1. Trang chủ
  2. » Giáo án - Bài giảng

018 đề hsg toán 7 huyện anh sơn 2015 2016

5 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 199,5 KB

Nội dung

UBND HUYỆN ANH SƠN GIÁO DỤC ĐỀ THI HỌC SINH GIỎI LỚP CẤP HUYỆN VÀ ĐÀO TẠO Mơn: Tốn ĐỀ CHÍNH THỨC Năm học: 2015-2016 Thời gian: 120 phút (khơng kể thời gian giao đề) Bµi : Cho biĨu thøc A = x 1 x1 a TÝnh gi¸ trị A x = 16 x = 25 b Tìm giá trị x để A =5 Bài : Tìm tỉ lệ ba cạnh tam giác biết cộng lần lợt độ dài hai đờng cao tam giác tỉ lệ kết :5 : : Bài 3: (1,5 điểm) Cho tỉ lệ thức a c  b d Chứng minh : (a+2c)(b+d) = (a+c)(b+2d) Bài 4: (4,5 điểm) Cho tam giác ABC vuông A; K trung điểm BC Trên tia đối tia KA lấy D , cho KD = KA a Chứng minh: CD // AB b Gọi H trung điểm AC; BH cắt AD M; DH cắt BC N Chứng minh rằng: ABH = CDH c Chứng minh:  HMN cân Câu (1,0 điểm) a b c   2 a Cho ba số dương a b c 1 chứng minh rằng: bc  ac  ab  b Cho a, b, c ba cạnh tam giác Chứng minh rằng: 2(ab + bc + ca) > a2 + b2 + c2 Cõu Tìm giá trị nhỏ biểu thức: P = trị nguyên nào? P N Bi 1: Thực phép tính (6 điểm) Giải: 14  x ; x  Z 4 x Khi ®ã x nhËn gi¸ a  5 :     9 0,75đ  5 9 :     :   9 4 9 36 =   9 b 1  45           19         45  19 1   1 1                   45 = 19  c 0,75đ 1 1  45  19  4 26 19  1 19 19 1,0đ 1,0đ 5.415.9  4.320.89 5.210.619  7.2 29.27 5.415.9  4.320.89 5.210.619  7.2 29.27 29.318 5.2  32  29 18  5.3    = 5.2 2.15.32.9  2.320.2 3.9 5.210.219.319  7.2 29.33.6  01đ 01đ 10   = 15  0,5đ Bài 2: (6 điểm) Giải: a Tìm x, biết: 2(x-1) – 3(2x+2) – 4(2x+3) = 16 2x – – 6x – – 8x – 12 = 16 -12x – 20 = 16 -12x = 16 + 20 = 36 x = 36 : (-12) = -3 b Tìm x, biết: : Nếu x 2x  = 21 22 Ta có: (vì x = ½ 2x – = 0) 21 22 21 : (2x – 1) = 22 21 22 11 2x – = : 22 = 21  11 14 2x = + = 14 x= :2= > 32: 2x  0,25đ 0,25đ 0,50đ 0,50đ 0,25đ = 0,25đ 0,25đ 0,25đ 0,25đ Nếu x Ta có: 0,25đ 21 22 21 : (1 2x) = 22 11 -2x = - = x = : (-2) =   Vậy x = x =  32: 2x  = c Tìm x, y, z biết : 0,25đ 0,25đ 0,25đ 0,25đ 2x  y 3y  2z  15 x + z = 2y Từ x + z = 2y ta có: x – 2y + z = hay 2x – 4y + 2z = hay 2x – y – 3y + 2z = hay 2x – y = 3y – 2z Vậy nếu: 2x  y 3y  2z  15 Từ 2x – y = suy ra: x = thì: 2x – y = 3y – 2z = (vì  15) 0,25đ y 0,25đ Từ 3y – 2z = x + z = 2y  x + z + y – 2z = hay hay y - z = hay y = z suy ra: x = Vậy giá trị x, y, z cần tìm là: {x = 0,25đ 0,25đ {x = y; y  R; z = y} a c Bài 3: (1,5 điểm) Cho tỉ lệ thức b  d 3 y +y–z=0 z z; y = 0,25đ 0,25đ z ; với z  R } 0,5đ {x  R; y = 2x; z = 3x} Chứng minh : (a+2c)(b+d) = (a+c)(b+2d) Ta có: (a+2c)(b+d) = (a+c)(b+2d) ab + ad + 2cb + 2cd = ab + 2ad + cb + 2cd cb = ad suy ra: a c  b d 0,75đ 0,75đ Bài 4: (4,5 điểm) Cho tam giác ABC vuông A; K trung điểm BC Trên tia đối tia KA lấy D , cho KD = KA a Chứng minh: CD // AB b Gọi H trung điểm AC; BH cắt AD M; DH cắt BC N Chứng minh rằng: ABH = CDH c Chứng minh:  HMN cân Giải: B D K N M A C H a/ Chứng minh CD song song với AB Xét tam giác: ABK DCK có: BK = CK (gt) ˆ A CK ˆ D (đối đỉnh) BK AK = DK (gt)  ABK = DCK (c-g-c) ˆ B 90  AC ˆ D AC ˆ B  BC ˆ D 90 ˆ K ; mà AB ˆ C  AC  DCˆK DB  ACˆD 900 BAˆC  AB // CD (AB  AC CD  AC) b Chứng minh rằng: ABH = CDH Xét tam giác vng: ABH CDH có: BA = CD (do ABK = DCK) AH = CH (gt)  ABH = CDH (c-g-c) c Chứng minh:  HMN cân Xét tam giác vng: ABC CDA có: AB = CD; ACˆD 90 BAˆC ; AC cạnh chung:  ABC = CDA (cg-c) ˆD  ACˆB CA ˆ A  NH ˆ C (vì ABH = CDH) mà: AH = CH (gt) MH  AMH = CNH (g-c-g)  MH = NH Vậy HMN cân H Bài 5: (2 điểm): Chứng minh số có dạng abcabc 0,25đ 0,25đ 0,25đ 0,25đ 0,25đ 0,25đ 0,25đ 0,25đ 0,50đ 0,25đ 0,25đ 0,50đ 0,50đ 0,50đ chia hết cho 11 Giải: Ta có: = a.105 + b.104 + c.103 + a.102 + b.10 + c = a.102(103 + 1) + b.10(103 + 1) + c(103 + 1) = (103 + 1)( a.102 + b.10 + c) = (1000 + 1)( a.102 + b.10 + c) = 1001( a.102 + b.10 + c) = 11.91( a.102 + b.10 + c) 11 abcabc 0,25đ 0,50đ 0,50đ 0,25đ 0,25đ Vậy abcabc 11 0,25đ Hết

Ngày đăng: 30/08/2023, 13:49

w