Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 88 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
88
Dung lượng
544,05 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: MỘT SỐ VẤN ĐỀ VỀ LÝ THUYẾT SỐ NGUYÊN TỐ LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Nhóm topo G Birkhoff đưa vào năm 1936 [1] Sau đó, nhiều tác giả giới giới thiệu nhiều khái niệm suy rộng thu kết mở rộng số kết nhóm topo ([1], [2], [4], [5], [6], [7]) Đặc biệt, vào năm 1996, A S Gulko giới thiệu khái niệm không gian cầu trường (rectifiable space), chứng minh nhóm topo khơng gian cầu trường được, không gian cầu trường suy rộng nhóm topo Hơn nữa, tác giả đưa ví dụ nhằm mở rộng không tầm thường ([4]) Gần đây, số tác giả nghiên cứu tính chất compact tính chất Fréchet-Urysohn, tính chất FréchetUrysohn mạnh không gian cầu trường thu nhiều kết thú vị ([7], [8]) Hơn nữa, [7] tác giả đặt toán sau 976 2 Không gian hàm liên tục C0 (Ω) Định nghĩa (i) Cho tập A ⊂ Rn , C0 (A) := {f : A → R, f liên tục x ∈ A} (ii) Cho K ⊂ Rn tập compact cho f ∈ C0 (K) Ta ký hiệu ∥f ∥∞ số thực không âm xác định ∥f ∥∞ = ∥f ∥∞,K = sup |f (x)| x∈K ∥.∥∞ gọi chuẩn (hay chuẩn vô cùng) Định lý Cho Ω ⊂ Rn tập mở bị chặn Khi (C0 (Ω), ∥.∥∞ ) khơng gian Banach vô hạn chiều Chứng minh Ta giới hạn n = Ω = (a, b) ta phải chứng minh (C0 (Ω), ∥.∥∞ ) không gian định chuẩn vô hạn chiều R Ta chứng minh khơng gian Banach Nghĩa phải dãy Cauchy (fh )h ⊂ (C0 (Ω), ∥.∥∞ ) hội tụ (tại phần tử thuộc không gian) Giả sử (fh )h dãy Cauchy, theo định nghĩa ta có, ∀ϵ > 0, ∃k ∈ N cho ∥fh − fk ∥∞ = sup |fh (x) − fk (x)| < ϵ ∀h, k ≥ k x∈Ω Điều có nghĩa ∀ϵ > 0, ∃k ∈ N cho |fh (x) − fk (x)| < ϵ ∀h, k ≥ k, ∀x ∈ Ω (1) Từ (??), (fh (x))h ⊂ R dãy Cauchy Do dó: ∃f (x) := lim fh (x), h→∞ ∀x ∈ Ω (2) Từ (??), lấy qua giới hạn (??), cho k → ∞ ta ∀ϵ > 0, ∃k ∈ N cho |fh (x) − f (x)| ≤ ϵ ∀h ≥ k, x ∈ Ω, theo định nghĩa fh → f Ω Do dó f ∈ C0 (Ω) Tính compact (C0 (Ω), ∥.∥∞ ) Bây tìm hiểu đặc trưng tập compact (C0 (Ω), ∥.