1. Trang chủ
  2. » Luận Văn - Báo Cáo

Áp dụng mô hình var và chuỗi cổ phiếu sam

25 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Áp Dụng Mô Hình Var Và Chuỗi Cổ Phiếu Sam
Tác giả Tăng Thị Thu Phương
Trường học Khoa Toán kinh tế
Chuyên ngành Toán kinh tế
Thể loại đề ỏn mụn học
Năm xuất bản 48
Thành phố Thành Phố Hồ Chí Minh
Định dạng
Số trang 25
Dung lượng 336,42 KB

Nội dung

Nó đã được thiết lập ở hầu hết các nước có nền kinh tế thị trườngvà có thể nói không một nước nào có nền kinh tế phát triển mà không có sự hoat độngcủa thị trường chứng khoán.Nhận thức đ

Đề án mơn học Khoa Tốn kinh tế LỜI MỞ ĐẦU Trong kinh tế thị trường, tồn tài phát triển thị trường tài tất yếu khách quan Với chức quan trọng dẫn vốn từ nơi thừa vốn đến nơi thiếu vốn, tác động trực tiếp đến hiệu đầu tư cá nhân, doanh nghiệp, đến hành vi tiêu dùng tới động thái chung kinh tế Bởi tồn thị trường tài tất yếu gắn với phát triển mạnh mẽ thị trường chứng khoán Trên giới thị trường chứng khốn hình thành từ lâu đến có phát triển mạnh mẽ Nó thiết lập hầu có kinh tế thị trường nói khơng nước có kinh tế phát triển mà khơng có hoat động thị trường chứng khốn Nhận thức đươc tầm quan trọng thị trường chứng khốn, Việt Nam thức đưa thị trường chứng khoán vào hoạt động với khai trương trung tâm giao dịch chứng khốn thành phố Hồ Chí Minh vào ngày 20/7/2000 Tính đến thị trường chứng khốn Việt Nam hình thành năm, có bước tiến định Thị trường chứng khoán thị trường lợi nhuận rủi ro Khi tham gia vào thị trường nhà đầu tư mong muốn kì vọng đạt lợi nhuận cao Tuy nhiên lợi nhuận ln kèm với rủi ro Vì nhà đầu tư cần phải chuẩn bị thông tin, kiến thức vốn tư khả chấp nhận rủi ro đầu tư Thị trường chứng khoán kênh đầu tư tiềm ẩn nhiều rủi ro phương pháp giảm thiểu rủi ro đầu tư vào nhiều loại chứng khoán khác Nhà đầu tư chứng khốn ln mong muốn đạt lợi nhuận cao mà rủi ro thua lỗ thấp Nếu dồn tồn khoản tiền có vào loại cổ phiếu nhầt nguy thua lỗ cổ phiếu giảm giá rõ ràng Với kiến thức lý thuyết thực tiễn, em lựa chọn ứng dụng mơ hình VaR vào chuỗi giá cổ phiếu SAM công ty cổ phần cáp vật liệu viễn thơng Sacom, để phân tích đánh giá rủi ro loại cổ phiếu làm đề án mơn học Tăng Thị Thu Phương Tốn kinh tế 48 Đề án mơn học Khoa Tốn kinh tế CHƯƠNG LÝ THUYẾT VỀ MƠ HÌNH VAR (VALUE AT RISK ) Khái niệm giá trị rủi ro (VaR) Mơ hình VaR (Vector autoregressive models) mơ hình véc tơ biến số tự hồi quy Mỗi biến số phụ thuộc tuyến tính vào giá trị trễ biến số giá trị trễ biến số khác Mơ hình VaR dạng tổng qt: Yt = A1Yt-1+ A2Yt-2 + … + ApYt-p + St + ut (1.1) [ Y t ¿] [ Y t ¿] [ ¿ ] ¿ [ u1 t ¿ ] [ u2 t ¿ ] [ ¿ ] ¿ ¿ ¿ Y t = ; u t = ; Ai (i=1,2,…,p): ma trận vuông