1. Trang chủ
  2. » Giáo án - Bài giảng

Toan 8 phu ninh (18 19) da co

4 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 166,5 KB

Nội dung

PHÒNG GIÁO DỤC VÀ ĐÀO TẠO PHÙ NINH ĐỀ THI CHỌN HỌC SINH NĂNG KHIẾU NĂM HỌC 2018-2019 Mơn: Tốn - Lớp Thời gian: 120 phút (không kể thời gian giao đề) I PHẦN TRẮC NGHIỆM: (8 điểm) Chọn đáp án ghi vào Bài làm tờ giấy thi Câu 1: Rút gọn biểu thức: M = + + ta kết là: A M = B M = C M = a + b + c D M = abc Câu 2: Biết: 2x + ax + chia cho x - dư Ta xác định a A B -5 C D -6 2 Câu 3: Cho biểu thức N = x + 2xy + y - 4x - 4y + Với số x, y thỏa mãn: x + y = giá trị biểu thức N A -5 B -4 C -3 D -2 2 Câu 4: Biết x - 2y = xy y ≠ 0, x + y ≠ Khi giá trị biểu thức P = là: A P = B P = C P = 1/2 D P = 1/3 Câu 5: Nếu x + y = xy = x2 + y2 = A B 11 C 12 D 13 Câu 6: Cho x y thỏa mãn x + y = Giá trị nhỏ biểu thức P = (1 + x 4) (1 + y4) + 4(xy - 1)(3xy - 1) A B C D Câu 7: Nghiệm phương trình A - x  3x   B C - Câu 8: Nếu xy = x2 + y2 = A - B - x = … x y  y x D có giá trị C D Câu 9: Một hình vng có chu vi 12 cm Độ dài đường chéo hình vng bằng: A cm B cm C cm D cm Câu 10: Cho hình bình hành ABCD Một đường thẳng qua A cắt đoạn thẳng DB, DC theo thứ tự E G Biết = tỉ số A B DG là: DC C D Câu 11: Biết xo; yo; zo nghiệm nguyên dương phương trình x + y2 + z2 = xy + 3y + 2x - Khi xo + yo + zo = A B C D 2 Câu 12: Số nghiệm nguyên dương phương trình x - 2y = A B C D Câu 13: Cho hình thang vng ABCD có góc A = góc D = 90 độ, AB = 5cm, AD = 12cm, BC=13cm Ta tính CD A 6cm B 8cm C 10cm Câu 14: Cho x + = a Giá trị biểu thức x3 + theo a là: D 12cm A a3 – B a3 + C a(a2 - 3) D a(a2 + 3) Câu 15: Cho hình thang ABCD đáy nhỏ AB đáy lớn CD Hai đường chéo AC BD cắt G Biết diện tích tam giác AGD 18cm2 diện tích tam giác CGD 25cm2 Tính diện tích hình thang ABCD A 96,73cm2 B 73,96cm2 C 76,93cm2 D 93,76cm2 Câu 16: Cho tam giác ABC vuông A, chân H đường cao AH chia cạnh huyền BC thành hai đoạn có độ dài 4cm 9cm Gọi D E hình chiếu H AB AC Tính độ dài DE A 3cm B 4cm C 5cm D 6cm II PHẦN TỰ LUẬN: (12 điểm) Bài 1: (2,0 điểm) a) Phân tích đa thức thành nhân tử: 3x2 – 7x + 2;   x3   x2 b) Rút gọn: M =   x  x  :  x  x  x với x ≠ ±1   Bài 2: (4,0 điểm) a) Giải phương trình: x3 + 6x2 + 11x + = b) Giải phơng tr×nh : 1 1    x  x  20 x  11x  30 x  13 x  42 18 c) Tìm x,y,z thỏa mãn phương trình: 9x2 + y2 + 2z2 – 18x + 4z - 6y + 20 = Bài 3: (4,0 điểm) Cho tam giác ABC nhọn, đường cao AA’, BB’, CC’, H trực tâm a) Tính tổng HA' HB' HC'   AA' BB' CC' b) Gọi AI phân giác tam giác ABC; IM, IN thứ tự phân giác góc AIC góc AIB Chứng minh rằng: AN.BI.CM = BN IC.AM ( AB  BC  CA ) c) Tam giác ABC biểu thức đạt giá trị nhỏ nhất? AA'  BB'  CC' Bài 4: (2,0 điểm) Cho a, b, c số dương thỏa mãn abc = Chứng minh rằng: 1 1    2 a  2b  b  2c  c  2a  2 - Hết - HƯỚNG DẪN CHẤM BÀI THI CHỌN HSNK LỚP NĂM HỌC 2018-2019 Mơn: Tốn I PHẦN TRẮC NGHIỆM: (8,0 điểm) Mỗi câu cho 0,5 điểm Câu Đáp án B B D D D B Câu 10 11 12 13 14 D 15 C 16 Đáp án A A B A C C B D II PHẦN TỰ LUẬN: Bài 1: (2,0 điểm) a) 3x – 7x + = 3x2 – 6x – x + = = 3x(x -2) – (x - 2) = (x - 2)(3x - 1) 1,0 b) Với x ≠ ±1 : M=  x3  x  x2 (1  x )(1  x ) : 1 x (1  x )(1  x  x )  x(1  x) (1  x )(1  x  x  x ) (1  x)(1  x ) : 1 x (1  x )(1  x  x ) = (1  x ) : (1  x) = (1  x )(1  x) = 1,0 Bài 2: (4,0 điểm) a) Giải phương trình: x3 + 6x2 + 11x + = Phân tích vế trái => phương trình (x + 1)(x + 2)(x + 3) = => Nghiệm phương trình: x1 = 1; x2 = 2; x3 = b) x2 + 9x + 20 = (x + 4)(x + 5); x2 + 11x + 30 = (x + 6)(x + 5); x2 + 13x + 42 =(x + 6)(x + 7); §KX§ : x  4; x  5; x  6; x  Ph¬ng trình trở thành : 1,0 1 1   ( x  4)( x  5) ( x  5)( x  6) ( x  6)( x  7) 18 2,0 1 1 1       x  x  x  x  x  x  18 1   x  x  18 18(x + 7) - 18(x + 4) = (x + 7)(x + 4) (x + 13)(x - 2) = Tõ tìm đợc x1 = -13; x2 = b) 9x2 + y2 + 2z2 – 18x + 4z - 6y + 20 =  (9x2 – 18x + 9) + (y2 – 6y + 9) + 2(z2 + 2z + 1) =  9(x - 1)2 + (y - 3)2 + 2(z + 1)2 = (*) Do : ( x  1) 0;( y  3) 0;( z  1) 0 Nên : (*)  x = 1; y = 3; z = -1 Vậy (x,y,z) = (1,3,-1) 1,0 Bài 3: (4,0 điểm) HA'.BC S HBC HA'   a a) ; S ABC AA' AA'.BC S HAB HC' S HAC HB'   Tương tự: ; S ABC CC' S ABC BB' HA ' HB' HC' SHBC S HAB S HAC      1 AA' BB' CC' S ABC S ABC S ABC A C’ H N M I B x B’ A’ 1,0 C D b) Áp dụng tính chất phân giác vào tam giác ABC, ABI, AIC: BI AB AN AI CM IC  ;  ;  IC AC NB BI MA AI BI AN CM AB AI IC AB IC   1 IC NB MA AC BI AI AC BI  BI AN.CM BN.IC.AM c) Vẽ Cx  CC’ Gọi D điểm đối xứng A qua Cx - Chứng minh góc BAD vng, CD = AC, AD = 2CC’ - Xét điểm B, C, D ta có: BD  BC + CD -  BAD vuông A nên: AB2+AD2 = BD2  AB2 + AD2  (BC+CD)2 AB2 + 4CC’2  (BC+AC)2 4CC’2  (BC+AC)2 – AB2 Tương tự: 4AA’2  (AB+AC)2 – BC2 4BB’2  (AB+BC)2 – AC2 - Chứng minh : 4(AA’2 + BB’2 + CC’2)  (AB+BC+AC)2 1,0 1,0 (AB  BC  CA) 4 AA'2  BB'2  CC'2  Đẳng thức xảy  BC = AC, AC = AB, AB = BC  AB = AC = BC   ABC 1,0 Bài 4: (2,0 điểm) Ta có: a + 2b2 + = (a2 + b2) + (b2 + 1) + Áp dụng BĐT x2 + y2  2xy, ta có: a2 + b2  2ab, b2 +  2b Suy ra: (a2 + b2) + (b2 + 1) +  2ab + 2b + = 2(ab + b + 1)  a2 + 2b2 +  2(ab + b + 1) Tương tự: b2 + 2c2 +  2(bc + c + 1) c2 + 2a2 +  2(ca + a + 1) 1 1    Do đó: VT   (1)   ab  b  bc  c  ca  a   Mặt khác: Do abc = nên 1 1 ab b ab  b        1 (2) ab  b  bc  c  ca  a  ab  b  b   ab  ab  b ab  b  Từ (1) (2) suy ra: 1 1    2 a  2b  b  2c  c  2a  2 1,0 1,0 Tài liệu chia sẻ Website VnTeach.Com https://www.vnteach.com

Ngày đăng: 28/10/2023, 10:30

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w