∥∞ ) Đầu tiên ta nhớ lại số khái niệm kết quan trọng liên quan đến chủ đề compact không gian metric Định nghĩa Cho (X, d) không gian metric ký hiệu B(x, r) hình cầu mở X , tâm x bán kính r > với x ∈ X (i) Điểm x0 ∈ X gọi điểm giới hạn tập A ⊂ X A ∩ (B(x0 , r)\{x0 }) ̸= ∅, ∀r > (ii) Tập A ⊂ X gọi bị chặn tồn R0 > cho d(x, y) ≤ R0 với x, y ∈ A (iii) Tập A ∩ X gọi bị chặn hoàn toàn với ϵ > 0, A phủ họ hữu hạn hình cầu B(x1 , ϵ), B(x2 , ϵ), , B(xN , ϵ), nghĩa A ⊂ ∪N i=1 B(xi , ϵ) (iv) Họ A ⊂ X gọi compact dãy dãy A có dãy hội tụ điểm thuộc A (v) Tập A ⊂ X gọi có tính chất Bolzano-Weierstrass (BW) tập vô hạn A có điểm giới hạn thuộc A Nhận xét Dễ thấy tập bị chặn hoàn toàn tập bị chặn, điều ngược lại không không gian topo (X, τ ) tập hợp compact tập hợp compact dãy có tính chất (BW) Các tính chất khơng cịn giữ trường hợp tổng quát Định lý (Các tiên đề chuẩn tập compact không gian metric) Nếu A tập không gian metric (X, d), ta có điều sau tương đương: (i) A compact; (ii) A compact dãy; (iii) (A, d) đầy đủ bị chặn hoàn toàn; (iv) A có tính chất BW Nhận xét Nếu (X, d) đầy đủ, A ⊆ X đóng (A, d) đầy đủ Hệ Cho A ⊂ Rn Khi đó: A compact ⇔ A đóng bị chặn Định lý (Riesz) Cho (E, ∥.∥) không gian định chuẩn ta ký hiệu BE := {x ∈ E : ∥x∥ ≤ 1} Khi BE compact dimR E < ∞ Nhận xét Định lý ?? cho tập A bị chặn không gian định chuẩn vô hạn chiều (E, ∥.∥) không thiết phải bị chặn hồn tồn Ví dụ A = BE Định nghĩa Cho A ⊂ Rn Một họ tập F ⊂ C0 (A) gọi tựa liên tục với ϵ > 0, ∃δ(ϵ) > cho f ∈ F, |f (x) − f (y)| < ϵ với x, y ∈ A thỏa |x − y| < δ Ta thêm tiên đề chuẩn tập compact (C0 (K), ∥.∥∞ ) K ⊂ Rn compact Định lý (Arzelà - Ascoli) Cho K ⊂ Rn compact giả sử F ⊂ C0 (K) Khi F compact (C0 (K), ∥.∥∞ ) F là: (i) đóng (C0 (K), ∥.∥∞ ); (ii) bị chặn (C0 (K), ∥.∥∞ ); (iii) liên tục Hệ Cho K ⊂ Rn compact cho F ⊂ C0 (K) Giả sử F bị chặn liên tục Khi F compact (C0 (K), ∥.∥∞ ) Cụ thể hệ cho ta kết đặc biệt sau Hệ Cho fh : [a, b] → R, (h = 1, 2, ) dãy hàm liên tục Giả sử rằng: (i) ∃M > cho |f (x) ≤ M, ∀x ∈ [a, b], ∀h (ii) (fh )h liên tục đều, nghĩa là, ∀ϵ > 0, ∃δ(ϵ) > cho |fh (x) − fh (y)| < ϵ, ∀x, y ∈ [a, b] với |x − y| < δ, ∀h Khi ta có dãy (fhk )k hàm f ∈ C0 ([a, b]) thỏa mãn fhk → f [a, b] Định lý Giả sử M > số cho trước F = {f ∈ C1 ([a, b]) : ∥.∥C1 ≤ M } Khi F tập compact tương đối (C0 ([a, b]), ∥.