cấp m*m; St = (S1t, S2t, …, Smt) Y bao gồm m biến ngẫu nhiên dừng; u véc tơ nhiễu trắng; S t véc tơ biến xác định, bao gồm số, xu tuyến tính đa thức Viết dạng tốn tử trễ, ta có: Yt = (A1L + A2L2 + … + ApLp)Yt + St + ut Mơ hình (1.1) gọi mơ hình VaR cấp p, ký hiệu VaR(p) Mơ hình VaR(p) tương đương với mơ hình VaR(1) sau đưa thêm biến thích hợp Kết luận quan trọng mơ hình VaR(1) mơ tả cơng thức đơn giản quan sát cách trực giác Yt = A1Yt-1 + St + ut Giả sử m = 2, ta có: [Y 1t ¿] ¿ ¿¿ ¿ [a 11 [ [a 21 = a12 ]a22 ] ¿ [Y 1t−1 ¿] ¿ ¿¿ ¿ + [S1t ¿] ¿ ¿¿ ¿ + [u1t ¿] ¿ ¿¿ ¿ Dạng hiển: Y1t = a11Y1t-1 + a12Y2t-1 + S1t + u1t Y2t = a21Y1t-1 + a22Y2t-1 + S2t + u2t Ta nhận thấy AR(1) bước ngẫu nhiên A1 ma trận đơn vị Giả sử St véc tơ số: [a 11 [ [a 21 Tăng Thị Thu Phương a12 ]a22 ] ¿ [1 [ = [0 ]1 ] ¿ , St = (S1, S2)’ Tốn kinh tế 48 Đề án mơn học Khoa Toán kinh tế Xét AR(2): [Y 1t ¿] ¿ ¿¿ ¿ [a 11 [ [a 21 = a12 ]a22 ] ¿ [Y 1t−1 ¿] ¿ ¿¿ ¿ b12 ]b22 ] ¿ [b 11 [ [b + 21 [Y 1t−2 ¿ ]¿ ¿¿ ¿ + [S1t ¿] ¿ ¿¿ ¿ + [u1t ¿] ¿ ¿¿ ¿ Ta đặt Xt = Yt-1 Khi AR(2) viết lại sau: Y1t = a11Y1t-1 + a12Y2t-1 + b11X1t-1 + b12X2t-1 + S1t + u1t Y2t = a21Y1t-1 + a22Y2t-1 + b21X1t-1 + b22X2t-1 + S2t + u2t X1t = Y1t-1 X2t = Y2t-1 Hay viết dạng ma trận ta có: [ Y 1t ¿] [ Y 2t ¿ ] [ X t ] ¿ ¿ ¿ = [ a11 a12 b 11 b12 a21 a22 b21 b 22 0 0 0 [Y1t−1¿][Y2t−1¿][X1t−1 ]¿¿ 0 0 0 0 0 0 0 ]¿ [ ] + [S1t¿][S21¿][0¿] ¿ + ¿ + [u1t¿][u2t¿][0¿] ¿ ¿ Có thể tổng quát hóa cách trên, mơ hình AR(p) hay VaR(p) biến đổi thành mơ hình VaR(1) cách thêm vào biến số thích hợp Một mơ hình VaR(p) có m phương trình dạng: Yt = (A1L + A2L2 + … + ApLp)Yt + St + ut biến đổi thành mơ hình VaR(1) có m*p phương trình: Yt* = AY*t-1 + St + ut Trong đó: Tăng Thị Thu Phương Tốn kinh tế 48 Đề án mơn học Khoa Toán kinh tế [ Y t ¿ ] [ Y t− ¿ ] [ ¿ ] ¿ ¿ ¿ Yt = ¿ , A= [ A1 Im A2 I m 0 0 A p−1 Ap 0 0 Im 0 ] [ S t ¿ ] [0 ¿ ] [ ¿ ] ¿ , St = ¿ , ut = [ut¿][0¿][ ¿] ¿ ¿ ¿ Y t , St, ut véc tơ cấp mp ¿ 1; Ma trận mp ¿ mp Như vậy, để tìm lời giải dạng hiển VaR(p) bậc cao cần xét mơ hình AR(1)  Ưu điểm mơ hình VaR:  Giá rị biến số mơ hình VaR phụ thuộc vào giá trị khứ biến số Do đó, việc ước lượng phương trình khơng địi hỏi thơng tin khác ngồi biến số mơ hình Vì khơng có quan hệ đồng thời biến số nên người ta sử dụng OLS phương pháp ước lượng hợp lý cực ước lượng phương trình mơ hình  Khi dự báo, sử dụng mơ hình VaR sử dụng ngắn hạn trường hợp sử dụng dự báo động  Nhược điểm mơ hình VaR:  Mơ hình VaR địi hỏi biến số biến dừng  Mô hình VaR(p) với p khơng cho trước nên khơng thể biết độ dài trễ bao nhiêu?  