1. Trang chủ
  2. » Luận Văn - Báo Cáo

Khóa luận tốt nghiệp các phương pháp giải tích giải bài toán phương trình vật lý toán

135 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 135
Dung lượng 2,03 MB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH KHOA VẬT LÝ  C M C H rs ve ni U HUỲNH TRÚC PHƯƠNG KHÓA LUẬN TỐT NGHIỆP ity O fE CÁC PHƯƠNG PHÁP GIẢI TÍCH ca du GIẢI BÀI TỐN PHƯƠNG TRÌNH VẬT LÝ - TỐN TP Hồ Chí Minh, tháng 04 năm 2019 n tio Chuyên ngành: Sư phạm Vật lý BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP HỒ CHÍ MINH KHOA VẬT LÝ M C H C CÁC PHƯƠNG PHÁP GIẢI TÍCH U ve ni GIẢI BÀI TỐN PHƯƠNG TRÌNH ity rs VẬT LÝ - TOÁN ca du fE O Sinh viên thực hiện: Huỳnh Trúc Phương n tio Người hướng dẫn khoa học: ThS Nguyễn Vũ Thụ Nhân TP Hồ Chí Minh, tháng năm 2019 i LỜI CẢM ƠN Tôi xin chân thành cảm ơn thầy Nguyễn Vũ Thụ Nhân – người tận tình giúp đỡ hướng dẫn tơi q trình học tập, nghiên cứu hồn thiện khóa luận Tơi xin chân thành cảm ơn Trường, Phịng đào tạo, thầy khoa Vật lý, trường Đại học Sư phạm TP Hồ Chí Minh tạo điều kiện thuận lợi cho thực M C H khóa luận Qua đây, tơi xin bày tỏ lịng biết ơn gia đình, bạn bè người thân C giúp đỡ, động viên, hỗ trợ tơi thời gian thực khóa luận U TP Hồ Chí Minh, ngày 29 tháng 04 năm 2019 ni ity rs ve SINH VIÊN n tio ca du fE O Huỳnh Trúc Phương ii MỤC LỤC LỜI CẢM ƠN i MỤC LỤC ii DANH MỤC BẢNG BIỂU v DANH MỤC HÌNH VẼ vi M C H MỞ ĐẦU I Lí chọn đề tài II Mục đích nghiên cứu C III Đối tượng nghiên cứu IV Nhiệm vụ nghiên cứu U V Phạm vi nghiên cứu ni VI Cấu trúc đề tài ve Chương CƠ SỞ LÝ THUYẾT CỦA ĐỀ TÀI NGHIÊN CỨU rs 1.1 Một số hàm đặc biệt Hàm delta Dirac 1.1.2 Hàm Heaviside 1.1.3 Hàm Bessel 1.1.4 Đa thức Legendre ity 1.1.1 fE O 1.2 Các phép biến đổi tích phân du Phép biến đổi Fourier 1.2.2 Phép biến đổi Fourier Sin Cos 1.2.3 Phép biến đổi Fourier phức 1.2.4 Phép biến đổi Laplace 10 tio ca 1.2.1 n Chương CÁC PHƯƠNG PHÁP GIẢI TÍCH GIẢI CÁC PHƯƠNG TRÌNH VẬT LÝ – TOÁN 15 2.1 PHƯƠNG PHÁP TÁCH BIẾN 15 2.1.1 Giới thiệu phương pháp 15 2.1.2 Phương pháp tách biến việc giải phương trình truyền sóng 15 2.1.2.1 Truyền sóng dây hữu hạn dao động tự 15 2.1.2.2 Truyền sóng dây hữu hạn dao động cưỡng 22 iii Phương pháp tách biến việc giải phương trình truyền nhiệt 25 2.1.3 2.1.3.1 Truyền