∥∞ ); Chứng minh định lý ?? Tính đầy đủ: Giả sử có (i), (ii) (iii) ta F compact Theo tính chất tập compact định lý ?? ta F compact dãy Vì dãy (fh )h ∈ F có dãy (fhk )k hội tụ hàm f ∈ F , nghĩa là, ∥fhk − f ∥∞ → k → ∞ Nhớ K compact tách Giả sử D := {xi : i ∈ N} đếm trù mật K F bị chặn nghĩa tồn M1 > thỏa mãn ∥f − g∥∞ ≤ M1 , ∀f, g ∈ F Cụ thể ta thay f0 ∈ F , đó: ∥f0 − fh ∥∞ ≤ M1 , ∀h ∈ N Hơn ∥fh ∥∞ = ∥(fh − f0 ) + f0 ∥∞ ≤ ∥fh − f0 ∥∞ + ∥f0 ∥∞ ≤ M1 + ∥f0 ∥∞ := M2 Do ta có số M2 > thỏa mãn |fh (x)| ≤ M2 , ∀x ∈ K, ∀h Bây ta xây dựng dãy hội tụ theo trình chéo Cantor Bước 1: (fh (x1 ))h dãy số thực [−M2 , M2 ] Suy dãy có dãy (fh(1) (x1 ))h hội tụ R; Bước 2: Xét dãy (fh(1) (x2 ))h ⊂ [−M2 , M2 ] Do dãy (fh(2) (x2 ))h hội tụ Chú ý dãy (fh(2) (x1 ))h hội tụ có dãy (fh(1) (x1 ))h hội tụ Tiếp tục trình ta Bước k: Một dãy (fh(k) )h (fh(k−1) )h thỏa mãn (fhk (xj ))h hội tụ với j = 1, k Ta có tình sau đây: Định nghĩa: gk := fkk : K → R Lưu ý rằng, i = 1, 2, , dãy (gk )k≥i dãy (fki )k≥i Cụ thể, dãy (gk )k dãy (fh )h theo cách xây dựng ∀x ∈ D (3) (gk )k hội tụ (C0 (K), ∥.∥∞ ) (4) (gk (x))k hội tụ R Tiếp tục trình ta Sử dụng giả thiết F liên tục đều, tức ∀ϵ > 0, ∃δ(ϵ) > : x, y ∈ K |x − y| < δ ⇒ |f (x) − f (y)| < ϵ, ∀f ∈ F (5) Với ϵ > thay đổi tùy ý, δ thay đổi Bởi K bị chặn hồn tồn, σ > có họ hữu hạn hình cầu B(x1 , σ), , B(xN , σ) Rn thỏa mãn N = N (σ), xi ∈ K với i = 1, , N n [ K⊂ B(xi , σ) i=1 Do tính trù mật D K , tồn yi ∈ D ∩ B(xi , σ) với i = 1, , N Cụ thể n \ K⊂ B(yi , 2σ) i=1 Vì ta chọn σ = δ/2 Khi tồn N = N (σ) = N (δ) = N (ϵ) D′ := {y1 , , yn } ⊂ D thỏa mãn K⊂ N [ i=1 B(yi , δ) (6) Từ (??) dãy (gk (y1 ))k , , (gk (yN ))k , ¯ hội tụ, có số nguyên k¯ = k(ϵ) với |gk (yi ) − gr (yi )|, ϵ ¯ ∀i = 1, , N ∀k, r > k, Theo (??) (??) ∀x ∈ K, ∃yi ∈ D′ thỏa |x − yi | < δ ⇒ |gk (x) − gk (yi )| < ϵ, ∀k ∈ N Từ ta có |gk (x)−gr (x)| ≤ |gk (x)−gk (yi )|+|gk (yi )−gr (yi )|+|gr (yi )−gr (x)| ≤ ϵ+ϵ+ϵ = 3ϵ ∀x ∈ K ¯ với k, r ≥ k¯ Điều có nghĩa ϵ > tồn k¯ = k(ϵ) thỏa ∥gk − gr ∥∞ ≤ 3ϵ ¯ ∀k, r > k Nghĩa (gk )k dãy Cauchy (C0 (K), ∥.∥∞ ) Từ (C0 (K), ∥.∥∞ ) đầy đủ F đóng, suy tồn f ∈ F thỏa mãn lim ∥gk − f ∥∞ = k→∞ Từ (gk )k dãy dãy (fh )h , phải F compact dãy Sự cần thiết: Cần rằng, F compact (C0 (K), ∥.∥∞ ) ta có (i), (ii) (iii) Giả sử F compact khơng gian metric (C0 (K), ∥.∥∞ ), đó, theo tính chất tập compact khơng gian metric, F đóng bị chặn hồn tồn bị chặn Chỉ F liên tục đều, nghĩa ta phải chứng minh (??) Theo phản chứng, giả sử ∃ϵ0 > : ∀ > 0, ∃fδ ∈ F, xδ , yδ ∈ K với |xδ −yδ | < δ |fδ (xδ )−fδ (yδ )| ≥ ϵ0 Chọn δ = 1/h ký hiệu fh := f1/h , xh := x1/h yh := y1/h Khi ta xây dựng ba dãy (fh )h ⊂ F, (xh )h , (yh )h ⊂ K |xh − yh | < 1/h, |fh (xh ) − f (yh )| ≥ ϵ > 0, ∀h (7) Từ F K compact, tồn ba dãy (fh )h ⊂ F, (xh )h , (yh )h ⊂ K thỏa mãn lim xh = lim yh = z ∈ K fh → f ∈ F K h→∞ h→∞ Khi tồn lim fh (xh lim fh (yh ) = f (z) h→∞ h→∞ Lấy qua giới hạn (??) ta có mâu thuẫn Do đó, ta có điều phải chứng minh ĐỊNH LÝ CAUCHY Định lý (Định lý Cauchy) Giả sử hàm số f g liên tục [a, b], khả vi khoảng (a, b) g ′ (x) ̸= với x ∈ (a, b) Khi tồn c ∈ (a, b) cho: f ′ (c) f (b) − f (a) = ′ g(b) − g(a) g (c) Chứng minh Trước hết ta nhận xét g(a) ̸= g(b) Nghĩa công thức kết luận định lý ln ln có nghĩa Thật vậy, giả sử g(a) = g(b) Khi theo định lý Rolle, tồn ξ ∈ (a, b) cho g ′ (ξ) = Điều mâu thuẫn với giả thiết g ′ (x) ̸= với x ∈ (a, b) Xét hàm số F (x) = [f (a) − f (b)]g(x) − [g(a) − g(b)]f (x) Do hàm f (x), g(x) liên tục đoạn [a, b] khả vi khoảng (a, b) nên hàm số F (x) có tính chất Mặt khác, F (a) = F (b) Theo định lý Rolle, tồn c ∈ (a, b) cho F ′ (c) = Nhưng ta có F ′ (x) = [f (a) − f (b)]g ′ (x) − [g(a) − g(b)]f ′ (x) Suy F ′ (c) = [f (a) − f (b)]g ′ (c) − [g(a) − g(b)]f ′ (c) = Từ ta nhận điều phải chứng minh Nhận xét Định lý Lagrange trường hợp riêng định lý Cauchy g(x)=x h=1 h=m+1 ∞ X ≤ ∥ϕ∥(Lp (Ω))′ χEh h=m+1 Lp (Ω) 1/p = ∥ϕ∥(Lp (Ω))′ ∪∞ h=m+1 Eh 27 | ∪∞ h=m+1 Eh | = ∞ X |Eh | → m → ∞ từ E < ∞ Vì h=m+1 ν(E) = ∞ X ν(Eh ) h=1 kết cho cách xếp dãy (Eh )h , chuỗi hội tụ tuyệt đối thỏa (??) Hơn nữa, từ |ν(E) ≤ ∥ϕ∥(Lp (Ω))′ |E|1/p , ∀E ∈ M, suy (??) Lưu ý: Nếu p = ∞ đánh giá trước, (??) khơng cịn giữ Theo định lý Radon-Nikodym cho độ đo dấu, tồn M-hàm đo u : Ω → R với u+ u− ∈ L1 (Ω) cho Z ϕ(χE ) = ν(E) = udx, ∀E ∈ M (17) E Thực thỏa mãn u ∈ L1 (Ω) Thật vậy, cho En+ := {x ∈ Ω : u(x) ≥ 0} En− := {x ∈ Ω : u(x) ≤ 0} Từ (??) ta Z 0≤ ± Z u dx = Ω En± udx = ν(En± ) < ∞ Do u± ∈ L1 (Ω) Từ tuyến tính ϕ tích phân, rõ ràng Z ϕ(s) = u s dx (18) Ω với hàm đơn giản đo s : Ω → R Để kết luận, cần chứng minh ′ u ∈ Lp (Ω), ∀p ∈ [1, ∞) (19) Thật vậy, với f ∈ Lp (Ω), theo xấp xỉ hàm đơn giản (Định lý 12), tồn dãy sh : Ω → R, (h = 1, 2, ) hàm đơn gian đo thỏa mãn sh → f Lp (Ω) (20) 28 Từ (??), (??) bất đẳng thức Holder, suy Z