Mô hình VaR khơng dùng để phân tích sách  Khi ước lượng đòi hỏi số quan sát nhiều mơ hình có nhiều phương trình Phương pháp xác định giá trị rủi ro (VaR) 2.1 Phương pháp Risk metrics 2.1.1 Nội dung J.P Morgan phát triển phương pháp luận RiskMetrics để tính VaR đến năm 1995 Long & More thực nghiệm Kí hiệu: rt lợi suất hàng ngày liên tiếp danh mục đầu tư Ft-1 hàm phân phối tích lũy, phản ánh lượng thơng tin thu thập thời kì t-1 Các giả thiết: rt / Ft-1 ~ N(µt,σ2t) Tăng Thị Thu Phương Tốn kinh tế 48 Đề án mơn học Khoa Tốn kinh tế Trong đó: µt trung bình có điều kiện rt σ2t phương sai có điều kiện  RiskMetrics giả định , rt/Ft ~ N  t ,  t2  , μt trung bình có điều kiện &  t phương sai có điều kiện rt  Phương pháp giả định rằng: µt σ2t tn theo mơ hình chuỗi thời gian sau: µt = r t = ut (2.1) σ2t = ασ2t-1 + (1-α)rt-1 với (0 < α < 1) Trong đó: ut =σt*εt q trình IGARCH(1,1) khơng có bụi; giá trị α thường khoảng (0.9;1) Một thuộc tính tốt bước ngẫu nhiên mơ hình IGARCH phân phối có điều kiện tổng lợi suất dễ dàng đạt Đặc biệt, cho k thời kỳ , lợi suất r k r   r r t k  t k từ điểm (t+1) đến thời điểm (t+k) là: t   t 1 Chúng ta sử dụng ngoặc vuông [k] biểu thị lợi suất k thời kỳ Dưới mơ hình đặc biệt IGARCH(1,1) phương trình (2.1), phân phối có r σ t t điều kiện [k]: Ft chuẩn với giá trị trung bình phương sai [k] Ở đây, σ t [ k ] tính theo phương pháp dự báo mơ hình độ dao động Sử dụng giả thiết t độc lập phương trình (2.1) ta có: k σ 2t Ở đây, [ k ] =VaR ( r t [ k ] / F t ) =∑ VaR ( ut +i /F t ) i=1 VaR(ut +i /F t )= E(σ 2t +1 / Ft ) thu cách đệ quy r =u =σ ∗ε Sử dụng t−1 t−1 t−1 t−1 , viết lại phương độ dao động phương trình IGARCH(1,1) phương trình (1.2) sau: 2 2 σ t =σ t−1 +(1−α )∗σ t−1∗(ε t−1−1) ∀t Trong trường hợp riêng, ta có: 2 2 σ t +i =σ t+i−1 +(1−α )∗σ t+i−1∗(ε t+i−1 −1) Với i = , ,k Vì, E ( ε t +i−1 / F t )=0 ∀ i≥2 Phương trình trước rằng: Tăng Thị Thu Phương Tốn kinh tế 48 Đề án mơn học Khoa Toán kinh tế E ( σ 2t +i / F t ) =E ( σ 2t +i −1 / F t ) ; với i= 2, ., k (2.2) Với dự báo mức độ dao động bước tiếp theo, phương trình (2.1) 2 rằng: σ t +1 =α∗σ t +(1−α )∗r t Vì thế, phương trình (2.2) cho thấy VaR(r t +i /F t )=σ t+1 với i≥1 Từ đó, 2 σ t [ k ] =k∗σ t +1 r [ k ] /F (0 , kσ t+1 ) Vì vậy, mơ hình t t Kết  IGARCH(1,1) phương trình (2.1), phương sai có điều kiện r t [ k ] , k tỷ lệ theo theo thời gian k∗σ t+1 Độ lệch tiêu chuẩn có điều kiện lợi suất k thời kỳ √ Nếu vị tài trường vị, phần xảy có sụt giảm giá lớn (như lợi suất âm lớn) Nếu xác suất thiết lập tới 5% RiskMetrics 1,65∗σ t+1 để đo lường rủi ro danh mục đầu tư Điều có nghĩa, sử dụng điểm phân vị 5% có phân phối chuẩn với giá trị trung bình độ lệch tiêu σ 1,65∗σ t+1 , dấu âm bị loại bỏ chuẩn t +1 Điểm phân vị 5% thực việc hiểu dấu hiệu phần