1. Trang chủ
  2. » Giáo án - Bài giảng

Toan 11 c5 b16 1 gioi han cua ham so tuluan 1 hdg

43 5 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 43
Dung lượng 1,97 MB

Nội dung

C H Ư Ơ N CHUYÊN ĐỀ V – TOÁN – 11 – GIỚI HẠN – HÀM SỐ LIÊN TỤC V GIỚI HẠN HÀM SỐ LIÊN TỤC BÀI 16: GIỚI HẠN CỦA HÀM SỐ I LÝ THUYẾT = = = HẠN CỦA HAM SỐ TẠI MỘT DIỂM: GIỚI I ( a;b) 1.1 Cho khoảng điểm x0 x0 chứa điểm ( ) a;b Ta nói hàm số f (x) xác định trừ ( ) x Ỵ a;b , xn ¹ x0 x (x ) có giới hạn L x dần tới với dãy số n bất kì, n xn ® x0 , ta có: f (xn ) ® L Ta kí hiệu: lim f (x) = L x®x0 x ® x0 hay f (x) ® L 1.2 Các quy tắc tính giới hạn hàm số điểm a) Giả sử lim f  x  L x  x0 lim g  x  M x  x0 Khi lim  f  x   g  x   L  M ; x  x0 lim  f  x   g  x   L  M ; x  x0 lim  f  x  g  x   L.M ; x  x0 lim x  x0 f  x L  g  x M b) Nếu ; f  x  0 L 0 lim x  x0 với x  J \  x0  , J khoảng chứa x0 f  x   L 1.3 Các giới hạn đặc biệt: lim x = x0 limc = c x®x0 ; x®x0 Page Sưu tầm biên soạn CHUYÊN ĐỀ V – TOÁN – 11 – GIỚI HẠN – HÀM SỐ LIÊN TỤC  x ; b  ,  x0  R  Ta nói số L giới hạn bên 1.4 Cho hàm số y = f (x) xác định khoảng x  phải hàm số y = f (x) x  x0 với dãy số n thỏa mãn x0  xn  b f  x  L xn  x0 ta có lim f  xn  L Kí hiệu: xlim  x0   a; x0  ,  x0  R  Ta nói số L giới hạn bên 1.5 Cho hàm số y = f (x) xác định khoảng x  trái hàm số y = f (x) x  x0 với dãy số n thỏa mãn a  xn  x0 f  x  L xn  x0 ta có lim f  xn  L Kí hiệu: xlim  x0  Chú ý: a) lim f  x  L  lim f  x   lim f  x  L x  x0 x  x0 x  x0  b) Các định lí giới hạn hàm số thay x  x0 x  x0 x  x0  GIỚI HẠN HỮU HẠN CỦA HAM SỐ TẠI VO CỰC 2.1 Ta nói hàm số y = f (x) xác định (a; +Ơ ) cú gii hn l L x đ +¥ với dãy số (xn ) : xn > a v xn đ +Ơ thỡ f (xn ) ® L lim f (x) = L Kí hiệu: xđ+Ơ 2.2 Ta núi hm s y = f (x) xác định (- ¥ ;b) có giới hạn l L x đ - Ơ nu vi mi dãy số (xn ) : xn < b xn ® - ¥ f (xn ) ® L lim f (x) = L Kớ hiu: xđ- Ơ Cỏc quy tc: lim c = c xđƠ vi c số Với k nguyên dương, ta có: lim xđ+Ơ 1 = ; lim =0 xđ- Ơ xk xk GIỚI HẠN VÔ CỰC CỦA HAM SỐ TẠI MỘT DIỂM x 3.1 Ta nói hàm số y = f (x) có giới hạn dần tới dương vơ cực x dần tới với dãy số (xn ) : xn ® x0 f (xn ) đ +Ơ Kớ hiu: lim f (x) = +Ơ xđx0 x 3.2 Ta núi hm s y = f (x) có giới hạn dần tới âm vơ cực x dần tới kí hiệu: lim f (x) = - Ơ xđx0 nu ự= +Ơ lim ộ ê ë- f (x)ú û x®x0 Page Sưu tầm biên soạn CHUYÊN ĐỀ V – TOÁN – 11 – GIỚI HẠN – HÀM SỐ LIÊN TỤC  x ; b  ,  x0  R  Ta nói hàm số y = f (x) có 3.3 Cho hàm số y = f (x) xác định khoảng x  giới hạn +¥ x  x0 bên phải với dãy số n thỏa mãn x0  xn  b f  x   xn  x0 ta có lim f  xn   Kí hiệu: xlim  x0   a; x0  ,  x0  R  Ta nói hàm số y = f (x) có 3.4 Cho hàm số y = f (x) xác định khoảng x  giới hạn +¥ x  x0 bên trái với dãy số n thỏa mãn a  xn  x0 f  x   xn  x0 ta có lim f  xn   Kí hiệu: xlim  x0  3.5 Các giới hạn bên lim f  x    x  x0  lim f  x    x  x0  định nghĩa tương tự 3.6 Một số giới hạn đặc biệt : + lim xk = +Ơ xđ+Ơ lim xk = - ¥ + x®- ¥ + x®- ¥ lim xk = +¥ với k nguyên dương với k lẻ với k chẵn Chú ý : Nguyên lí kẹp x Cho ba hàm số f (x), g(x), h(x) xác định K chứa điểm Nếu g(x) £ f (x) £ h(x) " x Ỵ K lim g(x) = lim h(x) = L x®x0 x®x0 lim f (x) = L x®x0 3.7 Một số quy tắc tính giới hạn vô cực Quy tắc Cho lim f (x) = L 0; lim g(x) = +Ơ lim g(x) = - Ơ xđx0 xđx0 lim f (x) xđx0 L 0 x®x0 +¥ - ¥ +¥ - ¥ L >0 Ta có: ù lim é êf (x).g(x)û ú ë lim g(x) xđx0 Quy tc Cho cú: xđx0 +Ơ - Ơ - Ơ +Ơ lim f (x) = L 0; lim g(x) = +¥ Ú lim g(x) = - ¥ Ú lim g(x) = x®x0 x®x0 x®x0 lim g(x) Du ca g(x) Ơ Tỳy ý xđx0 + xđx0 Ta ù lim é êf (x).g(x)û ú ë x®x0 +¥ Page Sưu tầm biên soạn CHUYÊN ĐỀ V – TOÁN – 11 – GIỚI HẠN – HÀM SỐ LIÊN TỤC - 0 L

Ngày đăng: 12/10/2023, 22:29

w