1. Trang chủ
  2. » Giáo án - Bài giảng

Toan 11 c4 b14 1 phep chieu song song tn de

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 299,03 KB

Nội dung

CHUYÊN ĐỀ IV – TOÁN – 11 – QUAN HỆ SONG SONG TRONG KHÔNG GIAN I V QUAN HỆ SONG SONG TRONG KHÔNG GIAN BÀI 14: PHÉP CHIẾU PHẲNG SONG SONG C H Ư Ơ N LÝ THUYẾT I = = CHIẾU SONG SONG PHÉP = Cho mặt phẳng ( ) đường thẳng I định điểm M  sau:  cắt ( ) Với điểm M không gian, ta xác Nếu điểm M   M  giao điểm ( ) với  Nếu điểm M   M  giao điểm ( ) với đường thẳng qua M song song  Điểm M  gọi hình chiếu song điểm M mặt phẳng ( ) theo phương  Mặt phẳng ( ) gọi mặt phẳng chiếu Phương  gọi phương chiếu Phép đặt tương ứng điểm M khơng gian với hình chiếu M ' mặt phẳng ( ) gọi phép chiếu song song lên ( ) theo phương  Nếu H hình tập hợp H ' hình chiếu M ' tất điểm M thuộc H gọi hình chiếu H qua phép chiếu song song nói Chú ý Nếu đường thẳng có phương trùng với phương chiếu hình chiếu đường thẳng điểm TÍNH CHẤT CỦA PHÉP CHIẾU SONG SONG - Phép chiếu song song biến ba điểm thẳng hàng thành ba điểm thẳng hàng không làm thay đổi thứ tự ba điểm - Phép chiếu song song biến đường thẳng thành đường thẳng, biến tia thành tia, biến đoạn thẳng thành đoạn thẳng - Phép chiếu song song biến hai đường thẳng song song thành hai đưởng thẳng song song trùng - Phép chiếu song song không làm thay đổi tỉ số độ dài hai đoạn thẳng nằm hai đường thẳng song song nằm đường thẳng HÌNH BIỂU DIỄN CỦA MỘT HÌNH KHƠNG GIAN TRÊN MẶT PHẲNG Hình biểu diễn hình H khơng gian hình chiếu song song hình H mặt phẳng theo phương chiếu hình đồng dạng với hình chiếu Page 83 Sưu tầm biên soạn CHUYÊN ĐỀ IV – TOÁN – 11 – QUAN HỆ SONG SONG TRONG KHƠNG GIAN Hình biểu diễn hình thường gặp:  Tam giác Một tam giác coi hình biểu diễn tam giác có dạng tùy ý cho trước  Hình bình hành Một hình bình hành coi hình biểu diễn hình bình hành có dạng tùy ý cho trước  Hình thang Một hình thang coi hình biểu diễn hình thang tùy ý cho trước, miễn tỉ số độ dài hai đáy hình biểu diễn phải tỉ số độ dài hai đáy hình thang ban đầu  Hình trịn Người ta thường dùng hình elip để biểu diễn cho hình trịn III = = Câu =1: I HỆ THỐNG BÀI TẬP Hình chiếu hình chữ nhật khơng thể hình hình sau? A Hình chữ nhật Câu 2: B Hình thang C Hình bình hành D Hình thoi Cho hình lăng trụ ABC ABC , gọi I , I  trung điểm AB , AB Qua phép ABC  chiếu song song đường thẳng AI  , mặt phẳng chiếu  biến I thành? A A Câu 3: TRẮC NGHIỆM B C  C B D I  Cho tứ diện ABCD Gọi M trung điểm AD Hình chiếu song song điểm M theo  BCD  điểm sau đây? phương AC lên mặt phẳng B Trung điểm CD C Trung điểm BD D Trọng tâm tam giác BCD A D Câu 4: Qua phép chiếu song song, tính chất khơng bảo tồn? A Chéo Câu 5: B Đồng qui C Song song D Thẳng hàng Trong mệnh đề sau mệnh đề sai? A Phép chiếu song song biến đường thẳng thành đường thẳng, biến tia thành tia, biến đoạn thẳng thảnh đoạn thẳng B Phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng song song C Phép chiếu song song biến ba điểm thẳng hàng thành ba điểm thẳng hàng không thay đổi thứ tự ba điểm D Phép chiếu song song khơng làm thay đổi tỉ số độ dài hai đoạn thẳng nằm hai đường thẳng song song nằm đường thẳng Câu 6: Cho hình lăng trụ ABC ABC  , qua phép chiếu song song đường thẳng CC  , mặt phẳng chiếu  ABC  biến M thành M  Trong M trung điểm BC Chọn mệnh đề đúng? A M  trung điểm AB C M  trung điểm AC  B M  trung điểm BC  D Cả ba đáp án sai Page 84 Sưu tầm biên soạn CHUYÊN ĐỀ IV – TOÁN – 11 – QUAN HỆ SONG SONG TRONG KHƠNG GIAN Câu 7: Cho hình lăng trụ ABC ABC  , gọi I , I  trung điểm AB , AB Qua phép  ABC  biến I thành? chiếu song