bị Vì vậy, độ lệch tiêu chuẩn đo lường % VaR hàng ngày danh mục đầu tư RiskMetrics : VaR = Giá trị danh mục t * Ứng với k ngày là: 1,65∗σ t+1 VaR(k) = Giá trị danh mục t * 1,65 √ k∗σ t +1 Ở đối số k VaR sử dụng để biểu thị cho trục thời gian Vì VaR k  k *VaR   RiskMetrics có : Điều quy tắc bậc hai thời gian tính tốn VaR RiskMetrics Với mơ hình RiskMetrics có quy tắc bậc hai thời gian: σ (k )=√ k σ t +1 Giả sử ta muốn tính giá trị rủi ro danh mục qua ngày với 5% xác suất mà phần thực giá trị danh mục lớn giá trị ước lượng VaR Việc tính tốn giá trị rủi ro gồm bước sau: Tăng Thị Thu Phương Tốn kinh tế 48 Đề án mơn học Khoa Toán kinh tế  Xác định giá trị thị trường hành danh mục (mark-to-market), biểu thị giá trị V0  Xác định giá trị tương lai danh mục : V theo công thức V1=V0*er Ở đây, r biểu diễn lợi suất thu danh mục đầu tư theo thời gian Với ngày bước tính khơng cần thiết RiskMetrics giả định lợi suất r =  Tính giá trị dự báo lợi suất ngày danh mục biểu thị giá trị r^ , để 5% xác suất giá trị thực nhỏ r^ Được biểu thị theo công thức sau: Probability( r < r^ ) = 5% rˆ ˆ ˆ  Xác định giá trị xấu danh mục tương lai: Vt , V1 V0e Giá ˆ trị rủi ro đo lường cách đơn giản là: V0  V1 Việc đánh giá VaR viết rˆ V0(1-er) Trong trường hợp này, rˆ giá trị đủ nhỏ e 1  rˆ VaR sấp xỉ V0 rˆ Để minh họa cho phương pháp Risk metrics này, ta có ví dụ sau: Nhà đầu tư có danh mục với giá trị 100 triệu đồng tài sản A với, biết σ = 7% α = 5% (phương sai lợi suất theo ngày tài sản) VaR = 100(-1,65)7% = - 11,69 (triệu đồng) Từ ta thấy nhà đầu tư định đầu tư vào danh mục phải chấp nhận khoản tiền rủi ro xảy 11.69 triệu đồng Tính VaR theo mơ hình RiskMetrics dễ dàng, dễ hiểu phương pháp nhiều ngân hàng, tổ chức tài sử dụng Tuy nhiên trường hợp chuỗi lợi suất không tuân theo phân bố chuẩn (tức có đồ thị hàm mật độ khơng đối xứng) ước lượng VaR thấp quy tắc bậc hai thời gian khơng cịn Từ thực tế đòi hỏi phải sử dụng phương pháp khác để tính VaR 2.1.2 Ưu, nhược điểm phương pháp  Ưu điểm: Một lợi ích RiskMetrics tính tốn dễ dàng, dễ hiểu ứng dụng Một lợi ích khác phương pháp tính tốn rủi ro rõ ràng thị trường tài  Nhược điểm: Khi mức lợi suất có phần dày, giả định mang tính chuẩn hóa sử dụng kết việc giá trị ước lượng VaR thấp Một cách tiếp cận khác để tính VaR tránh đưa giả định Tăng Thị Thu Phương Tốn kinh tế 48 Đề án mơn học Khoa Toán kinh tế Quy tắc bậc hai thời gian kết mơ hình đặc biệt sử dụng RiskMetrics Nếu giả định giá trị trung bình giả định mơ hình đặc biệt IGARCH(1,1) lợi suất khơng đạt được, quy tắc khơng có giá trị Ta xem xét ví dụ đơn giản: r t =μ+u t ; ut =ε t∗σ t ; μ≠0 σ 2t =α∗σ 2t−1 +(1−α )∗u 2t−1 Ở đây, { ε t } chuỗi nhiễu trắng theo tiêu chuẩn Gauxơ Với giả định μ≠0 , ứng với việc nắm giữ lợi suất nhiều cổ phiếu có khối lượng giao dịch r /F lớn thị trường Trong mô hình đơn giản này, phân phối t+1 t  N ( μ ;σ t+1 ) Sử dụng điểm phân vị phân phối có điều kiện ta tính VaR sau: Với điểm phân vị 5% VaR = μ−1 , 65∗σ t+1 Với điểm phân vị 1% VaR = μ−2 , 33∗σ t+1 r [ k ] /F N (kμ ;kσ t+1 ) Điểm phân vị 5% t t Ứng với k thời kỳ, phân phối  sử dụng phép tính VaR k thời kỳ là: VaR = kμ−1 ,65 √ k∗σ t+1= √ k ( √ k μ−1 ,65∗σ t+1 ) Do đó, VaR ( k )≠ √ k∗VaR lợi suất trung bình khác Điều dễ dàng quy tắc không đạt mơ hình độ dao động IGARCH(1,1) lợi suất khơng phải mơ hình khơng có bụi ( hay mơ hình khơng có độ dịch) Ví dụ: Dựa vào mơ hình Garch dự báo sau thời kì lợi suất cổ phiếu theo ngày SAM 11% độ lệch chuẩn theo ngày 7% Với mức ý nghĩa 5% ta có: VaR = 0,11 - 1,65*0,07 = - 0,0055 = - 0,55% Từ ví dụ ta thấy: với mức độ dao động cổ phiếu 8% nhà đầu tư tiếp tục đầu tư vào cổ phiếu SAM gánh chịu lượng tổn thất rủi ro cổ phiếu gây 0,0055 so với tổng giá trị danh mục đầu tư (độ tin cậy 95%) 2.2 Phương pháp tốn kinh tế để tính VaR 2.2.1 Phương pháp tốn kinh tế để tính VaR thời kỳ Xem xét loga lợi suất r t tài sản Mơ hình chuỗi thời gian chung cho r t viết là: Tăng Thị Thu Phương Tốn kinh tế 48 Đề án mơn học Khoa Toán kinh tế p q r t =φ0 + ∑ φi∗r t−i +ut − ∑ θ j∗ut− j i=1 j=1 ut =σ t∗ε t (2.3) n σ 2t =α + ∑ i=1 m α i∗u2t −i + ∑ β j∗σ 2t − j j=1 (2.4) Phương trình (2.3) (2.4) phương trình trung bình phương trình độ dao động r t , chúng thuộc lớp ARMA(p,q) GARRCH(n,m) Hai phương trình sử dụng để thu giá trị dự báo bước giá trị trung bình có điều kiện phương sai có điều kiện r t với giả định tham số biết Đặc biệt có: p q r^ t (1)=φ0 + ∑ φi r t+1−i −∑ θ j ut+1− j i=1 j=1 n m σ^ 2t (1)=α + ∑ α i u2t +1−i + ∑ β j σ 2t+1− j i=1 j=1 rt+1 Nếu giả định t nhiễu Gauxơ, phân phối có điều kiện ^2 thơng tin có thời điểm t N ( r t (1); σ t (1)) Những điểm phân vị phân phối có điều kiện dễ dàng đạt để tính VaR ^ Với điểm phân vị 5%, VaR = r t (1)−1,65∗σ t (1) Nếu giả định t phân phối chuẩn hóa student – t với m bậc tự do, ^ ^ ¿ ¿ ¿ điểm phân vị : r t (1 )−t m ( p )⋅σ t ( ) Ở đây, t m ( p ) điểm phân vị thứ p phân phối chuẩn hóa stduent – t với m bậc tự Mối quan hệ điểm phân vị phân phối student – t với m bậc tự ¿ tm biểu thị t biểu thị t¿m ; điểm phân vị phân phối chuẩn hóa student – là: p=Pr ( t m≤q ) =Pr ( tm q q =Pr t ¿m≤ √ m/( m−2 ) √ m/ ( m−2 ) √ m/( m−2 ) ≤ ) ( ) với m>2 Tăng Thị Thu Phương Tốn kinh tế 48 Đề án mơn học Khoa Tốn kinh tế Điều có nghĩa : q điểm phân vị p phân phối student – t với m bậc q tự √m/ ( m−2 ) điểm phân vị p phân