Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 16 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
16
Dung lượng
289,52 KB
Nội dung
[...]... ⎝ ⎠ Cho phương trình: ( 2 sin x − 1)( 2 cos 2x + 2 sin x + m ) = 3 − 4 cos2 x (1) a/ Giả i phươngtrình khi m = 1 b/ Tìm m để (1) có đú n g 2 nghiệ m trê n [ 0, π ] 5 ( ĐS: m = 0 ∨ m < −1 ∨ m > 3 ) Cho phương trình: 4 cos5 x sin x − 4 sin5 x.cos x = sin2 4x + m (1) Biế t rằ n g x = π là mộ t nghiệ m củ a (1) Hã y giả i phươngtrình trong trườ n g hợ p đó Th.S Phạm Hồng Danh TT luyện thi Đạihọc CLC... ⇔ cos 3x = 0 ∨ sin x = cos x ⇔ cot g3x = BÀI TẬP 1 2 3 ⎛π ⎞ Tìm cá c nghiệ m trê n ⎜ , 3π ⎟ củ a phương trình: ⎝3 ⎠ 5π ⎞ 7π ⎞ ⎛ ⎛ sin ⎜ 2x + ⎟ − 3 cos ⎜ x − ⎟ = 1 + 2 sin x 2 ⎠ 2 ⎠ ⎝ ⎝ ⎛ π⎞ Tìm cá c nghiệ m x trê n ⎜ 0, ⎟ củ a phươngtrình ⎝ 2⎠ 2 2 sin 4x − cos 6x = sin (10, 5π + 10x ) Giả i cá c phươngtrình sau: a/ sin 3 x + cos3 x = 2 sin5 x + cos5 x ( ) sin x + sin 2x + sin 3x = 3 cos x + cos 2x... cos x + 1) − 2 (1 + cos x ) = 0 (1 − cos x ) 3 − 2 = 0 ( do sin x ≠ 0 nên cos x + 1 ≠ 0) 1 − cos x ⇔ 1 + 2 cos x = 0 1 ⇔ cos x = − (nhậ n so vớ i điề u kiệ n ) 2 2π + k2π, k ∈ ⇔ x=± 3 Bà i 52 : Giả i phươngtrình 2 2 (1 − cos x ) + (1 + cos x ) − tg 2 x sin x = 1 1 + sin x + tg 2 x * ( ) ( ) 4 (1 − sin x ) 2 ⇔ ⎧cos x ≠ 0 Điề u kiệ n : ⎨ ⇔ cos x ≠ 0 ⎩sin x ≠ 1 2 (1 + cos2 x ) sin 3 x 1 sin 2 x − = (1 +... sin x ) ⎡1 + sin x = 0 ⇔ ⎢ 2 2 2 ⎣1 + cos x = cos x + 2 sin x ⎡sin x = −1 ( loại do cos x ≠ 0 ) ⇔ ⎢ ⇔ cos2x = 0 ⎣1 = 1 − cos 2x π ⇔ 2x = + kπ 2 π π ⇔ x = + k (nhậ n do cosx ≠ 0) 4 2 Bà i 53 : Giả i phương trình Điề u kiệ n cos 5x ≠ 0 Lú c đó : (*) ⇔ cos 3x cos 3x.tg5x = sin 7x ( * ) sin 5x = sin 7x cos 5x ⇔ sin 5x.cos 3x = sin 7x.cos 5x 1 1 ⇔ [sin 8x + sin 2x ] = [sin12x + sin 2x ] 2 2 ⇔ sin 8x = sin12x... kiệ n kπ 5kπ kπ x= thì cos 5x = cos = cos (loạ i nế u k lẻ ) 2 2 2 kπ π ⎛ π kπ ⎞ x= thì cos 5x = cos ⎜ + + ⎟ ≠ 0 nhận 2 ⎠ 20 10 ⎝4 π kπ + Do đó : (*)⇔ x = hπ ∨ x = , vớ i k, h ∈ 20 10 Bà i 54 : Giả i phương trình sin4 x + cos4 x 1 = ( tgx + cot g2x ) ( *) sin 2x 2 Điề u kiệ n : sin 2x ≠ 0 Ta có : sin 4 x + cos4 x = ( sin 2 x + cos2 x ) − 2 sin 2 x cos2 x 2 =1− 1 sin2 2x 2 sin x cos 2x + cos x sin 2x sin... sin 2 2x 1 2 Do đó : (*) ⇔ = sin 2x 2 sin 2x 1 1 ⇔ 1 − sin 2 2x = 2 2 2 ⇔ sin 2x = 1 ( nhận do sin 2x ≠ 0 ) tgx + cot g2x = ⇔ cos2 2x = 0 π + kπ, k ∈ 2 π kπ , k ∈ ⇔x = + 4 2 ⇔ 2x = Bà i 55 : Giả i phương trình tg 2 x.cot g 2 2x.cot g3x = tg 2 x − cot g 2 2x + cot g3x ( * ) Điề u kiệ n : cos x ≠ 0 ∧ sin 2x ≠ 0 ∧ sin 3x ≠ 0 ⇔ sin 2x ≠ 0 ∧ sin 3x ≠ 0 Lúc đó (*) ⇔ cotg3x ( tg 2 x cot g 2 2x − 1) = tg 2... ⎜ + x ⎟ = 1 3⎠ 3⎠ ⎝3 ⎝ ⎝6 ⎠ ⎝ ⎠ 1 7 Lú c đó : (*) ⇔ 1 − sin2 2x = 2 8 1 1 ⇔ − (1 − cos 4x ) = − 4 8 1 ⇔ cos 4x = 2 π π kπ ⇔ 4x = ± + k2π ⇔ x = ± + 3 12 2 3 (nhậ n do tg2x = ± ≠ 3) 3 Bà i 49: Giả i phươngtrình 2tgx + cot g2x = 2 sin 2x + 1 ( *) sin 2x ⎧cos 2x ≠ 0 Điề u kiệ n : ⎨ ⇔ sin 2x ≠ 0 ⇔ cos 2x ≠ ±1 ⎩sin 2x ≠ 0 2 sin x cos 2x 1 + = 2 sin 2x + Lú c đó : (*) ⇔ cos x sin 2x sin 2x 2 2 ⇔ 4 sin x... − 2 (1 + cos 2x ) ⎤ = 0 ⎣ ⎦ ⎡sin x = 0 ( loại do sin 2x ≠ 0 ⇒ sin x ≠ 0 ) ⇔⎢ ⎢cos 2x = − 1 = cos 2π ( nhận do cos 2x ≠ ±1) ⎢ 2 3 ⎣ 2π ⇔ 2x = ± + k2π ( k ∈ Z ) 3 π ⇔ x = ± + kπ, k ∈ 3 Bà i 51: Giả i phương trình: 3 ( sin x + tgx ) tgx − sin x − 2 (1 + cos x ) = 0 ( *) sin x − sin x ≠ 0 cos x ⎧sin x ≠ 0 sin x (1 − cos x ) ⎪ ≠ 0 ⇔ ⎨cos x ≠ 0 ⇔ sin 2x ≠ 0 ⇔ cos x ⎪cos x ≠ 1 ⎩ Điề u kiệ n : tgx − sin x ≠ . 1 u k2 = −⇔ =π+ π Chú ý : sin u 0 cos u 1≠⇔ ≠± cos u 0 sin u 1≠⇔ ≠± Bài 28 : (Đề thi tuyển sinh Đại học khối D, năm 2002) [ ] x0,14∈ nghiệm đúng phương trình Tìm ( ) cos 3x 4cos 2x 3cos. Mà k nên Z∈ { } k . Do đó : 0,1,2,3∈ 357 x ,,, 2222 π πππ ⎧ ⎫ ∈ ⎨ ⎬ ⎩⎭ Bài 29 : (Đề thi tuyển sinh Đại học khối D, năm 2004) Giải phương trình : ()( ) ( ) 2cos x 1 2sin x cos x sin 2x sin. 3 3sin 4x 4sin 4x 0 − = ⇔ sin12x = 0 ⇔ ⇔ 12x k=π () k xk 12 Z π =∈ Bài 34 : (Đề thi tuyển sinh Đại học khối B, năm 2002) Giải phương trình : ( ) 22 22 sin 3x cos 4x sin 5x cos 6a *−=−