1. Trang chủ
  2. » Luận Văn - Báo Cáo

(Luận văn) phát triển năng lực phát hiện và giải quyết vấn đề cho học sinh trung học phổ thông trong dạy học hình học không gian

98 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 98
Dung lượng 2,4 MB

Nội dung

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM HOÀNG NGỌC HẠNH lu an n va p ie gh tn to PHÁT TRIỂN NĂNG LỰC PHÁT HIỆN VÀ GIẢI QUYẾT VẤN ĐỀ CHO HỌC SINH TRUNG HỌC PHỔ THÔNG TRONG DẠY HỌC HÌNH HỌC KHƠNG GIAN d oa nl w u nf va an lu ll LUẬN VĂN THẠC SĨ KHOA HỌC GIÁO HỌC oi m z at nh z m co l gm @ va http://www.lrc.tnu.edu.vn n Số hóa Trung tâm Học liệu – ĐHTN an Lu THÁI NGUYÊN - 2016 ac th si ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM HOÀNG NGỌC HẠNH lu an n va p ie gh tn to PHÁT TRIỂN NĂNG LỰC PHÁT HIỆN VÀ GIẢI QUYẾT VẤN ĐỀ CHO HỌC SINH TRUNG HỌC PHỔ THÔNG TRONG DẠY HỌC HÌNH HỌC KHƠNG GIAN d oa nl w Chun ngành: Lý luận phương pháp dạy học môn Toán Mã số: 60.14.01.11 va an lu ll u nf LUẬN VĂN THẠC SĨ KHOA HỌC GIÁO HỌC oi m z at nh Người hướng dẫn khoa học: TS Trần Việt Cường z m co l gm @ va http://www.lrc.tnu.edu.vn n Số hóa Trung tâm Học liệu – ĐHTN an Lu THÁI NGUYÊN - 2016 ac th si LỜI CAM ĐOAN Tôi xin cam đoan công trình nghiên cứu riêng tơi, kết nghiên cứu trung thực chưa công bố cơng trình khác Thái Ngun, tháng năm 2016 Tác giả luận văn lu an n va Hoàng Ngọc Hạnh p ie gh tn to d oa nl w ll u nf va an lu oi m z at nh z m co l gm @ an Lu n va ac th i si MỤC LỤC LỜI CAM ĐOAN i MỤC LỤC ii DANH MỤC CÁC BẢNG iv DANH MỤC CÁC BIỂU v MỞ ĐẦU 1 Lý chọn đề tài Mục đích nghiên cứu lu Giả thuyết khoa học an Nhiệm vụ nghiên cứu va n Giới hạn phạm vi nghiên cứu tn to Phương pháp nghiên cứu ie gh Cấu trúc luận văn p Chương CƠ SỞ LÝ LUẬN VÀ THỰC TIỄN w 1.1 Năng lực lực Toán học oa nl 1.1.1 Năng lực d 1.1.2 Năng lực Toán học lu va an 1.2 Năng lực phát giải vấn đề u nf 1.2.1 Quan niệm lực phát giải vấn đề ll 1.2.2 Những thành tố lực phát giải vấn đề 10 m oi 1.2.3 Cấp độ lực phát giải vấn đề 19 z at nh 1.3 Tiềm phát triển lực phát giải vấn đề cho học sinh dạy học Hình học không gian 20 z gm @ 1.4 Thực trạng việc dạy học Hình học khơng gian cho học sinh l trường phổ thông 26 m co 1.4.1 Nội dung Hình học khơng gian lớp 11 trường phổ thơng 26 1.4.2 Mục đích, u cầu việc dạy học nội dung Hình học an Lu khơng gian 27 n va ac th ii si 1.4.3 Thực trạng việc dạy học nội dung Hình học không gian trường phổ thông theo định hướng phát triển lực phát giải vấn đề 29 1.5 Kết luận chương 33 Chương MỘT SỐ BIỆN PHÁP NHẰM PHÁT TRIỂN NĂNG LỰC PHÁT HIỆN VÀ GIẢI QUYẾT VẤN ĐỀ CHO HỌC SINH TRONG DẠY HỌC HÌNH HỌC KHƠNG GIAN LỚP 11 35 2.1 Đinh ̣ hướng xây dựng thực biện pháp 35 2.2 Một số biện pháp sư phạm nhằm phát triển lực phát hiêṇ và lu an giải quyế t vấn đề cho học sinh dạy học Hình ho ̣c không gian 38 n va 2.2.1 Biện pháp Khai thác phần mềm dạy học để thiết kế phát 38 ie gh tn to mô hình dạy học nhằm tạo hội dẫn dắt học sinh tới vấn đề cần p 2.2.2 Biện pháp Vận dụng quy trình giải tập