C H Ư Ơ N II HÀM SỐ LŨY THỪA - HÀM SỐ MŨ – HÀM SỐ LOGARIT PHƯƠNG TRÌNH – MŨ – LOGARIT DẠNG 4: GIẢI PHƯƠNG TRÌNH MŨ, PHƯƠNG TRÌNH LOGARIT BẰNG PHƯƠNG PHÁP LOGARIT HĨA LÝ THUYẾT I = = I GIẢI PHƯƠNG TRÌNH MŨ BẰNG PHƯƠNG PHÁP LOGARIT HÓA = a f x b DẠNG 1: I Phương pháp giải:Điều kiện: a , b Lấy logarit số a cho hai vế, phương trình trở thành: DẠNG 2: a f x b f x log a b g x Phương pháp giải:Điều kiện: a , b Lấy logarit số a cho hai vế phương trình trở thành: DẠNG 3: f x g x log a b a f x b g x c h x d k x Phương pháp giải : Điều kiện: a ; b , c , d Lấy logarit số a cho hai vế, phương trình trở thành: f x g x log a b h x log a c k x log a d II HỆ THỐNG BÀI TẬ P TỰ LUẬN = = PHƯƠNG TRÌNH KHƠNG CĨ THAM SỐ: = 2x I 2 Câu Giải phương trình sau: Lời giải Lấy logarit số hai vế, phương trình cho tương đương: x log x log x 1 log Vậy tập nghiệm phương trình cho x Câu Giải phương trình sau: 27 x x x log x log S log ; log 3087 Lời giải Điều kiện x 0 Phương trình cho tương đương: x x 3 x x 3.3 x x 73.32 x x 1 log x 3.3 x 0 x log log 3 0 x x 3 1 x 3 log 0 x log x log3 Vậy tập nghiệm phương trình cho Câu Giải phương trình sau: log x log 0,5 x S 3; log 3 2020 2018 10 x Lời giải Điều kiện: x Với điều kiện trên, lấy logarit số cho hai vế phương trình, ta phương trình tương đương: log x.log 0,5 x log 102020.x 2018 log x log x log 10 2020 x 1 2018 log x log x log 102020.x 2018 x log x 101010.x1009 log x log x log 101010.x1009 log x.log x 1010 1009 log x log x log x 1009 log x 1010 0 log x 1010 x 10 1010 x 10 1 S ;101010 10 Đối chiếu điều kiện, ta tập nghiệm phương trình Câu Giải phương trình sau: x 2 a) x x 18 x x x 1 x 1 x 2 x 3 d) 0 b) 3log25 10 x x x e) x 3 Lời giải a) Điều kiện: x 0 Với điều kiện trên, phương trình cho tương đương: x log5 22 x x x c) 1 x 2 x 3x x 3 x 2 log 0 x x 2 3log x 2 x 0 x 2 x x x 3log 0 VN x2 2 3 x2 1 x b) Điều kiện: x Với điều kiện trên, phương trình cho tương đương: 3log25 10 x x log5 log 225 10 x 1 log log 3.log x log 52 5.2 x log x 0 log x log 5 log x 0 log x x 1 log x log x 0 4 log x 3 x 125 x 10 x 125 c) Ta có: x 2 x 4.7 x 1 x x log 0 x x log 0 x log d) Ta có: 5x 3x x 1 3x 1 x 2 x 3 0 5x x 1 x 2 3x 3x 1 3x 3 x 5 51 52 x 31 33 3x 31.5 x 31.3x 1 x 0 3 e) Ta có: x 3 x 3 x 2 x x 2 x 2x 3 x 3 x x 12 3 x 1 3 x x x 4x 3 2 x 3 x 0 x 2 3 2 4.4 PHƯƠNG TRÌNH CĨ THAM SỐ x Câu Tìm tập nghiệm S phương trình x 2 m x m 15 , m tham số khác Lời giải x Phương trình x 2 m x m 3.5 Lấy logarit số hai vế x 2 m 1 x m 1 x 1 3 * , ta x x log5 x log5 0 x m x m x x m 32 x * Với x 0 x 2 (thỏa mãn) 1 log 0 x m x m log x m log Với (thỏa mãn) Vậy phương trình có tập nghiệm S 2; m log 5 x x m 3 có hai nghiệm phân biệt Câu Tìm tất giá trị thực tham số m để phương trình x1 ; x2 thỏa mãn x1 x2 2 x1 x2 Lời giải