nhiệt hữu hạn không chứa nguồn 25 2.1.3.2 Truyền nhiệt hữu hạn có chứa nguồn 31 2.1.4 Phương pháp tách biến việc giải phương trình Laplace 34 2.1.5 Phương pháp tách biến hệ tọa độ khác 38 2.2 PHƯƠNG PHÁP ĐA THỨC D’ALEMBERT 44 Giới thiệu phương pháp 44 2.2.2 sóng Phương pháp đa thức d’Alembert việc giải phương trình truyền 44 M C H 2.2.1 2.2.2.1 Truyền sóng dây dài vô hạn 44 C 2.2.2.2 Truyền sóng dây dài nửa vô hạn 46 U 2.3 PHƯƠNG PHÁP BIẾN ĐỔI TÍCH PHÂN 48 Giới thiệu phương pháp 48 2.3.2 tốn Phương pháp biến đổi tích phân việc giải phương trình vật lý – 48 rs ve ni 2.3.1 2.4 PHƯƠNG PHÁP HÀM GREEN 54 Giới thiệu phương pháp 54 2.4.2 Hàm Green 54 2.4.3 Nghiệm hàm Green cho phương trình sóng độc lập với thời gian 56 ity 2.4.1 fE O 2.4.4 Nghiệm hàm Green cho phương trình sóng khơng không gian ba chiều 60 du ca 2.4.5 Nghiệm hàm Green cho phương trình Maxwell tốn phụ thuộc vào thời gian 62 tio Chương ÁP DỤNG CÁC PHƯƠNG PHÁP GIẢI TÍCH TRONG VIỆC GIẢI CÁC PHƯƠNG TRÌNH VẬT LÝ - TỐN 68 n 3.1 ÁP DỤNG PHƯƠNG PHÁP TÁCH BIẾN 68 3.1.1 Giải toán truyền sóng 68 3.1.2 Giải toán truyền nhiệt 75 3.1.3 Giải toán Laplace 81 3.1.4 Giải toán hệ tọa độ khác 88 3.2 ÁP DỤNG PHƯƠNG PHÁP ĐA THỨC D’ALEMBERT 98 3.3 ÁP DỤNG PHƯƠNG PHÁP BIẾN ĐỔI TÍCH PHÂN 101 iv 3.4 ÁP DỤNG PHƯƠNG PHÁP HÀM GREEN 115 KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN 126 TÀI LIỆU THAM KHẢO 127 C M C H ity rs ve ni U n tio ca du fE O v DANH MỤC BẢNG BIỂU Bảng 1.1 Bảng biến đổi Laplace 13 Bảng 1.2 Bảng biến đổi Laplace mở rộng 14 C M C H ity rs ve ni U n tio ca du fE O vi DANH MỤC HÌNH VẼ Hình 1.1 Chu tuyến l  L mặt phẳng phức 12 Hình 2.1 Đồ thị hàm số y  u ( x, t ) 100 C M C H ity rs ve ni U n tio ca du fE O MỞ ĐẦU I Lí chọn đề tài Trong vật lý, việc giải phương trình đạo hàm riêng như: phương trình truyền sóng, phương trình truyền nhiệt,… mang lại ý nghĩa quan trọng Các nhà vật lý biết dao động dây, dao động sóng nước, nhờ việc giải phương trình truyền sóng, biết biến thiên nhiệt độ theo thời gian miền cho trước nhờ việc giải M C H phương trình truyền nhiệt, [7],[5] Để giải phương trình này, nhà vật lý thường sử dụng số phương pháp toán học: phương pháp số, phương pháp giải tích Phương pháp số giải nhiều tốn phức tạp, giải nghiệm gần [4] C Còn phương pháp giải tích