G.Polya nl w dạy học giải tập Hình học khơng gian nhằm phát triển d oa lực tính toán, suy luận chứng minh cho học sinh 45 an lu 2.2.3 Biện pháp Rèn luyện kỹ thực thao tác tư va giúp học sinh phát giải vấn đề 53 ll u nf 2.2.4 Biện pháp Tổ chức cho học sinh tăng cường luyện tập vẽ oi m hình biểu diễn hình khơng gian theo nhiều góc độ khác z at nh để lựa chọn hình biểu diễn thuận lợi cho việc thực phép giải toán 60 z 2.2.5 Biện pháp Tập luyện cho học sinh khả sử dụng ngôn @ l gm ngữ, kí hiệu Toán học để diễn đạt vấn đề theo cách khác nhằm giúp học sinh phát triển lực phát giải m co vấn đề 65 an Lu 2.3 Kết luận chương 69 n va ac th iii si Chương THỰC NGHIỆM SƯ PHẠM 70 3.1 Mục đích thực nghiệm sư phạm 70 3.2 Nội dung thực nghiệm sư phạm 70 3.2.1 Nội dung thực nghiệm sư phạm 70 3.2.2 Chuẩn bị tài liệu thực nghiệm sư phạm 71 3.3 Đối tượng thực nghiệm sư phạm 71 3.4 Hình thức tổ chức thực nghiệm 72 3.5 Đánh giá thực nghiệm sư phạm 79 3.5.1 Phân tích định lượng 79 lu 3.5.2 Phân tích định tính 84 an n va 3.6 Kết luận chương 85 CƠNG TRÌNH KHOA HỌC LIÊN QUAN ĐẾN LUẬN VĂN gh tn to KẾT LUẬN CHUNG 86 p ie DANH MỤC TÀI LIỆU THAM KHẢO 88 d oa nl w ll u nf va an lu oi m z at nh z m co l gm @ an Lu n va ac th iv si DANH MỤC CÁC BẢNG Bảng 3.1 Kết kiểm tra học tập học kì I năm học 2015- 2016 hai lớp 11A2 11A3 trường Trung học phổ thông Nghĩa Hưng A 71 Bảng 3.2 Kết kiểm tra học sinh hai lớp 11A2 lớp 11A3 trường Trung học phổ thông Nghĩa Hưng A 81 lu an n va p ie gh tn to d oa nl w ll u nf va an lu oi m z at nh z m co l gm @ an Lu n va ac th iv si DANH MỤC CÁC BIỂU Biểu đồ 1.1 Tỉ lệ vận dụng phương pháp dạy học theo định hướng phát triển lực phát giải vấn đề giáo viên 30 Biểu đồ 1.2 Thái độ học tập học sinh trước phương pháp dạy học theo định hướng phát triển lực phát giải vấn đề 30 Biểu đồ 1.3 Thái độ học sinh học nội dung Hình học khơng gian 32 Biểu đồ 1.4 Hoạt động mà học sinh yêu thích học Hình học lu an khơng gian 33 n va p ie gh tn to d oa nl w ll u nf va an lu oi m z at nh z m co l gm @ an Lu n va ac th v si MỞ ĐẦU Lý chọn đề tài 1.1 Bối cảnh phát triển kinh tế quốc tế đặt yêu cầu cho giáo dục Ở Việt Nam, phát triển kinh tế - xã hội bối cảnh hội nhập quốc tế với ảnh hưởng xã hội tri thức toàn cầu hóa tạo hội đồng thời đặt yêu cầu giáo dục việc đào tạo đội ngũ lao động Đào tạo nguồn nhân lực có trình độ cao đáp ứng nhu cầu phát triển kinh tế tri thức thách thức khơng ngành giáo dục mà cịn toàn Đảng, toàn dân lu an Luật Giáo dục nước Cộng hòa xã hội chủ nghĩa Việt Nam năm 2005 n va quy định [22]: “Mục tiêu giáo dục phổ thông giúp học sinh phát triển tn to tồn diện đạo đức, trí tuệ, thể chất, thẩm mỹ kỹ bản, phát gh triển lực cá nhân, tính động sáng tạo, hình thành nhân cách p ie người Việt Nam xã hội chủ nghĩa, xây dựng tư cách trách nhiệm công dân; w chuẩn bị cho học sinh tiếp tục học lên vào sống lao động, tham oa nl gia xây dựng bảo vệ Tổ quốc” d Nghị 29 Đảng cộng sản Việt Nam khóa XI nêu rõ [1]: lu va an “Phát triển giáo dục đào tạo nâng cao dân trí, đào tạo nhân lực, bồi u nf dưỡng nhân tài Chuyển mạnh trình giáo dục từ chủ yếu trang bị kiến thức ll sang phát triển toàn diện phẩm chất lực người học Học đôi với m oi hành; lý luận gắn với thực tiễn; giáo dục nhà trường kết hợp với giáo dục gia z at nh đình giáo dục xã hội” z 1.2 Để thực mục tiêu trên, Bộ Giáo dục Đào tạo phát gm @ động phong trào đổi giáo dục, nhấn mạnh vào đổi phương pháp dạy l học tồn quốc Theo nghiên cứu nhiều nhà tốn học, giáo dục học, m co tâm lý học việc đổi phương pháp dạy học cần thực theo định an Lu hướng hoạt động hóa người học, tức tổ chức cho người học học tập hoạt động hoạt động tự giác, tích cực, chủ động sáng tạo n va ac th si Giáo dục định hướng phát triển lực bàn đến từ năm 90 kỷ XX ngày trở thành xu hướng giáo dục quốc tế Năng lực không quan trọng người học tập mà thực tiễn đời sống Trong lực phát giải vấn đề lực quan trọng, phát huy tính tích cực, chủ động, sáng tạo người giúp người có phản ứng nhanh nhạy tình sống Hình thành bồi dưỡng lực phát giải vấn đề trở thành yêu cầu cấp bách tất quốc gia, tổ chức giáo dục doanh nghiệp 1.3 Thực tiễn giảng dạy mơn Tốn trường Trung học phổ lu thơng cịn nhiều bất cập phương pháp giảng dạy, truyền thụ tri thức cho an học sinh Mặc dù, giáo viên vận dụng nhiều phương pháp trình va n dạy việc tiếp thu tri thức học sinh nhiều hạn chế, chưa phát tn to huy hết đặc điểm bật mơn Tốn việc giáo dục nhân cách ie gh học sinh Do đó, việc hình thành, phát triển lực phát giải p vấn đề cho học sinh nhiệm vụ cần quan tâm hàng đầu, nl w nhằm đào tạo người biết đặt giải vấn đề sống, d oa phù hợp với hệ giá trị chuẩn mực, động lực phát triển bền vững nhanh an lu chóng đất nước u nf va Hình học khơng gian nội dung có tiềm rèn luyện trí tuệ cho học sinh Tuy nhiên, nội dung khó, ll oi m em phải chuyển từ việc nghiên cứu Hình học phẳng sang Hình học khơng z at nh gian, biểu tượng trực quan tư trực giác thông qua xem xét mơ hình, hình vẽ minh họa lại dường không thống với nội dung, z kiến thức khoa học chứa đựng @ gm 1.4 Hiện nay, nước ta có nhiều tác giả quan tâm nghiên cứu m co l lực dạy học mơn Tốn, như: Nguyễn Bá Kim, Bùi Văn Nghị, Nguyễn Hữu Châu, Tôn Thân, Trần Luận… Các nghiên cứu tạo nên tranh an Lu nhiều màu sắc lực nói chung lực Tốn học nói riêng Mặc dù n va ac th si Hoạt động 2: Cách xác định góc mặt phẳng cắt - Nếu bước xác định góc hai mặt phẳng cắt Vẽ hình minh họa lu an n va p ie gh tn to - Nhấn mạnh bước để xác định góc hai mặt phẳng cắt Trường hợp hai mặt phẳng song song trùng góc chúng 0o Cách xác định góc mặt phẳng Bước 1: Xác định giao tuyến d  (P)  (Q) Bước 2: Chọn điểm Id Trong mặt phẳng (P), vẽ đường thẳng a qua I a  d Trong mặt phẳng (Q), vẽ đường thẳng b qua I b  d Bước 3: Góc hai mặt phẳng (P) (Q) góc hai - Học sinh xem đường thẳng a b ví dụ trang 105 nhận xét + Xét (R) vng góc  nl w - Củng cố nêu lại cách xác định góc mặt phẳng trường hợp - Cho học sinh xem ví dụ trang 105 sách giáo khoa - Hỏi: Em cho biết hình chiếu vng góc (SBC)? - Gọi học sinh cho biết diện tích tam giác ABC - Giáo viên mở rộng sang diện tích đa giác cho học sinh phát biểu định lý d oa + ( R)  ( P)  p ( R)  (Q)  q ll u nf va an lu + Ta có ((P); (Q)) = (p;q) m oi - Định lý 1: Sách giáo khoa z at nh z m co l gm @ an Lu n va ac th 76 si Hoạt động 2: Diện tích hình chiếu đa giác - Cho hai mặt - Chú ý nghe Diện tích hình chiếu lu an va phẳng (P) (Q), giảng giác Trên (P) cho đa Gọi  góc mặt phẳng giác H ,giả sử (P) (Q) tam giác H, qua Đa giác H nằm mặt phẳng phép chiếu vng (P) có diện tích S góc xuống (Q), ta H’ hình chiếu vng góc có tam giác H biến H lên mặt phẳng (Q) có diện tích thành H’ Gọi góc S’ mặt phẳng Khi ta có cơng thức: (P) (Q) có số S’ = S.cos n đo  Ta tìm to diện tích đa ie gh tn mối liên hệ p giác H đa giác nl w H’ góc hai oa mặt phẳng (P) d (Q) Gọi S diện lu va an tích đa giác H giải ví dụ theo Cho hình chóp S.ABC có đáy ll (P), u nf mặt phẳng - Dựng hình Ví dụ 1: m oi S’ diện tích hướng dẫn tam giác ABC cạnh a, cạnh đa giác H’ giáo viên z at nh bên SA vng góc với mặt đáy a mặt phẳng (Q) (ABC) SA = Khi ta có cơng - Một học sinh a) Tính góc hai mặt phẳng thức: lên bảng vẽ hình (ABC) (SBC) S’ = S.cos - Học sinh nhận xét b) Tính diện tích tam giác SBC - Cho học sinh xét (ABC) (SBC) z + Gọi học sinh tuyến BC an Lu cắt theo giao m co l gm @ ví dụ n va ac th 77 si lên bảng vẽ hình - Tam giác ABC cạnh a S + Hỏi : Nhận xét (ABC) (SBC )? - Các nhóm thảo A + Gọi học sinh luận để đưa C H nhắc lại cách xác kết B định góc mặt phẳng cắt Giải lu an n va a) Gọi H Là trung điểm cạnh nhận xét tính chất Ta có BC  AH (1) tam giác ABC để Vì SA (ABC) suy BC  từ gợi ý tìm (SAH) nên BC  SH góc (ABC) Vậy góc hai mặt phẳng ie gh tn to + Gọi học sinh (ABC) (SBC) SHA p (SBC ) ? nl w Đặt  = SHA, ta có a SA tan      AH a 3 oa + Giáo viên cho d nhóm thảo luận đưa va an lu lời giải 30o oi z at nh hố kết m nhóm xác Vậy góc (ABC) (SBC) ll xét lời giải u nf + Giáo viên nhận Ta suy  = 30o b) Vì SA  (ABC) nên  ABC hình chiếu vng góc  SBC z gm @ Gọi S1, S2 diện tích tam giác SBC ABC Ta có l m co S2  S1.cos  S1  S1  S2 cos an Lu a2 a2  Suy ra: S1  n va ac th 78 si Củng cố: - Định nghĩa góc hai đường thẳng - Cách xác định góc mặt phẳng cắt - Cơng thức tính diện tích hình chiếu đa giác Hướng dẫn nhà: Bài tập nhà: Bài 1, trang 113 sách giáo khoa 3.5 Đánh giá thư ̣c nghiệm sư phạm Sau trình tổ chức thực nghiệm sư phạm, thu số kết tiến hành phân tích hai phương diện: Đánh giá mặt định lu lượng đánh giá mặt định tính an 3.5.1 Phân tích định lượng va n a) Đề kiểm tra (45 phút) tn to Cho tam giác ABC cạnh a Trên đường thẳng vng góc với ie gh mặt phẳng (ABC) điểm B, lấy điểm S cho SB = 2a Gọi I, M p trung điểm BC, AC nl w a) Chứng minh AI (SBC), AC (SBM) d oa b) Tính góc hợp đường thẳng SI với mặt phẳng (ABC) an lu c) Tính góc hai mặt phẳng (SAC) (ABC) va d) Tính khoảng cách từ điểm B đến mặt phẳng (SAI) ll u nf Những dụng ý sư phạm đề kiểm tra oi m Việc đề kiểm tra hàm chứa dụng ý sư phạm Xin lượng làm học sinh: z at nh phân tích rõ điều này, đồng thời đánh giá sơ chất z Trước hết, tất câu đề kiểm tra khơng q phức tạp mặt @ gm tính tốn Nói cách khác, học sinh nắm rõ phương pháp, xác định m co l hướng giải dường chắn đến kết Điều cho thấy: Các đề kiểm tra thiên việc “khảo sát” lực giải cấn đề mặt tư an Lu kĩ tính tốn n va ac th 79 si Câu a nhằm mục đích để em nắm phương pháp chứng minh đường thẳng vng góc mặt phẳng Ngồi việc nắm định nghĩa em cần kiến thức quan hệ vng góc khả tư Hình học khơng gian Câu b, câu c em cần nắm phương pháp để xác định góc đường thẳng mặt phẳng, mặt phẳng mặt phẳng, kiến thức tính tốn độ dài, góc để tính góc cho xác Sai lầm thường gặp xác định sai góc dẫn đến tính tốn sai Câu d em cần nắm phương pháp tính khoảng cách từ điểm đến mặt phẳng, kiến thức tính tốn để tính khoảng cách cho xác lu Qua phân tích sơ thấy rằng, đề kiểm tra thể an n va dụng ý: Khảo sát lực phát giải vấn đề học toán Ý Đáp án: Điểm Nội dung p ie gh tn to học sinh dạy học Hình học khơng gian lớp 11 d oa nl w M an lu H va u nf I C B ll 1đ oi m z at nh a) A Tam giác ABC cạnh a , IB = IC = z a AIBC (1) (2) @ SB (ABC) SBAI 3đ gm Từ (1) (2) ta có AI (SBC) l SB  ( ABC )  SB  AC (4) (3) an Lu Từ (3) (4) suy AC (SBM) m co Tam giác ABC đều, M  AC, MA  MC  BM  AC n va ac th 80 si SB (ABC) BI hình chiếu SI (ABC) b)   SI ,( ABC )   SIB, tan SIB  2đ SB 4 IB AC (SBM)  ACSM c)  AC  SM  Ta có  AC  BM  SAC  ABC  AC     2đ  ((SAC),( ABC))  SMB Ta có BM  lu a , SB  2a an n va  tan SMB  SB  BM tn to Do AI (SBC) nên (SAI)  (SBC) d)  d ( B,(SAI ))  BH p ie gh Ta có SI  (SAI )  (SBC )  BH  SI  BH  (SAI ) 1 1 17      BH SB BI 4a a 4a 2đ oa nl w Ta có 2a 17 17 d b) Kế t quả kiể m tra ll u nf va an lu  BH  m oi Bảng 3.2 Kết kiểm tra học sinh hai lớp 11A2 lớp 11A3 trường Trung học phổ thông Nghĩa Hưng A z at nh Điểm kiểm tra xi 10 x z gm @ Số học sinh đa ̣t điể m xi của 2 11 14 11 7,98 Số học sinh đa ̣t điể m xi của 15 11 7,4 an Lu lớp 11A3 m co l lớp 11A2 n va ac th 81 si Từ kết ta có nhận xét sau: Lớp thực nghiệm có 42/42 học sinh đạt điểm trung bình trở lên chiếm 100%, có 39/42 học sinh đạt loại khá, giỏi chiếm 92,9%, có học sinh đạt điểm 10 chiếm 7,1% Lớp đối chứng có 42/43 học sinh đạt điểm trung bình trở lên chiếm 97,7%, có 35/43 học sinh đạt loại khá, giỏi chiếm 81,4% học sinh đạt điểm 10 Có số em lớp thực nghiệm đạt điểm tối đa em có nhiều lời giải tìm lời giải hay, độc đáo Lớp đối chứng em đạt điểm tối đa Điểm trung bình chung học tập lớp thực nghiệm cao lớp đối chứng số học sinh có điểm giỏi lớp thực nghiệm cao lớp đối chứng lu Để khẳng định chất lượng đợt thực nghiệm sư phạm, chúng an n va tiến hành xử lý số liệu thống kê Toán học Kết xử lý số liệu thống kê gh tn to thu sau: Kiểm tra 45 phút p ie Nội dung Thực nghiệm Đối chứng 7,98 7,4 1,24 1,48 1,11 1,22 n nl w i i 1 oa Điểm trung bình x  x f i d N lu n i i va i 1 an N 1 ll oi m Độ lệch chuẩn s  s u nf Phương sai s   ( x  x) f điểm xi mà học sinh đạt được) z at nh (trong N số học sinh, xi điểm (thí