phối chuẩn hóa stdent – t với m bậc tự Vì vậy, t mơ hình GARCH phương trình (2.4) phân phối chuẩn hóa student – t với m bậc tự xác suất p, điểm phân vị sử dụng để ¿ ¿ tính tốn VaR thời kỳ thời điểm t là: r t (1 )− tm ( p )⋅σ t ( ) √m/ ( m−2 ) Với t m ( p ) điểm phân vị p phân phối student – t với m bậc tự 2.2.2 Phương pháp tốn kinh tế để tính VaR nhiều thời kỳ Giả định rằng, thời điểm h thường tính VaR k thời kỳ tài sản mà lợi suất rt Biến số lợi suất lợi suất k thời kỳ thời điểm gốc dự báo h: rh[k] = rh+1+…rh+k Nếu lợi suất rt theo mơ hình chuỗi thời gian phương trình (2.3) (2.4) giá trị trung bình có điều kiện biến số rh[k] /Fk đạt phương pháp dự báo mơ hình phương sai sai số thay đổi chuỗi thời gian  Lợi suất kỳ vọng sai số dự báo Giá trị trung bình có điều kiện E(r h[k] /Fk) thu phương pháp dự báo mơ hình ARIMA Đặc biệt, có r^ h [k] = rh[1]+…+rh[k] Ở đây, rh[ ℓ ] giá trị dự báo lợi suất bước thời điểm dự báo gốc h Những dự báo thu cách đệ quy Sử dụng phép biểu diễn MA: Rt= μ + ut + ψ1ut-1 +ψ2ut-2+…+ ψnut-n mơ hình ARMA phương trình (2.3), viết sai số dự báo ℓ bước thời điểm dự báo gốc h sau: eh( ℓ ) = rh+ ℓ – rh( ℓ ) = uh+ ℓ + ψh+ ℓ uh+ ℓ -1 +… Ta có dự báo MA với  bước tiếp theo: rˆh () = μ + ψ u +ψ u +… l h l+1 h-1 (2.5) Theo phương trình (2.5) sai số dự báo kiên kết Sai số dự báo lợi suất kỳ vọng k thời kỳ rh[k] tổng sai số dự báo từ thời kỳ đến k thời kỳ r t thời điểm dự báo gốc h viết sau: eh[k] = eh(1)+…+ eh(k) Tăng Thị Thu Phương Toán kinh tế 48 Đề án mơn học Khoa Tốn kinh tế k −1 = uh+1 + (uh+2 + ψ1uh+1)+…+ ∑ i=0 ψiuh+k-i (2.6) k −1 ∑ = uh+k + (1+ ψ1) uh+k-1+…+( i=0 ψi)uh+1 Với ψ0 =  Độ dao động kỳ vọng có điều kiện Dự báo độ dao động lợi suất k thời kỳ thời điểm dự báo gốc h bíên số có điều kiện eh[k] /Fh Sử dụng giả thiết độc lập εt+i với i = 1,…,k Ở đây, i=1, ,k Ở đây, ut+i = ε t+i σt+I Chúng ta có: k −1 VaR(e h[k]/Fh)=VaR(uh+k/Fh)+(1+ψ1)2.VaR(uh+k1/Fh)+…+( ∑ i=0 ψi)2.VaR(uh+k/ Fh) Với  h () giá trị dự báo độ dao động ℓ bước thời điểm dự báo gốc h Nếu mơ hình dao động mơ hình GARCH phương trình (2.4) dao động dự báo thu cách đệ quy Thí dụ xét mơ hình chuỗi thời gian đặc biệt sau: Rt = μt + ut ut =σt*εt σt2 = α0 + α1* ut-12 + β1*σt-12 Vì có, ψi=0 với i>0 Điểm dự báo lợi suất k thời kỳ thời điểm dự báo gốc h là: r^ h [ k ] =k μ sai số dự báo liên kết là: eh[k] = uh+k+ uh+k-1 + …+ uh+1 Vì vậy, độ dao động dự báo lợi suất k thời kỳ thời điểm dự báo k ∑ σ 2h( ℓ ) gốc h là: VaR(eh[k]/Fh)= l =1 Sử dụng phương pháp dự báo mơ hình GARCH (1,1), có: σh2 ( ℓ ) = α0 + α1* uh2 + β1*σh2 σh2 ( ℓ ) = α0 + (α1 + β1) σ h (ℓ−1 ) , ℓ=2, ,k Vì vậy, VaR(rh[k]/Fh) đạt cách đệ quy Nếu εt nhiễu Gauxơ phân phối