Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 28 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
28
Dung lượng
1,14 MB
Nội dung
CHUYÊN ĐỀ 5: SỐ NGUYÊN TỐ,HỢP SỐ ĐS6.CHUYÊN ĐỀ - SỐ NGUYÊN TỐ, HỢP SỐ CHỦ ĐỀ 3:CÁC BÀI TỐN VỀ HỢP SỐ PHẦN I.TĨM TẮT LÝ THUYẾT 1.SỐ NGUYÊN TỐ -Số nguyên tố số tự nhiên lớn 1,chỉ có ước -Số nguyên tố nhỏ vừa số nguyên tố chẵn số -Không thể giới hạn số nguyên tố tập hợp số nguyên tố.Hay nói cách khác,số ngun tố vơ hạn -Khi số ngun tố nhân với tích chúng khơng số phương -Ước tự nhiên nhỏ khác số tự nhiên coi số nguyên tố -Để kết luận số tự nhiên a số nguyên tố ( a ),chỉ cần chứng minh a không chia hết cho số ngun tố mà bình phương khơng vượt a a p ab p bp (p số nguyên tố) -Nếu tích n -Đặc biệt a p a p (p số nguyên tố) * -Mọi số nguyên tố vượt có dạng: 4n 1( n N ) * -Mọi số nguyên tố vượt có dạng: 6n 1( n N ) -Hai số nguyên tố sinh đôi hai số nguyên tố đơn vị 2.HỢP SỐ -Hợp số số tự nhiên lớn có nhiều ước nguyên dương -Để chứng tỏ số tự nhiên a ( a ) hợp số,chỉ cần ước khác a -Ước số nhỏ khác hợp số số ngun tố bình phương lên khơng vượt q -Một hợp số tổng ước (khơng kể nó) gọi là: Số hồn chỉnh -Mọi số tự nhiên lớn phân tích thừa số nguyên tố cách nhất(không kể thứ tự thừa số) 3.HAI SỐ NGUYÊN TỐ CÙNG NHAU -Hai số tự nhiên gọi nguyên tố chúng có ước chung lớn Trang CHUYÊN ĐỀ 5: SỐ NGUYÊN TỐ,HỢP SỐ * a,b nguyên tố với ( a, b) 1;(a, b N ) - Hai số tự nhiên liên tiếp nguyên tố - Hai sô nguyên tố khác nguyên tố - Các số nguyên tố khác nguyên tố - Các số a, b, c nguyên tố ( a, b, c) 1 - a, b, c nguyên tố sánh chúng đôi nguyên tố a, b, c nguyên tố sánh đôi (a, b) (b, c ) (c, a ) 1 4.MỘT SỐ ĐỊNH LÍ ĐẶC BIỆT * - Định lí Đirichlet: Tồn tai vơ số số ngun tổ p có dạng: p ax b; x N , (a, b) 1 - Định lí Tchebycheff: Trong khoảng từ số tự nhiên n đến số tự nhiên 2n có số ngun tố (n 2) - Định lí Vinogradow: Mọi số lẻ lớn tổng số nguyên tố PHẦN II.CÁC DẠNG BÀI Dạng 1: Phương pháp kiểm tra số hợp số I.Phương pháp giải Cách Sử dụng định nghĩa -Hợp số số tự nhiên lớn lơn có nhiều ước nguyên dương -Để chứng tỏ số tự nhiên a ( a ) hợp số,chỉ cần ước khác a * Cách Với n N , n ta kiểm tra theo bước sau 2 - Tìm số nguyên tố k cho: k n ( k 1) - Kiểm tra xem n có chia hết cho số nguyên tố nhỏ k không ? +) Nếu có chia hết n số hợp số +) Nếu khơng chia hết n số ngun tố II.Bài toán Bài 1: Tổng, hiệu sau số nguyên tố hay hợp số a) b) 3.4.5 6.7 5.7.9.11 2.3.4.7 c) 16354 67541 Trang CHUYÊN ĐỀ 5: SỐ NGUYÊN TỐ,HỢP SỐ Lời giải a) Ta có: 3.4.5 6.7 3 4.5 2.7 3 b) Ta có: 5.7.9.11 2.3.4.7 7 5.9.11 2.3.4 7 tổng hợp số tổng hợp số c) Ta có: 16354 67541 có chữ số tận nên chia hết cho 5, Vậy tổng hợp số Bài 2: Tổng, hiệu sau số nguyên tố hay hợp số a) b) c) d) 5.6.7 8.9 5.7.9.11.13 2.3.7 5.7.11 13.17.19 4253 1422 Lời giải a) Ta có : 5.6.7 8.9 3 5.2.7 8.3 3 b) Ta có : 5.7.9.11.13 2.3.7 7 5.9.11.13 2.3 7 tổng hợp số tổng hợp số c) Ta có: 5.7.11 số lẻ 13.17.19 số lẻ, nên tổng số chẵn 2 Là hợp số d) Ta có: 4253 1422 có chữ số tận nên chia hết cho Vậy tổng hợp số Bài 3: Tổng, hiệu sau số nguyên tố hay hợp số a) b) c) 17.18.19.31 11.13.15.23 41.43.45.47 19.23.29.31 987654 54321 Lời giải a) Ta có: 17.18.19.31 11.13.15.23 3 17.6.19.31 11.13.5.23 3 17.18.19.31 11.13.15.23 hợp số b) Ta có: 41.43.45.47 số lẻ, 19.23.29.31 số lẻ, nên 41.43.45.47 19.23.29.31 số chẵn nên 41.43.45.47 19.23.29.31 hợp số c) Ta có: 987654 54321 có chữ số tận nên chia hết tổng hợp số Bài 4: Các số tự nhiên Trang abab; abcabc; ababab số nguyên tố hay hợp số CHUYÊN ĐỀ 5: SỐ NGUYÊN TỐ,HỢP SỐ Lời giải Ta có abab 101.ab có nhiều hai ước số abcabc 1001.abc 1.11.13.abc có nhiều hai ước số ababab 101o1.ab 3.7.13.37.ab có nhiều hai ước số Vậy số tự nhiên abab; abcabc; ababab hợp số Bài 5: Nếu p số nguyên tố a p p số nguyên tố hay hợp số b p 200 số nguyên tố hay hợp số Lời giải: a) Ta có: p p p ( p 1) p p 1 Vì p; p hai số liên tiếp nên số chẵn Nên p p số chẵn lớn nên hợp số b) 2 - Với p 2 p 200 số chẵn lớn p 200 hợp số 2 - Với p 3 p 200 2097 p 200 hợp số p 200 3 p 200 - Với p p : dư 1; 2003 dư hợp số Vậy p 200 hợp số Bài 6: Cho a, b, c, d * thỏa mãn ab cd n n n n Chứng minh rằng: A a b c d hợp số với n Lời giải Ta có ab cd ab : bd cd : bd Hay a : d c : b a dt a : d c : b t t * c bt Đặt Khi đó: Trang CHUYÊN ĐỀ 5: SỐ NGUYÊN TỐ,HỢP SỐ A a n b n c n d n n n dt b n bt d n d n t n b n b n t n d n d n t n 1 b n t n 1 d n b n t n 1 Vì b, d , t * nên A hợp số Dạng 2: Một số toán hợp số I.Phương pháp giải -Dựa vào tính chất đặc trưng hợp số để giải toán chứng minh hợp số II.Bài toán Bài 7: a) Cho p số nguyên tố Hỏi p số nguyên tố hay hợp số b) Cho p p số nguyên tố ( p 3) Chứng minh p hợp số Lời giải: 5 a Nếu p 2 p 2 31 số nguyên tố - Nếu p Vì p số nguyên tố nên p số lẻ p số lẻ p số chẵn lớn p hợp số Vậy p hợp số b p, p 4, p dãy số cách đơn vị có số chia hết cho Vì p p 3, p p, p số nguyên tố nên p, p không chia hết cho p 83 p p hợp số Bài 8: Cho p p hai số nguyên tố lớn Hỏi p 100 số nguyên tố hợp số? Lời giải: Trang CHUYÊN ĐỀ 5: SỐ NGUYÊN TỐ,HỢP SỐ p số nguyên tố lớn nên p có dạng 3n 1;3n 2, (n N * ) Ta thấy p 3n 1, (n N * ) p 3n 3(n 3) 3 TH1: Mà p số lớn nên p hợp số ( Vơ lí p số nguyên tố ) TH2: p 3n 2( n N * ) p 3n 10 Khi p 100 3n 100 6n 102 3(2n 34) 3 Mà p 100 số lớn nên p 100 hợp số Bài 9: Cho p p số nguyên tố ( p 3) Chứng minh p hợp số Lời giải: * Vì p số nguyên tố lớn nên p chia dư dư p có dạng 3k 1;3k 2(k ) Nếu p 3k p 24k 3 8k 3 p hợp số ( Vơ lí p số nguyên tố) Vậy p 3k p 12k 3(4k 3)3 12k nên hợp số Vậy p p số nguyên tố ( p 3) p hợp số Bài 10 : Cho p p số nguyên tố ( p 3) Chứng minh p hợp số Lời giải: p 3k 1, p 3k k Vì p số nguyên tố lớn nên p chia dư dư p có dạng * +) Nếu p 3k p 6k 33 6k nên hợp số ( mâu thuẫn với giả thiết p số nguyên tố) Vậy p 3k Khi p 12k 93 12k nên hợp số Vậy p p số nguyên tố ( p 3) p hợp số.(đpcm) Bài 11: a) Cho p p số nguyên tố ( p 3) Chứng minh p hợp số p 16 b) Cho p p số nguyên tố Chứng minh p 2021 hợp số Lời giải: a) Với p , ta có p, p 1, p số tự nhiên liên tiếp Trang CHUYÊN ĐỀ 5: SỐ NGUYÊN TỐ,HỢP SỐ Do số có số chia hết cho 1 Mà p; p số nguyên tố nên p 13 p p hợp số Lại có số nguyên tố p p 12 Nên p số chẵn Từ (1)(2) p 16 b) Ta có: p 2012 p 2010 Xét dãy p, p 2, p Với p 2 p 62 p hợp số (loại) Với p 3 p 2012 20155 p 2012 hợp số p 3k 1, p 3k k Với p p chia dư dư p có dạng * +) Nếu p 3k p 3k 33 3k p 2012 p 2010nên hợp số Vậy p 3k Khi p 3k 63 3k nên hợp số( mâu thuẫn với giả thiết p số nguyên tố) Bài 12: Cho p 10p + số nguyên tố lớn Chứng minh rằng: 5p + hợp số Lời giải p 3k 1, p 3k k Vì p số nguyên tố lớn nên p chia dư dư p có dạng * 10 p 10 3k 30k 213 30k 21 +) Nếu p 3k nên hợp số ( mâu thuẫn với giả thiết 10 p số nguyên tố) Vậy p 3k Khi p 15k 63 15k nên hợp số Vậy p 10 p số nguyên tố ( p 3) p hợp số.(đpcm) 2 Bài 13: Cho p p số nguyên tố ( p 3) Chứng minh p hợp số Lời giải: Vì p,8 p số nguyên tố lớn nên không chia hết cho 2 Khi ta có : p 1;8 p ;8 p số nguyên liên tiếp nên phải có số chia hết cho Trang CHUYÊN ĐỀ 5: SỐ NGUYÊN TỐ,HỢP SỐ 3, p p Vậy p 13 hợp số Mà p 1 Bài 14: Cho p p số nguyên tố ( p 3) Tìm số nguyên tố p để p hợp số Lời giải: Với p p, p số nguyên tố lớn nên khơng chia hết cho Khi ta có : p 1; p; p số nguyên liên tiếp nên phải có số chia hết cho 3, p p Vậy p 13 hợp số Mà p 1 Bài 15: Chứng minh dãy số sau hợp số : 121;11211;1112111;11 1211 1( n 2) n n Lời giải: Ta có: 121 110 11 11.10 11 11(10 1) 11211 1110 111 111(102 1) 1112111 1111000 1111 1111(103 1) n 111 12111 111 1(10 1) 11 1(10 1) 111 1000 11 n n n 1 n 1 n Bài 16: Chứng minh n 1 11 122 (n 2) n n n n 1 hợp số hợp số Lời giải: Ta có: 11 122 11 100 22 n n n n n 11 122 11 1.100 2.11 n n n n n 11 122 100 11 2 n n n n hợp số Bài 17: Một số nguyên tố chia cho 42 có số dư hợp số Tìm số dư Lời giải: Gọi p số nguyên tố theo đầu bài, đó: p 42.k r 2.3.7k r (0 r 42) Vì r hợp số r 42 Vì p số nguyên tố Trang CHUYÊN ĐỀ 5: SỐ NGUYÊN TỐ,HỢP SỐ r không chia hết cho 2,3, Mà r hợp số nên r 25 giá trị cần tìm Vậy r 25 Bài 18: Một số nguyên tố chia cho 60 có số dư r Tìm số dư, biết r hợp số số nguyên tố không? Lời giải: Giả sử p số nguyên tố: 2,3,5 p 60k r (k N ;0 r 60);60 2 2.3.5 p 2 2.3.5.k r r r 1 r số nguyên tố hợp số không chia hết cho 2, 3, r 1 r 1 r số nguyên tố khác 2, 3, r = 49 r 49 Bài 19: Cho p p số nguyên tố ( p ).Chứng minh tổng hai số nguyên tố chia hết cho 12 Lời giải: Đặt A p p 2 p 2 p 1 Và p p Xét số liên tiếp p 1, p, p phải có số chia hết cho Vì p số nguyên tố lớn 3, nên p không chia hết cho 3, chia hết cho p chia hết cho 3, p 13 p 1 3 Mặt khác p 1 Lại có p số nguyên tố >3 nên p lẻ p số chẵn 2 p 1 12 Vậy Bài 20: Cho p số nguyên tố lớn Chứng minh ( p 1)( p 1) chia hết cho 24 Lời giải: Vì p số nguyên tố lớn nên p số lẻ không chia hết cho p 1 , p 1 p 1 p 1 8 Với p không chia hết cho hai số chẵn liên tiếp Mặt khác p không chia hết p 3k 1, p 3k Trang CHUYÊN ĐỀ 5: SỐ NGUYÊN TỐ,HỢP SỐ - Nếu p 3k p 1 3 p 1 p 1 24 p 3k p 1 3 p 1 p 1 24 - Nếu Bài 16: Ta biết có 25 số nguyên tố nhỏ 100, hỏi tổng 25 số ngun tố có hợp số khơng? Lời giải Trong 25 số nguyên tố nhỏ 100, có số nguyên tố chẵn số Còn lại 24 số nguyên tố lại số lẻ => tổng 24 số lẻ cho ta số chẵn Vậy xét tổng 25 số nguyên tố cho ta số chẵn nên tổng 25 số nguyên tố có hợp số Bài 17: 1966 2006 Chứng minh rẳng với số nguyên a 2 A a a hợp số Lời giải Ta có A a1966 a 2006 a a 3.655 1 a a 3.668 1 a a 1 a 3.655 a Mà 655 1 a a 1; a 3.668 a 668 1 a a Do Aa a 1966 2006 Vậy với số nguyên a 2 A a a hợp số Bài 18: Cho a 2.3.4.5 1987 Có phải 1986 số tự nhiên liên tiếp sau hợp số không? a 2; a 3; a 4; ; a 1987 Lời giải Do a tích số từ đến 1987 có ngĩa tích a có 1996 số a 2.3.4.5 1987 2 3.4.5 1987 2 a 2.3.4.5 1987 3 2.4.5 1987 3 a nên a hợp số a nên a hợp số Chứng minh tương tự cho trường hợp lại Vậy 1986 số tự nhiên liên tiếp a 2; a 3; a 4; ; a 1987 hợp số Bài 19: Cho F x ax3 bx cx d a F F 1 hợp số Lời giải Trang 10 , biết F F 3 2010 Chứng minh rằng: CHUYÊN ĐỀ 5: SỐ NGUYÊN TỐ,HỢP SỐ Bài 26: Chứng minh số sau hợp số c) 354 25 b) 195 151 11 13 17 19 a) 11 n 1 1, n d) Lời giải 11 13 17 19 a) 11 số chẵn nên hợp số 354 b) Ta có: 195 c) Ta có : 15125 số chẵn nên hợp số 22 n 1 22 n.2 4n.2 2 n 1 n 24 n Ta có : n 24 có chữ số tận 24 22 n có chữ số tận n1 có chữ số tận n1 15 22 22 d) Ta có : n1 hợp số 24 n 1 24 n.2 16 n.2 n 1 n 216 216 n Ta có : n 216 có chữ số tận 216 có chữ số tận n1 có chữ số tận n1 65 nên 22 22 22 n n1 hợp số Bài 27: Chứng minh với số tự nhiên lớn 2 n1 hợp số Lời giải: 22 4 1(mod 3) 22 n 1(mod 3), ( n * ) 2 n 13 nên 22 n1 2(22 n 1) 6 Với n 1 6k 2(k ) Hay 22 n1 (26 ) k 2 2 0(mod 7) Tức Trang 14 n1 37(n * ) n1 6, n CHUYÊN ĐỀ 5: SỐ NGUYÊN TỐ,HỢP SỐ Mà 2 n 1 7( n * ) nên 22 n1 hợp số ( đpcm ) n Bài 28: Chứng minh với số tự nhiên lớn 19.8 17 hợp số Lời giải: * 2k 2k k + Nếu n 2k (k ) 19.8 17 18.8 (63 1) (18 1) 0(mod 3) * n k 1 2k + Nếu n 4k 1(k ) 19.8 17 13.8 6.8.64 17 13.84 k 1 39.642 k 9(1 65) k (13 4) 0(mod13) * + Nếu n 4k 3(k ) 19.8n 17 15.84 k 3 4.83.64 k 17 15.84 k 3 4.5.10.64 k 2(1 65) 2k (25 8) 0(mod 5) * n Như với giá trị n số 19.8 17 hợp số Bài 29: Chứng minh số sau hợp số: a) abcabc b) abcabc 22 c) abcabc 39 Lời giải a) Ta có: abcabc a.10 b.10 c.10 a.10 b.10 c a.100100 b.10010 1001c 1001 100a 101b c Vì 1001 chia hết abcabc7 hợp số b) Tách tương tự, 100111 nên hợp số c) Tách tương tự, 1001 13 nên hợp số Bài 30: Hãy chứng minh số sau hợp số: a) A 11111 ( 2022 chữ số ); b) B 1010101 c) C 1! 2! 3! 100! d) D 311141111 Lời giải: a) Tổng chữ số A là: 20223 A3 mà A nên A hợp số ( đpcm ) Trang 15 CHUYÊN ĐỀ 5: SỐ NGUYÊN TỐ,HỢP SỐ b) B 1010101 101.10001 hợp số ( đpcm ) c) Vì 1! 2! 33 3! 4! 100! chia hết C3 Mà C nên C hợp số (đpcm ) d) D 311141111 311110000 31111 31111(10000 1) 31111 D hợp số (đpcm ) N Bài 31: Chứng minh số 5125 525 hợp số Lời giải: 25 Đặt a , N a5 a a3 a a a (a 9a 6a 6a 2a ) (5a 10a 1) ( a 3a 1) 5a (a 2a 1) (a 3a 1) 5.525 (a 1) (a 3a 1) 513.(a 1) a 3a 513 (a 1) a 3a 513 (a 1) N tích hai số nguyên lớn nên N hợp số ( đpcm ) n Bài 32: Cho số nguyên dương a, b, c, d thỏa mãn a 5 Chứng minh A a n b n c n d n hợp số Lời giải: * Giả sử ( a, c) t (t ) Đặt a a1t , c c1t ;(a1 , c1 ) 1 ab cd a1bt c1dt a1b c1d Mà ( a1 , c1 ) 1 bc1 * Đặt b c1k d a1k , (k ) , Ta có Trang 16 CHUYÊN ĐỀ 5: SỐ NGUYÊN TỐ,HỢP SỐ A a n b n c n d n a1nt n c1n k n c1nt n a1n k n (a1n c1n )(k n t n ) Vì a1 , c1 , t , k số nguyên dương nên A hợp số n 2n n Bài 33: Hai số đồng thời số nguyên tố hay đồng thời hợp số không ? Lời giải: n n n n 2n Trong ba số nguyên liên tiếp , có số chia hết cho 3, 2n chia hết cho lớn nên 2n , 2n không đồng thời số nguyên tố n n Với n 6 , đồng thời hợp số p1 p2 p p p2 Bài 34: Hai số nguyên tố lẻ liên tiếp p1 , chứng tỏ hợp số Lời giải: Vì p1 p2 hai số nguyên tố lẻ liên tiếp nên p1 p2 số chẵn Mặt khác p1 p2 nên Vậy p2 p1 p2 p2 p1 p2 p1 p2 p p2 p2 p1 p1 p2 p1 2 p1 p2 p p2 p1 2 hợp số Dạng 3:Áp dụng định lí Fermat chứng minh biểu thức hợp số I.Phương pháp giải p -Định lí Fermat nhỏ: 1(mod p) với p số nguyên tố -Bằng cách sử dụng định lí Fermat để giải toán số nguyên tố II.Bài toán * Bài 33: Cho n , chứng minh rằng: 2 10 n1 Lời giải: Ta chứng minh Trang 17 10 n1 1923 với n 1 19 hợp số CHUYÊN ĐỀ 5: SỐ NGUYÊN TỐ,HỢP SỐ 10 10 n 1 2(mod 22) 210 n 1 22k 2( k ) Ta có: 1(mod11) Theo định lý Fermat: 22 1(mod 23) 2 22 10 n1 10 n 1 2 22 k 2 4(mod 23) 1923 10 n1 19 23 nên 22 Mà * 10 n1 19 hợp số ( đpcm ) Bài 34: Cho n , chứng minh rằng: 34 n1 32 n1 hợp số Lời giải: 10 10 Theo định lí Fermat nhỏ ta có 1(mod11), 1(mod11) n1 n1 Ta tìm số dư phép chia cho 10, tức tìm chữ số tận chúng 24 n 1 2.16n 2(mod10) n 1 10k 2,( k ) 34 n 1 3.81n 3(mod10) 34 n 1 10l 3, (l ) 10 10 Mà 1(mod11) 1(mod11) nên n 1 23 32 n1 Mà n 1 32 n1 Vậy 310 k 2 210l 3 32 23 0(mod11) n1 32 11 với số tự nhiên n khác n1 hợp số với số tự nhiên n khác 9p m Chứng minh m hợp số lẻ không chia hết cho Bài 35: Giả sử p số nguyên tố lẻ và 3m 1 mod m Lời giải: Ta có m p p 3p 1 3p p 1 a.b a ,b 4 với Vì a, b số nguyên lớn nên m hợp số p p 2 m 1 mod 3 Mà m 9 p số nguyên tố lẻ nên m lẻ 9p p p m p p p, 1 nên Theo định lí Fermat ta có 9p Trang 18 CHUYÊN ĐỀ 5: SỐ NGUYÊN TỐ,HỢP SỐ m Vì m 12 nên m 12 p 9p 13 1 m (đpcm) Bài 36: Cho n , chứng minh rằng: 2p 24 n1 hợp số Lời giải: 4n n Với n ta có 16 0(mod 5) 24 n 2 24 n 10 24 n2 10k k 22 n1 Mặt khác Vậy k 210 22 2 0 mod11 n1 22 n1 11 n hợp số PHẦN III.BÀI TOÁN THƯỜNG GẶP TRONG ĐỀ HSG ( Khoảng 15 ) Bài 1: (HUYỆN BẠCH THÔNG NĂM 2018-2019) Tổng hai số nguyên tố 2015 hay khơng ? Vì ? Lời giải: Tổng hai số nguyên tố 2015 số lẻ, nên hai số nguyên tố phải Khi số 2013, số hợp số Vậy khơng tồn hai số ngun tố có tổng 2015 Bài 2: (HUYỆN TAM DƯƠNG NĂM 2017-2018) 2016 Cho p số nguyên tố lớn Hỏi p 2018 số nguyên tố hay hợp số Lời giải: Vì p số nguyên tố lớn nên p chia cho dư p chia cho dư p chia cho dư Mà p 2016 p 1008 2016 nên p chia cho dư p 2016 2018 3 2018 Mặt khác: chia cho dư 2, đó: Vì p 2016 2018 3 p 2016 2018 2016 nên p 2018 hợp số Bài 3: (HUYỆN SƠN TÂY NĂM 2017-2018) 4 Với q, p số nguyên tố lớn 5, chứng minh rằng: p q 240 Lời giải: Trang 19 CHUYÊN ĐỀ 5: SỐ NGUYÊN TỐ,HỢP SỐ Ta có: p q p 1 q 1 ; 240 8.2.3.5 Chứng minh p 1240 Do p nên p số lẻ Mặt khác p p 1 p 1 p 1 p 1 p 1 hai số chẵn liên tiếp p 1 p 1 8 2 Do p số lẻ nên p số lẻ p 12 p nên p có dạng: p 3k p 3k 3 p 13 p 3k p 3k 33 p 13 Mặt khác p dạng : p 5k p 5k 5k 5 p 15 p 5k p 5k 25k 20k 55 p 15 p 5k p 25k 30k 105 p 15 p 5k p 5k 55 p 15 4 Vậy p 18.2.3.5 hay p 1240 Tương tự ta có: q 1240 Vậy p 1 q 1 p q 240 Bài 4: (HUYỆN QUẢNG TIẾN) Nếu p p số nguyên tố p số nguyên tố hay hợp số Lời giải: Xét số tự nhiên liên tiếp p; p 1; p , số có số bội 3k k Mà p p số nguyên tố nên p có dạng 3k p 4 3k 1 3Q p p 4 3k 1 p 3Q 3 Nếu p 3k Mặt khác Nếu p 2 p 1 3Q 3 p 1 3 mà 2;3 1 nên p 13 p 3k p 4 3k 12k 3M 3 p hợp số Trang 20 (trái với giả thiết)