dụ: điểm 0, 1, 10), (fi) tần số z xTN = 2,68 STN m co l thực nghiệm sư phạm, ta có kết quả: t  gm @ Sử dụng phép thử t - student để xem xét, kiểm tra tính hiệu việc an Lu Tra bảng phân phối t - student với bậc tự F = 42 với mức ý nghĩa  = 0,05 ta t =1,68 Ta có t >t Như vậy, thực nghiệm sư phạm có kết rõ rệt n va ac th 82 si Tiến hành kiểm định phương sai lớp thực nghiệm lớp đối chứng với giả thuyết E0: “Sự khác phương sai lớp thực nghiệm lớp STN đối chứng khơng có ý nghĩa” Ta có kết quả: F  = 0,84 S DC Giá trị tới hạn F tra bảng phân phối F ứng với mức  = 0,05 với bậc tự fTN = 42; fĐC = 43 1,68 ta thấy F < F: Chấp nhận E0, tức khác phương sai nhóm lớp thực nghiệm nhóm lớp đối chứng khơng có ý nghĩa Để so sánh kết thực nghiệm sư phạm, tiến hành kiểm định lu an giả thuyết H0: “Sự khác điểm trung bình hai mẫu khơng có ý n va nghĩa với phương sai nhau” tn to Với mức ý nghĩa  = 0,05 tra bảng phân phối t- student với bậc tự p ie gh NTN  N DC   42  43   83 , ta t  (1,98;2,00) xTN  xDC = 2,29 1 s  NTN N DC d oa nl w Ta có giá trị kiểm định: t  u nf va an lu với s = 2 ( NTN  1) STN  ( N DC  1).S DC NTN  N DC  ll Ta có t > t Như vậy, khẳng định giả thuyết H0 bị bác bỏ Điều chứng m oi tỏ khác điểm trung bình hai mẫu chọn có ý nghĩa z at nh Kết kiểm định chứng tỏ chất lượng học tập lớp thực nghiệm cao z lớp đối chứng @ gm Dựa kết phân tích trên, thấy dạy m co l tiết kết thu tương đối khả quan điều thể rõ tính khả thi hiệu việc phát triển lực phát giải vấn đề an Lu cho học sinh phổ thông dạy học Hình học khơng gian n va ac th 83 si 3.5.2 Phân tích định tính Sau q trình tổ chức thực nghiê ̣m sư phạm, theo dõi chuyển biến hoạt động học tập học sinh, đặc biệt kỹ nghe giảng, ghi chép, thảo luận, đặt câu hỏi, tự đánh giá Bước đầu rèn luyện cho học sinh có thói quen tự học, có kỹ giải vấn đề đặt ra, chủ đô ̣ng viê ̣c liñ h hô ̣i kiến thức Chúng nhận thấy lớp thực nghiệm có chuyển biến tích cực so với trước thực nghiệm: - Học sinh hứng thú học Tốn: Điều giải thích trình học tập, học sinh hoạt động, suy nghĩ, tự lu bày tỏ quan điểm, tham gia vào trình phát giải an vấn đề nhiều hơn; tham gia vào trình khám phá kiến tạo kiến va n thức to tn - Khả phân tích, tổng hợp, so sánh, tương tự, khái quát hóa, đặc ie gh biệt hóa, hệ thống hóa học sinh tiến hơn: Điều giải thích p giáo viên ý việc rèn luyện kỹ cho học sinh nl w - Học sinh tập trung ý nghe giảng, thảo luận nhiều hơn: Điều d oa giải thích q trình nghe giảng, học sinh phải theo dõi, tiếp an lu nhận nhiều nhiệm vụ học tập mà giáo viên giao cho, nghe va hướng dẫn, gợi ý, điều chỉnh giáo viên để thực nhiệm vụ đề ll u nf - Việc ghi chép, ghi nhớ học sinh thuận lợi hơn: Có điều z at nh chép theo cách hiểu oi m dạy học, giáo viên quan tâm tới việc tạo điều kiện để học sinh ghi - Việc đánh giá, tự đánh giá thân học sinh sát thực hơn: Có z điều trình dạy học, giáo viên cho học sinh thảo luận @ gm thầy trò, trò với trò để phát sửa chữa sai lầm lời giải toán m co l - Học sinh tự học, tự nghiên cứu nhà