có điều kiện r h[k]/Fh chuẩn với giá trị trung bình bàng kμ phương sai VaR(rh[k]/Fh) Những điểm phân vị cần thiết phép tính VaR tính dễ dàng Tăng Thị Thu Phương Tốn kinh tế 48 Đề án mơn học Khoa Tốn kinh tế CHƯƠNG ÁP DỤNG MƠ HÌNH VAR VÀO CHUỖI CỔ PHIẾU SAM 2.1 Giới thiệu Công ty Cổ phần Cáp Vật liệu Viễn thông (SACOM) Công ty cổ phần cáp vật liệu viễn thông Sacom thành lập từ tháng 02 năm 1998 từ trình cổ phần hoá doanh nghiệp Từ thành lập vị trí bờ vực phá sản SAM trở thành công ty hàng đầu cáp vật liệu viễn thông Năm 2005 vốn điều lệ công ty tăng mạnh từ 180 tỷ lên 418 tỷ để phục vụ cho nhu cầu đa dạng hoá sản phẩm ngành nghề Lĩnh vực kinh doanh bao gồm : - Sản xuất kinh doanh vật liệu viễn thông - Sản xuất kinh doanh vật liệu dân dụng - Xuất nhập trực tiếp nguuyên vật liệu, sản xuất cáp dây Ngày giao dịch cổ phiếu SAM thị trường chứng khoáng 28 tháng 07 năm 2000 2.2 Áp dụng mơ hình VAR vào chuỗi cổ phiếu SAM Xét cổ phiếu SAM Công ty Cổ phần Cáp Vật liệu Viễn thơng (SACOM) sàn HOSE thị trường chứng khốn Việt Nam với bảng số liệu theo phiên giao dịch từ ngày 01/03/2005 đến ngày 30/10/2009 gồm 1169 quan sát, đơn vị tính giá: ngàn VND (Nguồn: www.cophieu68.com) Ta có biểu đồ mô tả biến động chuỗi cổ phiếu SAM: Tăng Thị Thu Phương Toán kinh tế 48 Đề án mơn học Khoa Tốn kinh tế Như vậy, chuỗi giá thời kỳ quan sát có giai đoạn tăng giai đoạn giảm giá Giai đoạn cao lên tới 250.000 VND, có lúc giảm thấp 11.400 VND Gọi R lợi suất giá cổ phiếu SAM Từ số liệu thu thập sử dụng phần mềm Eview ta dễ dàng tính lợi suất (theo phiên giao dịch) cổ phiếu SAM (LS_SAM) theo công thức: r t =ln St S t−1 ( ) Ta có biểu đồ chuỗi lợi suất LS_SAM cổ phiếu SAM sau: Từ biểu đồ chuỗi lợi suất LS_SAM trên, ta thấy biến động lợi suất cổ phiếu chiều với biến động giá cổ phiếu Giá cổ phiếu tăng nhanh biến Tăng Thị Thu Phương Toán kinh tế 48 Đề án mơn học Khoa Tốn kinh tế động lợi suất cổ phiếu mạnh Trực quan thấy độ dao động (phương sai) cổ phiếu SAM giai đoạn thay đổi theo thời gian, sử dụng mơ hình GARCH phù hợp Ta có đồ thị hàm mật độ thống kê mô tả chuỗi lợi suất LS_SAM: Bài toán kiểm định: Ho: Chuỗi lợi suất có phân phối chuẩn H1: Chuỗi lợi suất khơng có phân phối chuẩn Nhìn vào giá trị P-value thống kê Jacque-Bera ta có: 0.000000 < 0.05, đủ sở bác bỏ H0 nên chuỗi lợi suất phân phối chuẩn Thực kiểm định tính dừng chuỗi lợi suất tỷ giá kiểm định nghiệm đơn vị Dickey-Fuller, ta có: |‫ح‬qs| = |-13.09369| > |3.4388-| = |0.01 ‫|ح‬ |‫ح‬qs| = |-13.09369| > |2.8645-| = |0.05 ‫|ح‬ |‫ح‬qs| = |-13.09369| > |2.5683-| = |0.1 ‫|ح‬ Ta thấy giá trị |τ qs| = 13.09369 lớn giá trị tới hạn mức ý nghĩa 1%, 5%, 10% Như chuỗi lợi suất tỷ giá chuỗi