhiệt độ sắp tới là bao nhiêu biết nhiệt độ vẫn giảm 7°C và nhiệt độ hiện tại của phòng là +5°C”

 Muốn biết nhiệt độ sắp tới tại phòng là bao nhiêu, ta đặt phép tính gì?

Dự kiến:

 Nếu học sinh trả lời: “(+5) – 7” thì GV công nhận là đúng

và nói đây là phép trừ hai số nguyên, ta sẽ học sau Còn cách nào khác không?

 Nếu học sinh trả lời: “(+5) + (-7)” thì GV giới thiệu đây là phép cộng hai số nguyên khác dấu vậy kết quả của phép cộng này bằng bao nhiêu, đó là nội dung bài học hôm nay

 GV ghi đầu bài: §5 Cộng hai số nguyên khác dấu

Nhận xét: Cách làm này khá phổ biến và hay được dùng trong

dạy học vì nó cho phép thực hiện đồng thời một lúc hai chức năng: một là kiểm tra bài cũ (tạo tiền đề) và hai là đặt vấn đề vào bài mới Hơn nữa thực tế chứng tỏ học sinh rất thích thú cách đặt vấn đề như trên vì nó gây được sự ngạc nhiên và hứng thú cũng như sự tò mò

Ví dụ 4:

Hình thành công thức cộng lượng giác

Trang 3

Bài toán: Không dùng máy tính, hãy tính các giá trị lượng giác:

a) sin(-315°) b) cos(375°)

Dự kiến:

 Câu a là quen thuộc: học sinh sẽ giải bằng cách quy gọn góc dẫn về góc đặc biệt

 Câu b tình hình lại khác: sau khi quy gọn góc bài toán trở thành tính giá trị lượng giác của một góc không đặc biệt

:

Vấn đề chính là ở chỗ ta chưa biết cosin của cung 15° bằng

bao nhiêu?

 Nhưng nhận xét rằng 15° = 60° - 45° = 45° - 30° tức là góc cần tính được biểu diễn qua hiệu của hai góc đặc biệt (hai góc đã biết giá trị lượng giác)

 Điều đó có nghĩa là nếu ta xây dựng được công thức biểu diễn cos15° qua giá trị lượng giác của các góc 60°, 45° và 30° thì bài toán được giải quyết

Từ đó giáo viên khái quát hóa:

“Biết giá trị lượng giác của các cung a và b Dùng công thức gì để tính các giá trị lượng giác của các cung a + b và

a – b”

Trang 4

Chú ý: Ở các bài trước học sinh đã biết phương pháp để tính giá

trị lượng giác của một góc đó là phải quy góc đó về các góc đặc biệt hay các góc đã biết giá trị lượng giác

Ngày đăng: 22/06/2014, 13:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w