thuận lợi hơn: Điều giải thích tiết học lớp, giáo viên quan tâm tới việc an Lu hướng dẫn HS tổ chức việc tự học, tự nghiên cứu nhà n va ac th 84 si - Học sinh tham gia vào học sôi hơn, mạnh dạn việc bộc lộ kiến thức mình: Điều trình dạy học, giáo viên yêu cầu học sinh phải tự phát tự giải số vấn đề; Tự khám phá số kiến thức mới, học sinh tự thảo luận với tự trình bày kết làm 3.6 Kết luận chương Chương luận văn trình bày trình thực nghiệm sư phạm để kiểm chứng tính khả thi tính hiệu biện pháp trình bày chương Quá trình thực nghiệm kết rút từ thực nghiệm cho phép khẳng định: mục đích thực nghiệm hồn thành, tính lu an khả thi quan điểm khẳng định Thực quan điểm n va góp phần phát triển lực phát giải vấn đề Tốn học nói tn to chung, Hình học khơng gian nói riêng; góp phần phịng tránh, hạn chế p ie gh tiến tới chấm dứt sai lầm cho học sinh học chủ đề d oa nl w ll u nf va an lu oi m z at nh z m co l gm @ an Lu n va ac th 85 si KẾT LUẬN CHUNG Qua thời gian nghiên cứu luận văn, khả hạn chế nỗ lực thân bảo nhiệt tình TS Trần Việt Cường, nhiệm vụ nghiên cứu luận văn đặt hồn thành, mục đích nghiên cứu đạt mong muốn Luận văn đạt kết sau: Luận văn góp phần làm sáng tỏ sở lý luận thực tiễn việc phát triển lực phát giải vấn đề cho học sinh; hệ thống hóa quan điểm nhiều nhà khoa học lực phát giải vấn đề lu học Tốn; phân tích số khó khăn sai lầm thường gặp học nội an dung Hình học không gian va n Đề xuất biện pháp sư phạm nhằm phát triển lực phát giải gh tn to vấn đề cho học sinh dạy học Hình học khơng gian Trong biện pháp, ngồi trình bày nội dung, chúng tơi cịn minh họa số ví dụ cụ thể ie p Đã tổ chức thực nghiệm sư phạm để minh họa tính khả thi hiệu nl w biện pháp sư phạm đề xuất d oa Như vậy, khẳng định: Mục đích nghiên cứu thực hiện, ll u nf va nhận an lu nhiệm vụ nghiên cứu hoàn thành giả thuyết khoa học chấp oi m z at nh z m co l gm @ an Lu n va ac th 86 si CÔNG TRÌNH KHOA HỌC LIÊN QUAN ĐẾN LUẬN VĂN Hồng Ngọc Hạnh, Trần Việt Cường (2016), Một số biê ̣n pháp nhằm phát triển lực phát giải vấn đề cho học sinh dạy học hình học khơng gian lớp 11, Tạp chí Giáo dục, số đặc biệt tháng lu an n va p ie gh tn to d oa nl w ll u nf va an lu oi m z at nh z m co l gm @ an Lu n va ac th 87 si DANH MỤC TÀI LIỆU THAM KHẢO Ban Chấp hành Trung ương Đảng cộng sản Việt Nam (2013), Nghị Hội nghị lần thứ 8, khóa XI (Nghị số 29-NQ/TW) Vũ Hữu Bình (1996), Kinh nghiệm dạy Toán học Toán, Nhà xuất Giáo dục, Hà Nội Bộ Giáo dục Đào tạo (2007), Tài liệu bồi dưỡng phương pháp dạy học, Dự án phát triển giáo dục Trung học phổ thông Nguyễn Hữu Châu (1995), “Dạy giải vấn đề mơn Tốn”, Nghiên cứu giáo dục, số lu Nguyễn Hữu Châu (1996), “Vấn đề dạy giải phương trình tốn học an va trường phổ thơng”, Nghiên cứu giáo dục, số 12 n Hoàng Chúng (1997), Phương pháp dạy học Toán trường Trung học phổ tn to thông, Nhà xuất Giáo dục ie gh Cruchetxki V A (1973), Tâm lí lực Toán học học sinh, Nhà xuất p Giáo dục, Hà Nội nl w Cruchetxki V A (1980), Những sở Tâm lý học sư phạm, Tập 