song đường thẳng AI  , mặt phẳng chiếu A A Câu 8: B B D I     phương l Biết hình chiếu tam giác ABC Cho tam giác ABC mặt phẳng lên mặt phẳng Câu 9: C C  A    //  P  C    // l  P đoạn thẳng Khẳng định sau đúng? B     P     l D A, B, C sai Khẳng định sau đúng? A Hình chiếu song song hình chóp cụt hình tam giác B Hình chiếu song song hình chóp cụt đoạn thẳng C Hình chiếu song song hình chóp cụt hình chóp cụt D Hình chiếu song song hình chóp cụt điểm Câu 10: Trong mệnh đề sau mệnh đề sai? A Hình chiếu song song hai đường thẳng chéo song song với B Một đường thẳng trùng với hình chiếu C Hình chiếu song song hai đường thẳng chéo trùng D Một tam giác xem hình biểu diễn tam giác cân Câu 11: Qua phép chiếu song song biến ba đường thẳng song song thành A Ba đường thẳng đôi song song với B Một đường thẳng C Thành hai đường thẳng song song D Cả ba trường hợp Câu 12: Khẳng định sau đúng? A Hình chiếu song song hình lập phương ABCD ABC D theo phương AA lên mặt phẳng  ABCD  hình bình hành B Hình chiếu song song hình lập phương ABCD ABC D theo phương AA lên mặt phẳng  ABCD  hình vng C Hình chiếu song song hình lập phương ABCD ABC D theo phương AA lên mặt phẳng  ABCD  hình thoi D Hình chiếu song song hình lập phương ABCD ABC D theo phương AA lên mặt phẳng  ABCD  tam giác Câu 13: Hình chiếu hình vng khơng thể hình hình sau? A Hình vng B Hình bình hành C Hình thang D Hình thoi Page 85 Sưu tầm biên soạn CHUYÊN ĐỀ IV – TỐN – 11 – QUAN HỆ SONG SONG TRONG KHƠNG GIAN Câu 14: Trong mện đề sau mệnh đề sai: A Một đường thẳng ln cắt hình chiếu B Một tam giác đề xem hình biểu diễn tam giác cân C Một đường thẳng song song với hình chiếu D Hình chiếu song song hai đường thẳng chéo song song với  P  điểm A hình chiếu a là: Câu 15: Nếu đường thẳng a cắt mặt phẳng chiếu A Điểm A B Trùng với phương chiếu C Đường thẳng qua A D Đường thẳng qua A A Câu 16: Giả sử tam giác ABC hình biểu diễn tam giác Hình biểu diễn tâm đường tròn ngoại tiếp tam giác là: A Giao điểm hai đường trung tuyến tam giác ABC B Giao điểm hai đường trung trực tam giác ABC C Giao điểm hai đường đường cao tam giác ABC D Giao điểm hai đường phân giác tam giác ABC Câu 17: Cho hình chóp S ABCD có đáy hình bình hành M trung điểm SC Hình chiếu song  SAD  điểm sau đây? song điểm M theo phương AB lên mặt phẳng A S C A B Trung điểm SD D D Câu 18: Cho hình chóp S ABCD có đáy hình bình hành Hình chiếu song song điểm A theo  SBC  điểm sau đây? phương AB lên mặt phẳng A S C B B Trung điểm BC D C Câu 19: Cho lăng trụ ABC ABC  Gọi M trung điểm AC Khi hình chiếu song song  AAB theo phương chiếu CB điểm M lên A Trung điểm BC B Trung điểm AB C Điểm A D Điểm B Câu 20: Cho hình hộp chữ nhật ABCD ABC D Gọi O  AC  BD O  AC   BD Điểm M , N trung điểm AB CD Qua phép chiếu song song theo phương AO lên mặt phẳng  ABCD  A Đoạn thẳng MN hình chiếu tam giác C MN B Điểm O C Tam giác CMN D Đoạn thẳng BD Câu 21: Cho hình hộp ABCD A ' B ' C ' D ' Xác định điểm M , N tương ứng đoạn MA AC ', B ' D ' cho MN song song với BA ' tính tỉ số MC ' Page 86 Sưu tầm biên soạn CHUYÊN ĐỀ IV – TỐN – 11 – QUAN HỆ SONG SONG TRONG KHƠNG GIAN A B C D Câu 22: Cho hình hộp ABCD A ' B ' C ' D ' Gọi M , N trung điểm CD CC ' a) Xác định đường thẳng  qua M đồng thời cắt AN A ' B IM b) Gọi I , J giao điểm  với AN A ' B Hãy tính tỉ số IJ A B C D Câu 23: Cho hình lăng trụ tam giác ABC ABC  , gọi M , N , P tâm mặt bên  ABBA ,  BCC B phẳng chiếu  ABC   ACC A Qua phép chiếu song song đường thẳng BC  mặt hình chiếu điểm P ? A Trung điểm AN C Trung điểm BN B Trung điểm AM D Trung điểm BM Page 87 Sưu tầm biên soạn

Ngày đăng: 12/10/2023, 22:28

w