Lấy logarit số hai vế phương trình cho ta log 2 x 52 x m log x x m log log 0 x log x m log log 0 x ;x x x 2 x1 x2 Để phương trình cho có hai nghiệm phân biệt thỏa mãn log 22 m log log (1) ' x1 x2 2 x1 x2 log 2m log log (2) log Thay 5m 5m log 5m 1 3 m log 5 m log vào (1) thấy thỏa mãn Vậy m log giá trị cần tìm Câu Cho hàm số y f x có bảng biến thiên sau f ( x) f ( x ) 2 m f ( x ) 3 m 2 100 , m tham số khác Tìm tất giá trị thực Cho phương trình m để phương trình cho có nghiệm phân biệt Lời giải Đkxđ: f x 5 f x 3m 0 f x f x 2 m f x 3 m f x 2 100 f x f x 6 m f x 3 m 3m 2 2 5 f x 2 4 f x f x 3 m Lấy logarit số hai vế phương trình cho ta 2 f x 6 m f x 3 m f x 2 f x log 2 1 log 2 f x 3m f x 3m f x 2 (1) (2) f x 3m log 2 f x Với m phương trình (1) (2) ln thỏa mãn điều kiện xác định Dựa vào bảng biến thiên ta thấy phương trình (1) có nghiệm phân biệt Để phương trình ban đầu có nghiệm phân biệt phương trình (2) thỏa mãn điều kiện xác định có nghiệm phân biệt khác nghiệm phương trình (1) Dựa vào bảng biến thiên để phương trình (2) có nghiệm phân biệt log 3m log m (thỏa mãn điều kiện) Vậy m log phương trình cho có nghiệm II GIẢI PHƯƠNG TRÌNH LOGARIT BẰNG PHƯƠNG PHÁP MŨ HĨA log a f x b DẠNG 1: Phương pháp giải: Sử dụng phương pháp biến đổi tương đương: 0 a 1 log a f x b b f x a Từ phương trình log a f x g x DẠNG 2: Phương pháp giải: Sử dụng phương pháp biến đổi tương đương: 0 a 1 log a f x g x g x f x a Từ phương trình log a f x log b g x DẠNG 3: f x a t log a f x log b g x t t g x b Khử x hệ phương trình Phương pháp giải: Đặt để thu phương trình theo ẩn t, giải phương trình tìm t, từ tìm x PHƯƠNG TRÌNH KHƠNG CHỨA THAM SỐ Câu Giải phương trình sau: log x 1 Lời giải x x Điều kiện: x 5 x log x 1 x 2 x log x log log Ta có: x log (tm) x log Vậy phương trình có nghiệm Câu Giải phương trình sau: log3 (3x 8) 2 x Lời giải x Điều kiện: x 2log x x 2 x Ta có: log (3 8) 2 x 3 3x 1(vn) 32 x 8.3x 0 x 9 x 3 x 2 Vậy phương trình có nghiệm x 2 Câu Giải phương trình sau: log x log x Lời giải Điều kiện : x Ta có: log x t log x log x t log x t t t t 1 x 5 x 5 t t t 5 7 x 7 t 1 7 7 Từ phương trình t t 5 1 f t , t 7 7 Xét hàm số t t 5 1 f ' t ln ln 0, t f t 7 7 7 Hàm số nghịch biến f t 1 f t f 1 2 Mà nên t 1 nghiệm phương trình 1 ta có x 5 Thay t 1 vào phương trình Vậy phương trình có nghiệm x 5 log Câu Giải phương trình sau: 6 x 1 36 x Lời giải x 1 x Điều kiện 36 x 1 x x Ta có log x 1 36 x log x 1 36 x x 1 36 x 0 x 1 x 0 6.6 0 x 5 x log 2x x x log Vậy phương trình có nghiệm x 0 Câu Giải phương trình sau: log 3x 1 1 2 x log Lời giải x 1 Điều kiện: x Ta có : log x 1 1 2 x log log x 1 1 log 2 x log 3x 1 x 3 3x 1 2.32 x 3x 1 2.32 x 3.3x 0 x 3 3 x 1 x 0 x log3 1 2 x Vậy phương trình có nghiệm x 0 Câu Giải phương trình