1, Nhà oa xuất Giáo dục, Hà Nội d Lương Mậu Dũng, Nguyễn Hữu Lệ (1998), Phương pháp giải tốn hình lu va an khơng gian 11, Nhà xuất trẻ ll Giáo dục u nf 10 Dự án Việt- Bỉ “Hỗ trợ học từ xa” (2000), Giải thích thuật ngữ Tâm lý- m oi 11 Nguyễn Hữu Điển (2003), Sáng tạo tốn học phổ thơng, Nhà xuất z at nh Giáo dục, Hà Nội 12 Phạm Minh Hạc (1992), Một số vấn đề tâm lí học, Nhà xuất Giáo dục, z gm @ Hà Nội 13 Trịnh Thanh Hải, Trần Việt Cường, Trịnh Thị Phương Thảo (2013), Giáo l m co trình Ứng dụng tin học dạy học toán, Nhà xuất Giáo dục Việt Nam 14 Phạm Văn Hoàn, Trần Thúc Trình (1975), Một số ý kiến việc rèn luyện an Lu người dạy Tốn, Tạp chí Nghiên cứu giáo dục n va ac th 88 si 15 Trần Bá Hoành (2007), Đổi phương pháp dạy học, chương trình sách giáo khoa, Nhà xuất Đại học Sư Phạm, Hà Nội 16 Nguyễn Thái Hòe (2001), Rèn luyện tư qua việc giải tập Toán, Nhà xuất Giáo dục, Hà Nội 17 Nguyễn Bá Kim (2004), Phương pháp dạy học mơn Tốn, Nhà xuất Đại học Sư phạm, Hà Nội 18 Nguyễn Bá Kim, Đinh Nho Chương, Nguyễn Mạnh Cảng, Vũ Dương Thụy, Nguyễn Văn Thường (1994), Phương pháp dạy học mơn Tốn (Phần 2) - Dạy học nội dung cụ thể, Nhà xuất Giáo dục lu 19 Nguyễn Bá Kim, Vương Dương Minh, Nguyễn Sỹ Đức (1997), “Tính giải an vấn đề tồn q trình dạy học”, Thơng tin Khoa học Giáo va n dục, số 66 khám phá giải vấn đề học Toán trường phổ thông”, Tạp ie gh tn to 20 Đào Thái Lai (2003), “Ứng dụng công nghệ thông tin giúp học sinh tự p chí Giáo dục, số 57 nl w 21 Lecne I Ia (1977), Dạy học nêu vấn đề, Nhà xuất Giáo dục d oa 22 Luật Giáo dục (2005),Nhà xuất Giáo dục, Hà Nội an lu 23 Đào Tam (2005), Phương pháp dạy học hình học trường Trung học phổ va thơng, Nhà xuất Đại học sư phạm ll u nf 24 Vũ Văn Tảo, Trần Hà (1996), Dạy học giải vấn đề Một hướng đổi z at nh giáo dục đào tạo Hà Nội oi m công tác giáo dục, đào tạo, huấn luyện, Trường cán Quản lý 25 Từ Đức Thảo (2012), Bồ i dưỡng lực phát hiê ̣n giải vấn đề z cho học sinh Trung học phổ thông dạy hình học, Luận án Tiến sĩ @ gm Giáo dục học m co l 26 Nguyễn Văn Thuận (2004), Góp phần phát triển lực tư lơgic sử dụng xác ngơn ngữ tốn học cho học sinh đầu cấp Trung học phổ an Lu thông dạy học Đại số, Luận án Tiến sĩ Giáo dục học n va ac th 89 si 27 Trần Thúc Trình, Thái Sinh (1975), Một số vấn đề rèn luyện tư việc dạy Hình học lớp 6, Nhà xuất Giáo dục 28 G Polya (1997), Sáng tạo tốn học, Nhà xuất Giáo dục 29 Đồn Quỳnh (Tổng chủ biên), Văn Như Cương (Chủ biên), Phạm Khắc Ban, Lê Huy Hùng, Tạ Mân (2008), Hình Học nâng cao 12, Nhà xuất Giáo dục, Hà Nội 30 Bùi Văn Nghị (2008), Phương pháp dạy học nội dung cụ thể mơn Tốn, Nhà xuất Đại học Sư phạm 31 Nguyễn Anh Tuấn (2003), “Bồi dưỡng lực phát giải lu vấn đề cho học sinh Trung học sở dạy học khái niệm Toán học an (thể qua số khái niệm Đại số Trung học sở)”, Luận án Tiến va n sĩ Giáo dục học p ie gh tn to d oa nl w ll u nf va an lu oi m z at nh z m co l gm @ an Lu n va ac th 90 si

Ngày đăng: 21/07/2023, 09:28

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN