ĐỀ CƯƠNG ƠN TẬP ĐẠI SỐ ( Thầy Khơi - 0916722869) Bài 1: Làm tính nhân: 1 B x x x 1 x 3x x x 1 2 9, 1, B 3x x 5x x x 2, A 4x x 3 x 3x x x 1 3, A 3x 2x 11 2x 3x 4, 5, B 2x x 1 3x x x x x 1 2 10, B x y 2xy x xy2 2xy x x y 11, B x xy y 2xy xy x xy y 12, B 4x 3x x 3x 4x x x 1 1 5 B x x x x x x x 6 3 3 13, 1 1 A x x 4x 1 2 2 14, x 1 x 1 x 1 A x x x x 1 6, Bài 2: Thực phép tính tính giá trị biểu thức: x , y A x x y x x y y x x 1, A x x y xy x y x y 2) 1 x 1, y 2006 3) A xy xz 2x y z x 101, y 100, z 98 4, A x 8x 9x 15x 6x 1 x 7 5) A x 15x 16x 29x 13x x 14 6) A x 100x 100x 100x 100x x 99 7, A x 1 x 2x x 1 8, A 3x 2x 1 5x 1 3x 9, A 2x y 2z y 2x y y 2z tại x 0 x 2 x 1, z 1, y 10, A x 20x 20x 20x 20x 20x x 21 11, A x x 1 y y x 2001, y 501 2 12, A x 2xy 4z y x 6, y 4, z 45 A x 2y z y z 2y 13, x 116, y 16, z 2 Bài 6: Tìm x biết: 1, 5x 2x 3x x 18 0 2) 3x 12x 9x 4x 3 30 9) 3) 5x 1 x x x 13x 7 4) x 2x 1 3x 30 5) 3xy x y x y x y 2xy y 27 2 x 0 2 10) 3x 11) 3x x 2019 x 2019 0 12, 2x 3 x 0 5x x x x 1 x x 0 13, 3x x x 1 x x x 6, 2x 1 x x x x x 14, 3x 2x 5x 2x 12 7, 3x 1 2x x 1 6x x x 15, 7x 3x 2x 1 2x 3x 15 42 2x 3 x x x 3x x 8, Bài 7: Chứng minh giá trị biểu thức sau không phụ thuộc vào giá trị biến 1) A 3 2x 1 x 3x 19x 2) A x 2x 3 2x 2x x x 3) A x 5x x x 1 x x 6x 10 3x 4) A x 3x 12 7x 20 x 2x x 2x 5) A x 2x 3 2x x 2x x x 1 x 1 6) A 2x 6x 5x 3x 5x 4x 1 3x 5x 7) A x 3 x x x 2x 1 x 8) A 4x x x x 3x x 9) A 8x 1 x x 8x 11 6x 1 10) A x x 5x 1 x 3x 27x A x x 2x x 2x x 4x x 3x 11) Bài 8: Chứng minh rằng: 3 a, A n n 1 n 9, n Z b, A n 3n 1 3n n 5, n R c, A n n n 3 n 6, n Z d, A n 3n 1 n n 5, n Z Bài 9: Cho e, A 2n 1 n 3n 1 2n 15, n Z f, A n 1 n 1 n n 12, n Z g, A 6n 1 n 3n 2n 1 2, n Z h, A 5a 3 3b 3a 5b 16, a, b R A x 5x 15y 5y 3x 2y y b, Tìm cặp x, y để A 0 , A 10 a, Rút gọn A Bài 10: Cho A 3xy x 3y 2xy x 4y x y 1 y3 x 36 b, Tìm x để A 36 a, Rút gọn A Bài 11: Cho biểu thức: c, Tìm GTNN A A 3x 4x 11 5x x 1 4x 3x x 5x 5x a, Rút gọn A b, Tính A Bài 12: Tìm GTLN biểu thức sau: x 2 c, Tìm x A 207 1, A 12x 3x 2 5, A 2x 2xy 2x y 2, A 4x 12x 6, A 7 x y x y 3, A 3 4x x 7, A 2 x y x y 4, A 2x 3x 8, A 4x 4x Bài 13: Chứng minh rằng: 1, A x x 0, x 6, A x x 0, x 2, A x x 0, x 7, A 4x x 0, x 3, A x 2x 0, x 8, A 2x 2x 0, x 4, A 2x x 1 0, x 2 9, A x 2x y 4y 0, x A x 1 x 0, x 5, Bài 14: Phân tích đa thức thành nhân tử: 10, A x y x y 0, x, y A 3x 2y 2x 3y 2 2 1, A 14x y 21xy 28x y 19, 4 2, A 8x y 12x y 20x y 2 20, A 25 x 4xy 4y 3, A 2x x y 6x x y , 21, 4, A x 3x xy 3y A a x y bx by 22, A 27x x 2 2 37, A x y 2xy 4z 38, 3x 6x 3x 39, A x 27x 40, A 125x 125 A x 64y 25 23, x2 A x4 41, 6, A 3x 3xy 5x 5y 2 24, A x 4y 4xy 42, 4x 4x x 2 7, A 3ax 3bx ax bx 5a 5b 25, A x 2x 2x 2 43, x 4y 16x 64 2 8, A 10xy 5by 2a x aby 3 26, A x y 3x 3x 44, A x x 2 9, A ax bx 2ax 2bx 3a 3b 2 27, A 4x 12xy 9y 2 45, y 14y 25x 49 3 2 10, A x y 2x 2y 28, 11, A x 4x 8x 29, A 8x 12x 6x 47, 2 12, A x 4x y 6y 2 30, A x 4y 2x 4y 48, 4x 4x 9x 2 13, A 4x 4x y 8y 16 2 31, A 4x 9y 4x 6y 49, 2 2 14, A x 2xy y z 2zt t 2 32, x 2xy y 49 5, A 4x 4x 1 x 1 2 15, 16, 17, 18, A x y x y 12 A x 4x x 4x 15 x y2 y2 50, 2 34, x 4x 2xy 4y y 10x x y 6y y x 46, x x 9x 9x 25 x x 2 A x 2x 2x 4x 2 33, A x 2xy y 3x 3y 10 A x x 4x 4x 12 x x y x y2 35, 51, 5x 2y 5x 2y 4y A x x 2x x x 1 x 2 2 36, 14x y 21xy 28x y x 52, 2 4x 4x x 4x 3x