sau: log x 1 x x log Lời giải x x Điều kiện : x log Ta có log x 1 x x 51 x x 5x x 0 tm x 1 6.5 0 x 5 x 1 tm Vậy phương trình có nghiệm x 0 x 1 2x Câu Giải phương trình sau: x log x 5log5 3 x Lời giải x 9 Điều kiện : x Ta có: log x 5log5 3 x log x 3 x 2x 2 x 9.2 x 0 x x 8 x 3 l x x 0 x 0 1 Vậy phương trình có nghiệm x 0 Câu Giải phương trình sau: log x Xét phương trình Điều kiện: Từ log x 2 2x Lời giải x log x x x 0 x 0 x x2 Đặt log x x log x x log x thay vào 1 ta : x x 3t 1 x x 5t x t 5t 3t t t 3 1 t t t t 5 3 Trường hợp 1: Xét 3 3 Dễ thấy phương trình (3) có nghiệm t 1 t t t t 3 1 3 1 f t f t ln ln 0, t 5 5 có 5 5 Vì xét hàm số nên hàm số nghịch biến , t 1 nghiệm (3) x2 x 3 x 14 x 2 x 0 (tm) 14 x Với t 1 , ta có: 5t 3t 5t 2 3t 5t 3t 2 Trường hợp 2: (4) Tương tự trường hợp 1, ta có t 0 nghiệm (4) 2 Với t 0 , ta có: x x x x 0 - phương trình vơ nghiệm Vậy phương trình có nghiệm x 14 14 x 2 PHƯƠNG TRÌNH CHỨA THAM SỐ 9x 3 log 2m.3x 6m x 2 Câu Tìm tất giá trị tham số m để phương trình x1 , x2 thỏa mãn x1 x2 12 có hai nghiệm thực Lời giải 9 3 9x log 2m.3 x 6m x m.3 x m 3 x 2 2 Ta có : x 2m 1 3x 4m 1 0 x x t 2m 1 t 4m 1 0 Đặt t 3 ( t ) phương trình cho trở thành (1) Phương trình cho có hai nghiệm phân biệt Phương trình (1) có hai nghiệm dương phân 2m 1 4m 1 m 1 2m S m 4m P biệt 3x1 4m x2 3 x1 log3 4m 1 x2 1 x1 x2 12 log 4m 1 2 m Ta có (thỏa mãn điều kiện) m giá trị cần tìm Vậy t 4m Khi t 3 log x m.2 x 1 3m x Câu Tìm tất giá trị tham số m để phương trình có hai nghiệm trái dấu Lời giải log x m.2 x 1 3m x 1 x m.2 x 1 3m 2 x 1 Ta có : x m 1 x 3m 0 x t m 1 t 3m 0 Đặt t 2 , ta có phương trình (1) x x x x2 2 , nên phương trình cho có hai nghiệm trái dấu x1 , x2 Với phương trình 1 t t t1 t2 có hai nghiệm , cho Ta có 1 t 2t m 2t 3 t 2t t m 2 khơng nghiệm phương trình nên: 2t Vì t 2t f t t 2t , với Xét hàm số f t 2t 6t 22 Ta có Bảng biến thiên: Phương trình 1 2t 3 0 với có hai nghiệm t 3 t1 t2 phương trình 3 có hai nghiệm m9 t1 t2 Từ bảng biến thiên ta suy giá trị cần tìm m x 1 log e x m x m Câu Tìm tất giá trịcủa tham số để phương trình có hai nghiệm thực phân biệt Lời giải Vì x 1 khơng nghiệm nên phương trình : x x x x x x log( e m ) e m 10 x 1 log e m x m 10 x e x x x x x x Đặt y g ( x ) 10 e x y 10 x ln10 e x 0, x 1 ( x 1) Ta có: Bảng biến thiên: Vậy phương trình có nghiệm thực phân biệt m 10 e Câu Có giá trị nguyên nhỏ 2019 tham số m để phương trình log 2020 x m log 1010 x có nghiệm Lời giải 2020 x m 6t t log 2020 x m log 1010 x t 1010 x 4 2.4t m 6t m 2.4t 6t Đặt f t 2.4t 6t f t 6t ln 2.4t.ln Đặt Ta có: t t ln 3 f t 0 log 16 t log log 16 ln 2 2 Xét Bảng biến thiên: m f log log 16 2, 01 f t m Phương trình có nghiệm m 2019 m 2018 Mà m nên ta có: m Vậy có 2021 giá trị nguyên m thỏa mãn yêu cầu toán