giải nghiệm cách xác trở nên khó khăn U tốn phức tạp [3] Do đó, phương pháp giải tích thường sử dụng để ve phức tạp ni giảng dạy cho sinh viên tốn vật lý chương trình học sinh viên khơng rs Hiện nay, nhiều trường đại học, sinh viên chuyên ngành vật lý học phương pháp giải tích để giải phương trình vật lý tốn: phương trình truyền sóng, ity phương trình truyền nhiệt, phương trình Laplace Mỗi loại phương trình có nhiều dạng O khác nhau: phương trình truyền sóng dây dài hữu hạn vơ hạn, truyền sóng fE dây dao động cưỡng bức; phương trình truyền nhiệt dài hữu hạn chứa nguồn khơng chứa nguồn, phương trình Laplace, Các phương pháp giải tích thường du sử dụng để giải phương trình phương pháp tách biến phương pháp đa thức ca D’Alembert Hai phương pháp dùng phổ biến khơng địi hỏi sinh viên biết tio nhiều kiến thức toán phức tạp Ngồi cịn có phương pháp tìm nghiệm dễ dàng nặng kiến thức tốn phương pháp biến đổi tích phân, phương n pháp hàm Green Do có nhiều dạng phương trình, nhiều phương pháp giải tích để giải chúng nên việc hệ thống lại phương pháp giải tích giải phương trình vật lý tốn cần thiết Nhờ đó, sinh viên xâu chuỗi lại kiến thức học, biết thêm phương pháp mới, giúp cho việc học trở nên dễ dàng Vì vậy, nhằm đáp ứng nhu cầu trên, hệ thống lại phương pháp giải tích để giải tốn phương trình vật lý - tốn đề tài II Mục đích nghiên cứu Đề tài hướng đến hai mục đích sau:  Đưa hệ thống phương pháp giải tích để giải phương trình đạo hàm riêng ứng dụng rộng rãi vật lý: phương trình truyền sóng, phương trình truyền nhiệt, phương trình Laplace  Đưa hệ thống giải tập phương trình đạo hàm riêng nói M C H phương pháp giải tích: phương pháp tách biến, phương pháp đa thức D’Alembert, phương pháp biến đổi tích phân phương pháp hàm Green Đối tượng nghiên cứu C III  Các toán đạo hàm riêng ứng dụng vật lý U Nhiệm vụ nghiên cứu ve IV ni  Các phương pháp giải tích áp dụng giải tốn đạo hàm riêng vật lý  Tìm hiểu tốn đạo hàm riêng thường gặp vật lý thông qua giáo rs trình, sách, tài liệu liên quan ity  Phân tích ưu điểm, nhược điểm phương pháp giải tích áp dụng giải Phạm vi nghiên cứu fE V O toán vật lý – toán Đề tài tập trung nghiên cứu phương pháp giải tích để giải phương trình vật VI Cấu trúc đề tài tio ca thanh, phương trình Laplace,… du lý - tốn thường gặp: phương trình truyền sóng dây, phương trình truyền nhiệt Mở đầu: Phần tơi trình bày tổng quan đề tài nghiên cứu, bao gồm: lí chọn đề n tài, mục đích nghiên cứu, đối tượng nghiên cứu, nhiệm vụ nghiên cứu, phạm vi nghiên cứu cấu trúc đề tài Chương Cơ sở lý thuyết đề tài nghiên cứu Trong chương này, tơi trình bày số hàm đặc biệt đề cập tới đề tài phép biến đổi tích phân để làm sở cho phương pháp biến đổi tích phân chương 113 {𝑢 (𝑥, 0) = {𝜕𝑢 , ∀𝑥 ∈ (0,2) (𝑥, 0) = sin 𝜋𝑥 𝜕𝑡 (3.3.34) 𝑢 (0, 𝑡) = 𝑢 (2, 𝑡) = 0, ∀𝑡 > (3.3.35) Và điều kiện biên: M C H Giải Biến đổi Laplace hai vế phương trình (3.3.33) theo biến t, ta được: C 𝜕2𝑢 𝜕2 𝑢 ℒ ( 2) = ( ) 𝜕𝑥 𝜕𝑡 U 𝑑2𝒰 𝜕𝑢 (𝑥, 𝑝) = [𝑝 𝒰(𝑥, 𝑝) − 𝑝 𝑢(𝑥, 0) − (𝑥, 0)] 𝑑𝑥 𝜕𝑡 ve ni ⇒ rs Từ điều kiện đầu (3.3.34): ity 𝑑2𝒰 ⇒ = 6𝑝 𝒰(𝑥, 𝑝) − sin 𝜋𝑥 𝑑𝑥 O fE 𝑑2𝒰 ⇔ − 6𝑝 𝒰 = −6 sin 𝜋𝑥 𝑑𝑥 (3.3.36) Nghiệm riêng phương trình (3.3.36) có dạng: 𝒰𝑅 = 𝐴 sin 𝜋𝑥 + 𝐵 cos 𝜋𝑥 ⇒ 𝒰𝑅′ = 𝜋𝐴 cos 𝜋𝑥 − 𝜋𝐵 sin 𝜋𝑥 ⇒ 𝒰𝑅′′ = −𝜋 𝐴 sin 𝜋𝑥 − 𝜋 𝐵 cos 𝜋𝑥 n Nghiệm phương trình nhất: 𝒰∗ = 𝐴𝑒 𝑝√6𝑥 + 𝐵𝑒 −𝑝√6𝑥 tio 𝑑2𝒰 − 6𝑝 𝒰 = 𝑑𝑥 ca du Xét phương trình nhất: 114 Thay 𝒰𝑅 , 𝒰𝑅 ′′ vào (3.3.36), ta có: −𝜋 𝐴 sin 𝜋𝑥 − 𝜋 𝐵 cos 𝜋𝑥 − 6𝑝 (𝐴 sin 𝜋𝑥 + 𝐵 cos 𝜋𝑥 ) = −6 sin 𝜋𝑥 ⇔ (𝜋 + 6𝑝 )𝐴 sin 𝜋𝑥 + (𝜋 + 6𝑝 )𝐵 cos 𝜋𝑥 = sin 𝜋𝑥 M C H 𝐴= ⇒{ 𝜋 + 6𝑝 𝐵=0 sin 𝜋𝑥 ⇒ 𝒰𝑅 = 𝜋 + 𝑝2 C Nghiệm phương trình (3.3.36) là: U 𝒰 = 𝒰∗ + 𝒰𝑅 = 𝐴𝑒 𝑝√6𝑥 + 𝐵𝑒 −𝑝√6𝑥 + (3.3.37) ve ni sin 𝜋𝑥 𝜋2 + 𝑝2 Từ điều kiện biên (3.3.35): rs ity +∞ 𝑒 −𝑝𝑥 𝑢(0, 𝑡)𝑑𝑡 = 𝒰(0, 𝑝) = ∫ 𝑢(2, 𝑡)𝑑𝑡 = 𝒰(0, 𝑝) = 𝐴 + 𝐵 ca { (3.3.38) du Từ (3.3.37) (3.3.38), suy ra: 𝑒 −𝑝𝑥 fE { 𝒰(2, 𝑝) = ∫ O +∞ ⇒ (3.3.39) 𝒰(2,0) = 𝐴𝑒 𝑝2√6 + 𝐵𝑒 −𝑝2√6 tio ⇒𝒰= n Từ (3.3.38) (3.3.39) ⇒ 𝐴 = 𝐵 = sin 𝜋𝑥 𝜋2 + 𝑝2 Dùng phép biến đổi Laplace ngược, ta thu nghiệm phương trình (3.3.33): 115 𝑢(𝑥, 𝑡) = ℒ −1 (𝒰) = √6 √6 sin 𝜋𝑥 sin 𝑡 𝜋 𝜋 3.4 ÁP DỤNG PHƯƠNG PHÁP HÀM GREEN Bài 3.20 Bằng phương pháp biến đổi Laplace, tìm nghiệm tổng quát hàm Green cho phương trình: M C H 𝜕2 ( + 𝑘 ) 𝑢(𝑥, 𝑘 ) = −𝑓 (𝑥 ), ∀𝑥 ∈ [0, +∞) 𝜕𝑥 (3.4.1) C 𝑘 số U ni Giải ve Hàm Green nghiệm phương trình: rs 𝜕2 ( + 𝑘 ) 𝑔(𝑥|𝑥0 , 𝑘) = −𝛿 (𝑥 − 𝑥0 ) 𝜕𝑥 ity (3.4.2) fE O Biến đổi Laplace hai vế phương trình (3.4.2): du 𝜕2 ℒ [( + 𝑘 ) 𝑔 (𝑥|𝑥0 , 𝑘)] = −ℒ(𝛿) 𝜕𝑥 +∞ +∞ +∞ 𝜕 𝑔 −𝑝𝑥 −𝑝𝑥 ∫ ∫ 𝑒 𝑑𝑥 + 𝑘 𝑔𝑒 𝑑𝑥 = − 𝛿 (𝑥 − 𝑥0 )𝑒 −𝑝𝑥 𝑑𝑥 (3.4.3) 𝜕𝑥 0 n ⇒∫ tio ca 𝜕2 ⇒ ℒ ( 𝑔) + ℒ (𝑘 𝑔) = −ℒ(𝛿) 