dừng ta thực định dạng ước lượng mô hình ARMA chuỗi lợi suất theo phương pháp Box-Jenkins Tăng Thị Thu Phương Toán kinh tế 48 Đề án mơn học Khoa Tốn kinh tế Ta có lược đồ tương quan là: Tăng Thị Thu Phương Toán kinh tế 48 Đề án mơn học Khoa Tốn kinh tế Quan sát lược đồ tương quan chuỗi ta thấy phương trình trung bình chứa AR(1), AR(2), AR(3), AR(4), AR(9), AR(13), AR(18), AR(19), AR(20), AR(21), AR(22), MA(1) Tăng Thị Thu Phương Tốn kinh tế 48 Đề án mơn học Khoa Toán kinh tế Tiến hành kiểm tra ta thu mơ hình phù hợp sau: Dependent Variable: LS_SAM Method: Least Squares Date: 05/15/10 Time: 14:50 Sample(adjusted): 24 1169 Included observations: 1146 after adjusting endpoints Convergence achieved after iterations Variable Coefficient Std Error t-Statistic C -2.46E-05 0.001574 -0.015646 AR(1) 0.277050 0.028330 9.779542 AR(4) 0.077317 0.028391 2.723278 AR(9) 0.053459 0.028362 1.884868 AR(22) 0.061212 0.028637 2.137522 R-squared 0.096139 Mean dependent var Adjusted R-squared 0.092970 S.D dependent var S.E of regression 0.028284 Akaike info criterion Sum squared resid 0.912756 Schwarz criterion Log likelihood 2462.434 F-statistic Durbin-Watson stat 1.972269 Prob(F-statistic) Prob 0.9875 0.0000 0.0066 0.0497 0.0328 -3.04E-05 0.029698 -4.288716 -4.266709 30.34052 0.000000 Hệ số chặn C có giá trị Prob = 0.9875 > 0.05 suy khơng có ý nghĩa mặt thống kê, nên ta loại bỏ hệ số chặn C, khơng đưa vào mơ hình ước lượng Kiểm định chuỗi phần dư chuỗi lợi suất LS_SAM cổ phiếu SAM lược đồ tương quan: Tăng Thị Thu Phương Tốn kinh tế 48 Đề án mơn học Khoa Toán kinh tế Vậy phần dư chuỗi lợi suất cổ phiếu LS_SAM nhiễu trắng Ta kiểm tra lược đồ tương quan chuỗi phần dư bình phương: Tăng Thị Thu Phương Toán kinh tế 48 Đề án mơn học Khoa Tốn kinh tế Nhìn vào lược đồ hệ số tương quan tương quan riêng bình phương phần dư cho thấy tồn ARCH GARCH Ngồi ra, ta sử dụng kiểm định ARCH LM Test Eview để kiểm tra xem mô hình có hiệu ứng ARCH hay khơng? Sử dụng Eview, ta có kết kiểm định: Tăng Thị Thu Phương Tốn kinh tế 48 Đề án mơn học Khoa Tốn kinh tế Cặp giả thiết: Ho: Mơ hình khơng có hiệu ứng ARCH H1: Mơ hình có hiệu ứng ARCH Dựa vào giá trị P_value hai thống kê F nhỏ 0.05, đủ sở bác bỏ H0 nên mơ hình có hiệu ứng ARCH Giống phần mơ hình chuỗi thời gian ARIMA, mơ hình phân tích phương sai việc ta xác định bậc ARCH lớn nên việc ước lượng hệ số gặp nhiều khó khăn bất lợi, ta thêm thành phần GARCH với bậc thích hợp việc ước lượng hệ số trở nên đơn giản nhiều Thường ta có mơ hình GARCH (1,1) việc phân tích chuỗi tài hiệu Tăng Thị Thu Phương Toán kinh tế 48

Ngày đăng: 27/12/2023, 11:02

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w