𝜕𝑥 Sau tính tốn, ta kết quả: 𝑝 𝑒 −𝑝𝑥0 ′ 𝑔̅ (𝑝|𝑥0 , 𝑘) = 𝑔(0|𝑥0 , 𝑘) + 𝑔 (0|𝑥0 , 𝑘 ) + 𝑝 + 𝑘2 𝑝 + 𝑘2 𝑝 + 𝑘2 +∞ với 𝑔̅ (𝑝|𝑥0 , 𝑘 ) = ∫0 𝑔 (𝑥|𝑥0 , 𝑘)𝑒 −𝑝𝑥 𝑑𝑥 116 Biến đổi Laplace ngược hàm 𝑔̅ (𝑝|𝑥0 , 𝑘) để thu hàm 𝑔(𝑥|𝑥0 , 𝑘): 𝑝 𝑒 −𝑝𝑥0 ′ ⇒ ℒ [𝑔̅ (𝑝|𝑥0 , 𝑘)] = ℒ [ 𝑔(0|𝑥0 , 𝑘) + 𝑔 (0|𝑥0 , 𝑘 ) + ] 𝑝 + 𝑘2 𝑝 + 𝑘2 𝑝 + 𝑘2 𝑝 𝑒 −𝑝𝑥0 ′ ⇒ ℒ [𝑔̅ (𝑝|𝑥0 , 𝑘)] = ℒ [ 𝑔(0|𝑥0 , 𝑘)] + ℒ [ 𝑔 (0|𝑥0 , 𝑘 )] + ℒ [ ] 𝑝 + 𝑘2 𝑝 + 𝑘2 𝑝 + 𝑘2 M C H 1 ⇒ 𝑔(𝑥|𝑥0 , 𝑘 ) = 𝑔(0|𝑥0 𝑘) cos 𝑘𝑥 + 𝑔′ (0, 𝑥0 , 𝑘 ) sin 𝑘𝑥 + sin[𝑘 (𝑥 − 𝑥0 )] 𝐻(𝑥 𝑘 𝑘 − 𝑥0 ) C Nghiệm 𝑢(𝑥0 , 𝑘) phương trình (3.4.1) có dạng: 𝑢(𝑥0 , 𝑘 ) = ∫ 𝑔 (𝑥|𝑥0 , 𝑘)𝑓(𝑥 )𝑑𝑥 ni U +∞ +∞ ve +∞ =∫ 𝑔(0|𝑥0 𝑘 ) cos 𝑘𝑥0 𝑓(𝑥 )𝑑𝑥 + ∫ 0 sin[𝑘 (𝑥 − 𝑥0 )] 𝐻 (𝑥 − 𝑥0 )𝑓(𝑥 )𝑑𝑥 𝑘 ity +∫ rs +∞ ′ 𝑔 (0, 𝑥0 , 𝑘 ) sin 𝑘𝑥0 𝑓 (𝑥 )𝑑𝑥 𝑘 +∞ 𝐴(𝑘 ) = ∫ 𝑔(0|𝑥, 𝑘 )𝑓(𝑥)𝑑𝑥 du fE O Đặt ca +∞ ′ 𝐵(𝑘 ) = ∫ 𝑔 (0|𝑥, 𝑘 )𝑓 (𝑥 )𝑑𝑥 𝑘 { n tio ⇒ 𝑢 (𝑥0 , 𝑘 ) = 𝐴(𝑘 ) cos 𝑘𝑥𝑜 + 𝐵(𝑘 ) sin 𝑘𝑥0 +∞ + ∫ sin[𝑘 (𝑥 − 𝑥0 )] 𝐻 (𝑥 − 𝑥0 )𝑓 (𝑥 )𝑑𝑥 𝑘 Bài 3.21 Tìm nghiệm phương trình: 117 𝜕2 ( + 𝑘 ) 𝑢(𝑥, 𝑘 ) = 0, ∀ 𝑥 ∈ [0, 𝐿] 𝜕𝑥 (3.4.4) 𝑢(0, 𝑘) = 𝑢(𝐿, 𝑘 ) = (3.4.5) với điều kiện: { M C H Giải Hàm Green nghiệm phương trình: C ( (3.4.6) ni U 𝜕2 + 𝑘 ) 𝑔(𝑥|𝑥0 , 𝑘) = −𝛿 (𝑥 − 𝑥0 ) 𝜕𝑥 Nghiệm hàm Green không gian chiều có dạng: ve ity rs 𝑔(𝑥|𝑥0 , 𝑘) = − sin 𝑘|𝑥 − 𝑥0 | 𝑘 Với điều kiện (3.4.5), nghiệm riêng phương trình (3.4.4) có dạng: Nghiệm tổng qt phương trình (2.4.4) là: du fE O 𝑢 (𝑟, 𝑘 ) = 𝐴 sin 𝑘𝑥 + 𝐵𝑠𝑖𝑛 𝑘(𝐿 − 𝑥) Từ điều kiện (3.4.5): 𝑢(0, 𝑘) = 𝑢(𝐿, 𝑘 ) = − sin 𝑘𝑥0 + 𝐵 sin 𝑘𝐿 = 𝑘 ⇒{ − sin 𝑘(𝐿 − 𝑥0 ) + 𝐴 sin 𝑘𝐿 = 𝑘 n { tio ca 𝑢(𝑥, 𝑘 ) = − sin 𝑘|𝑥 − 𝑥0 | + 𝐴 sin 𝑘𝑥 + 𝐵 sin 𝑘(𝐿 − 𝑥) 𝑘 118 sin 𝑘𝑥0 𝑘 sin 𝑘𝐿 ⇒{ sin 𝑘(𝐿 − 𝑥0 ) 𝐴= 𝑘 sin 𝑘𝐿 𝐵= Vậy nghiệm phương trình (3.4.4) là: M C H 1 sin 𝑘 (𝐿 − 𝑥0 ) sin 𝑘𝑥0 𝑢(𝑥, 𝑘 ) = − sin 𝑘|𝑥 − 𝑥0 | + sin 𝑘𝑥 + sin 𝑘(𝐿 − 𝑥) 𝑘 𝑘 sin 𝑘𝐿 𝑘 sin 𝑘𝐿 sin 𝑘 (𝐿 − 𝑥0 ) sin 𝑘𝑥0 ⇒ 𝑢(𝑥, 𝑘 ) = − [sin 𝑘|𝑥 − 𝑥0 | − sin 𝑘𝑥 − sin 𝑘 (𝐿 − 𝑥 )] 𝑘 sin 𝑘𝐿 sin 𝑘𝐿 C Bài 3.22 U Chứng minh rằng, phương pháp biến đổi Laplace theo biến x phương trình ni ve 𝜕2 ( + 𝑘 ) 𝑔(𝑥|𝑥0 , 𝑘) = −𝛿 (𝑥 − 𝑥0 ) 𝜕𝑥 (3.4.7) rs ity với điều kiện biên: O 𝑔(0|𝑥0 , 𝑘) = { 𝜕𝑔(𝑥|𝑥0 , 𝑘 ) [ ]| = 𝑔(1|𝑥0 , 𝑘) 𝜕𝑥 𝑥=0 du fE (3.4.8) nghiệm hàm Green có dạng: ca sin(𝑘𝑥 ) sin[𝑘 (1 − 𝑥0 )] sin[𝑘(𝑥 − 𝑥0 )] − 𝐻 (𝑥 − 𝑥0 ) 𝑘 (sin 𝑘 − 𝑘 ) 𝑘 Biến đổi Laplace hai vế phương trình (3.4.7), ta được: 𝜕2𝑔 ℒ ( ) + 𝑘 ℒ(𝑔) = −ℒ(𝛿) 𝜕 𝑥 Sử dụng kết 2.20, ta được: n Giải tio 𝑔(𝑥|𝑥0 , 𝑘 ) = 119 𝑔̅ (𝑝|𝑥0 , 𝑘 ) = 1 𝑒 −𝑝𝑥0 ′( ( ) ) 𝑔 0|𝑥 , 𝑘 + 𝑔 0|𝑥 , 𝑘 + 0 𝑝2 + 𝑘 𝑝2 + 𝑘 𝑝2 + 𝑘 Mà: 𝑔(0|𝑥0 , 𝑘 ) = 𝑒 −𝑝𝑥0 ′ ⇒ 𝑔̅ (𝑝|𝑥0 , 𝑘 ) = 𝑔 (0|𝑥0 , 𝑘) + 𝑝 + 𝑘2 𝑝 + 𝑘2 (3.4.9) M C H Biến đổi Laplace ngược hàm 𝑔̅ (𝑝|𝑥0 , 𝑘), ta thu hàm 𝑔(𝑥|𝑥0 , 𝑘 ): 1 sin 𝑘𝑥 𝑔′ (0|𝑥0 , 𝑘 ) + sin[𝑘(𝑥 − 𝑥0 )] 𝐻(𝑥 − 𝑥0 ) 𝑘 𝑘 𝑔(𝑥|𝑥0 , 𝑘) = C Mặt khác: ni U 𝑔′ (0|𝑥0 , 𝑘) = 𝑔(1|𝑥0 , 𝑘) 1 sin 𝑘𝑥 𝑔(1|𝑥0 , 𝑘 ) + sin[𝑘(𝑥 − 𝑥0 )] 𝐻 (𝑥 − 𝑥0 ) (3.4.10) 𝑘 𝑘 ve ⇒ 𝑔(𝑥|𝑥0 , 𝑘 ) = rs ity Thay 𝑥 = vào phương trình (3.4.10): 1 sin 𝑘 𝑔(1|𝑥0 , 𝑘 ) + sin[𝑘(𝑥 − 𝑥0 )] 𝐻(1 − 𝑥0 ) 𝑘 𝑘 sin[𝑘(1 − 𝑥0 )] 𝐻(1 − 𝑥0 ) 𝑘 − sin 𝑘 sin 𝑘𝑥 sin[𝑘(1 − 𝑥0 )] + sin[𝑘(𝑥 − 𝑥0 )] 𝐻(𝑥 − 𝑥0 ) 𝑘(𝑘 − sin 𝑘 ) 𝑘 n tio ⇒ 𝑔(𝑥|𝑥0 , 𝑘 ) = ca Thay (3.4.11) vào (3.4.10) (3.4.11) du ⇒ 𝑔(1|𝑥0 , 𝑘) = fE O 𝑔(1|𝑥0 , 𝑘) = Bài 3.23 Trường điện U thỏa mãn phương trình: ∇2 𝑈 (𝑟, 𝑡) − 𝜕2 𝑈 (𝑟, 𝑡) = −4𝜋𝜌 (𝑟)𝑒 𝑖𝜔𝑡 2 𝑐 𝜕𝑡 (3.4.12) 120 với 𝜌 mật độ điện tích, 𝜔 tần số góc 𝑐 tốc độ lan truyền sóng điện từ chân không Sử dụng phương pháp hàm Green, tính biên độ trường điện cung cấp antenna phát bước sóng 𝜆 = 10𝑚, khoảng cách 1000m từ antenna, với 𝜌(𝑟) = 𝑟2 Giải M C H Đặt 𝑈 (𝑟, 𝑡) = 𝑢(𝑟, 𝜔)𝑒 𝑖𝜔𝑡 C Phương trình (3.4.12) thành: U ∇ 𝑢 (𝑟, 𝜔)𝑒 𝑖𝜔𝑡 ve ni 𝜔2 + 𝑢(𝑟, 𝜔)𝑒 𝑖𝜔𝑡 = −4𝜋𝜌(𝑟)𝑒 𝑖𝜔𝑡 𝑐 ⇔ ∇2 𝑢(𝑟, 𝜔) + rs 𝜔2 𝑢(𝑟, 𝜔) = −4𝜋𝜌 𝑐2 ⇔ ∇2 𝑢 (𝑟, 𝜔) + 𝑘 𝑢 = −4𝜋𝜌 ity (3.4.13) fE O Nghiệm chứa hàm Green cho phương trình (3.4.13) điểm 𝑟0 : 𝑢(𝑟0 , 𝑘 ) = 4𝜋 ∫ 𝜌 (𝑟)𝑔 (𝑟|𝑟0 , 𝑘)𝑑 𝑟 (3.4.14) 𝑔(𝑟|𝑟0 , 𝑘) = 𝑖𝑘𝑟 −𝑖𝑘𝑛̂ 𝑟 𝑒 𝑒 4𝜋𝑟0 ⇒ 𝑢(𝑟0 , 𝑘 ) = 𝑒 𝑖𝑘𝑟0 ∫ 𝜌(𝑟) 𝑒 −𝑖𝑘𝑛̂0𝑟 𝑑 𝑟 n Sử dụng phương pháp tiệm cận, ta thu được: tio 𝑒 𝑖𝑘|𝑟−𝑟0| 𝑔(𝑟|𝑟0 , 𝑘) = 4𝜋|𝑟 − 𝑟0 | ca du Hàm Green ứng với sóng khơng gian chiều: 121 Đổi sang hệ tọa độ cực thay 𝜌(𝑟) = 𝑟2 𝑒 𝑖𝑘𝑟0 ∫ ∫ ∫ 𝑒 −𝑖𝑘𝑛̂0𝑟 𝑟 𝑑(cos 𝜃)𝑑𝑟𝑑𝜑 𝑢(𝑟𝑜 , 𝑘 ) = 𝑟0 𝑟 𝜋 2𝜋 𝑒 𝑖𝑘𝑟0 +∞ −𝑖𝑘𝑟 cos 𝜃 ( ) ∫ 𝑑𝑟 ∫ 𝑒 = 𝑑 cos 𝜃 ∫ 𝑑𝜑 𝑟0 0 M C H = 2𝜋 𝜋 𝑒 𝑖𝑘𝑟0 +∞ ∫ 𝑑𝑟 ∫ 𝑒 −𝑖𝑘𝑟 cos 𝜃 𝑑 (cos 𝜃) 𝑟0 0 𝜋 Đặt 𝐼 = ∫ 𝑒 −𝑖𝑘𝑟 cos 𝜃 𝑑 (cos 𝜃) C ni U −𝑖𝑘𝑟 cos 𝜃 𝜋 (𝑒 𝑖𝑘𝑟 − 𝑒 −𝑖𝑘𝑟 ) = sin 𝑘𝑟 ⇒𝐼=− 𝑒 | = 𝑖𝑘𝑟 𝑖𝑘𝑟 𝑘𝑟 4𝜋 𝑖𝑘𝑟 +∞ sin(𝑘𝑟) 2𝜋 𝑖𝑘𝑟 𝑒 0∫ 𝑑𝑟 = 𝑒 𝑟0 𝑘𝑟 𝑟𝑜 𝑘  Tính biên độ trường điện thế: Ta có: ity rs ve ⇒ 𝑢(𝑟𝑜 , 𝑘 ) = O 2𝜋 = 0,2𝜋 𝜆 fE 𝑘= du Thay 𝑘 = 0,2 𝜋 𝑟0 = 1000𝑚 vào 𝑢, ta tìm biên độ trường điện cung ca cấp antenna: n tio 2𝜋 𝑖𝑘𝑟 2𝜋 𝑢= 𝑒 = 𝑒 0,2𝜋.1000.𝑖 = 0,01𝜋 𝑟𝑜 𝑘 1000.0,2𝜋 Bài 3.24 Tính tốn hàm Green khơng gian ba chiều cho tốn tử Klein – Gordon mơ tả trường sóng phụ thuộc vào thời gian với toán tử Klein – Gordon: 𝜕2 ∇ − 2 − 𝜎2 𝑐 𝜕𝑡 122 Giải Theo đề bài, ta có phương trình: 𝜕2 (∇ − 2 − 𝜎 ) 𝐺 (𝑟|𝑟0 , 𝑡|𝑡0 ) = −𝛿 (𝑟 − 𝑟0 )𝛿 (𝑡 − 𝑡0 ) 𝑐 𝜕𝑡 Đặt { (3.4.15) M C H 𝑅 = |𝑟 − 𝑟0 | 𝜏 = 𝑡 − 𝑡0 Đặt: C +∞ ∫ 𝑔(𝑅, 𝜔)𝑒 𝑖𝜔𝜏 𝑑𝜔 𝐺 (𝑅, 𝜏) = 2𝜋 −∞ +∞ 𝑖𝜔𝜏 ∫ 𝑒 𝑑𝜔 𝛿 (𝜏) = 2𝜋 −∞ { (3.4.16) ni U Thay (3.4.16) vào (3.4.15), ta được: ve ⇒∫ +∞ ∇ 𝑔𝑒 𝑖𝜔𝜏 𝑑𝜔 − ∫ −∞ +∞ 2) 𝑖𝜔𝜏 ( 𝑖𝜔 𝑔𝑒 𝑑𝜔 − ∫ 𝜎 𝑔𝑒 𝑖𝜔𝜏 𝑑𝜔 𝑐 −∞ = −𝛿 (𝑅) ∫ 𝑒 𝑖𝜔𝜏 𝑑𝜔 fE −∞ +∞ ∞ +∞ 𝜔2 𝑖𝜔𝜏 3( ) ∫ (∇ + − 𝜎 ) 𝑔𝑒 𝑑𝜔 = −𝛿 𝑅 𝑒 𝑖𝜔𝜏 𝑑𝜔 𝑐 −∞ du ⇒∫ O −∞ +∞ ity +∞ rs +∞ 𝜕 +∞ 𝑖𝜔𝜏 𝑖𝜔𝜏 3( ) ∫ (∇ − 2 − 𝜎 ) 𝑔 𝑒 𝑑𝜔 = −𝛿 𝑅 ∫ 𝑒 𝑑𝜔 2𝜋 −∞ 𝑐 𝜕𝑡 2𝜋 −∞ (3.4.18) n Đặt tio ca 𝜔2 ⇒ (∇ + − 𝜎 ) 𝑔(𝑅, 𝑘 ) = −𝛿 (𝑅) 𝑐 (3.4.17) +∞ ∫ 𝑔̅ (𝑢, 𝜔)𝑒 𝑖𝑢𝑅 𝑑 𝑢 (2𝜋) −∞ +∞ 3( ) ∫ 𝛿 𝑅 = 𝑒 𝑖𝑢𝑅 𝑑 𝑢 (2𝜋) −∞ 𝑔(𝑅, 𝜔) = { (3.4.18) ⇒ (∇2 + +∞ +∞ 𝜔2 1 𝑖𝑢𝑅 ( ) ∫ ∫ − 𝜎 ) 𝑔̅ 𝑢, 𝜔 𝑒 𝑑 𝑢 = − 𝑒 𝑖𝑢𝑅 𝑑 𝑢 3 (2𝜋) −∞ (2𝜋) −∞ 𝑐 123 +∞ ⇒∫ −∞ +∞ 𝜔2 𝑖𝑢𝑅 (∇ + − 𝜎 ) 𝑔̅ (𝑢, 𝜔)𝑒 𝑑 𝑢 = − ∫ 𝑒 𝑖𝑢𝑅 𝑑 𝑢 𝑐 −∞ 𝜔2 ⇒ (−𝑢 + − 𝜎 ) 𝑔̅ = −1 𝑐 ⇒ 𝑔̅ (𝑢, 𝜔) = 𝑢2 − 𝑘 + 𝜎 M C H +∞ 𝑒 𝑖𝑢𝑅 ∫ ⇒ 𝑔(𝑅, 𝜔) = 𝑑3𝑢 (2𝜋)3 −∞ 𝑢2 − 𝑘 + 𝜎 (2.4.17) ⇒ 𝐺 (𝑅, 𝜏) = C 𝑒 𝑖𝑢𝑅 𝑒 𝑖𝜔𝜏 𝑑 𝑢𝑑𝜔 𝜔 𝑢2 − + 𝜎 𝑐 (3.4.19) ni U Đặt +∞ ∫ (2𝜋)4 −∞ 𝐼=∫ 𝑒 −∞ 𝑖𝑢𝑅 𝑑 𝑢=∫ −∞ 2𝜋 sin 𝜃𝑑𝜃 ∫ 𝑑𝜑 +∞ Để tìm hàm 𝐺(𝑅, 𝜏), ta tính tính tích phân chu tuyến C: 𝑧𝑒 𝑖𝑅𝑧 ∮ 𝑑𝑧 𝐶 𝑧2 − 𝜔 + 𝜎2 𝑐2 Xét cực điểm dương 𝑧 = √ 𝜔2 𝑐2 − 𝜎2 n tio 4𝜋 +∞ ∫ 𝑢 sin 𝑢𝑅 𝑑𝑢 ⇒ 𝐼 = 2𝜋 ∫ ∫ 𝑢 𝑒 𝑑𝑡𝑑𝑢 = 𝑖𝑅 −∞ −1 −∞ +∞ 𝑢 sin 𝑢𝑅 𝑒 𝑖𝜔𝜏 ⇒ 𝐺 (𝑅, 𝜏) = ∫ 𝑑𝑢𝑑𝜔 4𝜋 𝑖𝑅 −∞ 𝜔 2 𝑢 − +𝜎 𝑐 𝑖𝑢𝑅𝑡 ca du Đặt 𝑡 = cos 𝜃 ⇒ 𝑑𝑡 = − sin 𝜃 𝑑𝜃 𝑖𝑢𝑅𝑐𝑜𝑠 𝜃 fE 𝑢 𝑑𝑢 ∫ 𝑒 O 𝜋 −∞ 𝑒 𝑖𝑢𝑅 𝑢2 sin 𝜃 𝑑𝑢𝑑𝜃𝑑𝜑 −∞ +∞ =∫ +∞ ity +∞ 𝑒 𝑖𝑢𝑅 𝑑 𝑢 𝐼=∫ rs ve Đổi sang hệ tọa độ cầu: +∞ 124 Theo định lý thặng dư: 𝑛 ∮𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖 ∑ Res 𝑓(𝑧) 𝐶 𝑗=1 (𝑧 − √ Res 𝑓(𝑧) = M C H ω2 z=√ −𝜎 𝑐 lim 𝜔2 𝑧→√ −𝜎2 (𝑧 𝑐 z=a 𝜔2 − 𝜎 ) 𝑧𝑒 𝑖𝑅𝑧 𝑐2 𝜔2 𝜔2 − √ − 𝜎 ) (𝑧 + √ − 𝜎 ) 𝑐 𝑐 = 𝜔2 𝑖𝑅√ −𝜎 𝑒 𝑐 𝜔2 𝑧𝑒 𝑖𝑅𝑅𝑧 𝑖𝑅√ −𝜎2 𝑐 𝑑𝑧 = 𝜋𝑖𝑒 𝐶 𝑧2 − 𝜔 + 𝜎2 𝑐2 ⇒∮ C +∞ 𝜔2 𝑖𝑅√ −𝜎2 𝑖𝜔𝜏 𝑐 ∫ 𝜋𝑖 𝑒 𝑒 𝑑𝜔 4𝜋 𝑖𝑅 −∞ ve Đặt 𝑖𝜔 = 𝑝 ni U ⇒ 𝐺 (𝑅, 𝜏) = Ta có: rs ity 𝜔2 𝜔2 √𝜎 𝑐 + 𝑝 √ − 𝜎 = 𝑖√ − 𝜎 = 𝑐2 𝑐2 𝑐 O +∞ √𝜎 𝑐 +𝑝2 −𝑅 𝑐 ∫ 𝑒 𝑒 𝑝𝜏 𝑑𝑝 4𝜋 𝑅 −∞ +∞ √𝜎 𝑐 +𝑝2 𝜕 −𝑐 −𝑅 𝑐 ⇒ 𝐺 (𝑅, 𝜏) = ∫ [ 𝑒 ] 𝑒 𝑝𝜏 𝑑𝑝 4𝜋 𝑅 −∞ 𝜕𝑅 √𝜎 𝑐 + 𝑝 du fE ⇒ 𝐺 (𝑅, 𝜏) = Để tìm hàm 𝐺 (𝑅, 𝜏), ta tìm biến đổi Laplace ngược hàm: √𝜎 𝑐 + 𝑝 𝑒 − 𝑅√𝜎 𝑐 +𝑝2 𝑐 n 𝐹 (𝑝) = tio ca √𝜎 𝑐 +𝑝2 𝑐 𝜕 +∞ −𝑅 𝑐 ∫ − ⇒ 𝐺 (𝑅, 𝜏) = − 𝑒 𝑒 𝑝𝜏 𝑑𝑝 4𝜋 𝑅 𝜕𝑅 −∞ √𝜎 𝑐 + 𝑝 Mặt khác, ta có: 2 𝑓(𝑥 ) = {𝐽0 𝑎√𝑥 − 𝑏 , 𝑥 > 𝑏 ( 𝐽0 hàm Bessel bậc 0, a b số dương) 0, 𝑥 < 𝑏 Có biến đổi ngược: (3.4.20) 125 𝐹 (𝑝) = 𝑒 −𝑏√𝑝 +𝑎 √𝑝 + 𝑎2 𝑅 Áp dụng cho hàm 𝐹(𝑝) (3.1.20) với 𝑎 = 𝜎𝑐 𝑏 = , hàm Green cần tìm là: 𝑐 𝐺 (𝑅, 𝜏) = − 𝑐 𝜕 𝑅 𝑅 − ( ) (với 𝜏 > ) √ 𝐽 [𝜎𝑐 𝜏 4𝜋 𝑅 𝜕𝑅 𝑐 𝑐 C M C H ity rs ve ni U n tio ca du fE O 126 KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN Về bản, tơi hồn thành mục tiêu ban đầu đề sau:  Hệ thống lại phương pháp giải tích: phương pháp tách biến, phương pháp D’Alembert, phương pháp biến đổi tích phân, phương pháp hàm Green để giải phương trình vật lý tốn: phương trình truyền sóng, truyền nhiệt, Laplace,  Hệ thống giải tốn phương trình đạo hàm riêng vật lý theo M C H phương pháp giải tích Tuy nhiên, thời gian có hạn nên đề tài chưa đề cập đến việc áp dụng phương pháp hàm Green cho số tốn: giải phương trình Schrodinger phương trình C Helmholtz khơng nhất; tán xạ Rutherford, Rayleigh; nhiễu xạ Kirchhoff, U Fraunhofer, Fresnel,…Các tập sử dụng hàm Green chưa nhiều đa dạng ni Xuất phát từ hạn chế đề tài, đề tài phát triển lên thêm cách mở ve rộng cho toán áp dụng phương pháp hàm Green quang học: nhiễu xạ, tán ity rs xạ,…; điện từ trường; vật lý thống kê,… n tio ca du fE O 127 TÀI LIỆU THAM KHẢO Tiếng Việt [1] Vũ Văn Thanh, Nguyễn Nhật Khanh (2000) Phương trình đạo hàm riêng vật lý NXB Đại học Quốc gia TP Hồ Chí Minh Tiếng Anh M C H [2] Duffy, D G (2004) Transform methods for solving partial differential equations Chapman and Hall/CRC [3] Evans, G., Blackledge, J., & Yardley, P (2012) Analytic methods for partial C differential equations Springer Science & Business Media U ni [4] Ruas, V (2016) Numerical Methods for Partial Differential Equations: An ve Introduction John Wiley & Sons rs [5] Heat equation Truy cập ngày 10 tháng 1, 2019 từ ity https://en.wikipedia.org/wiki/Heat_equationruy fE O [6] Laplace’s equation Truy cập ngày 11 tháng 1, 2019 từ https://en.wikipedia.org/wiki/Laplace%27s_equation https://en.wikipedia.org/wiki/Wave_equation n tio ca du [7] Wave equation Truy cập ngày tháng 1, 2019 từ

Ngày đăng: 27/09/2023, 15:15

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w