1. Trang chủ
  2. » Luận Văn - Báo Cáo

Một số vấn đề về lý thuyết số nguyên tố

96 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 96
Dung lượng 559,94 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: MỘT SỐ VẤN ĐỀ VỀ LÝ THUYẾT SỐ NGUYÊN TỐ LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Mơ hình tốn học phương thức sử dụng ngơn ngữ tốn để mơ tả hệ thống, tượng tự nhiên sống, đặc biệt sử dụng nhiều ngành khoa học tự nhiên chuyên ngành kỹ thuật (ví dụ: vật lý, sinh học, kỹ thuật điện tử) đồng thời khoa học xã hội (như kinh tế, xã hội học khoa học trị) Các kỹ sư, nhà khoa học sử dụng mơ hình tốn học cơng cụ nghiên cứu Các mơ hình đưa mơ tả vấn đề sống mà chúng biểu thị dạng phương trình tốn học, phương trình sai phân, hệ phương trình tuyến tính phải kể đến vấn đề miêu tả phương trình vi phân hệ phương trình vi phân 447 2 Nhóm giả nhị diện Mệnh đề Cho nhóm giả nhị diện n SD2n = ⟨r, s | r2 = s2 = 1, s−1 rs = r2 n−1 −1 ⟩ với n ⩾ 3, H nhóm SD2n Khi (i) Nếu H = Rk với k | 2n , ⩽ k ⩽ 2n ( Pr(H, SD2n ) = k = 2n , k + n k ̸= 2n 2 (ii) Nếu H = Tl với ⩽ l ⩽ 2n − l chẵn, ⩽ l ⩽ 2n−1 − l lẻ Pr(Tl , SD2n ) = 1 + n 2 (iii) Nếu H = Ui,j với i|2n , ⩽ i ⩽ 2n − 1, ⩽ j ⩽ i −  1   + n i = 2n−1 , 2 Pr(H, SD2n ) =   + i + i ̸= 2n−1 2n+1 Chứng minh (i) Giả sử H = Rk với k|2n , ⩽ k ⩽ 2n Ta xét hai trường hợp k sau Trường hợp 1: k = 2n Khi Rk = {1} Rõ ràng Pr(Rk , SD2n ) = Trường hợp 2: k ̸= 2n Theo Mệnh đề ?? ta có |Rk | = 2n 2n = (2n , k) k Khi đó, theo Mệnh đề ?? ta có X n−1 |CSD2n (x)| = |CSD2n (1)| + |CSD2n (r2 X )| + |CSD2n (rik )| n x∈Rk 1⩽i⩽ 2k −1 i̸=  = |SD2n | + |SD2n | + = n+1 +2 n+1  + 2n n−1 k  − |R1 | k 2n 2n+1 (2n−1 + k) − 2n = k k  Từ suy Pr(Rk , SD2n ) = X |CSD2n (x)| |Rk ||SD2n | x∈Rk = 2n+1 (2n−1 + k) 2n−1 + k k k · = = + n n n+1 n ·2 k 2 (ii) Giả sử H = Tl với ⩽ l ⩽ 2n − l chẵn, ⩽ l ⩽ 2n−1 − l lẻ Khi l chẵn với ⩽ l ⩽ 2n − Theo Mệnh đề ??, ta có |Tl | = Do Tl = {1, rl s} Khi đó, theo Mệnh đề 50 ta có X 1 Pr(Tl , SD2n ) = = |Tl ||SD2n | |CSD2n (x)| = · 2n+1 x∈Tl |CSD2n (1)| + |CSD2n (rl s)|  1 1 n+1 n | + |U n−1 | = |SD (2 + 4) = + 2 ,l · 2n+1 · 2n+1 2n Khi l lẻ với ⩽ l ⩽ 2n−1 − Theo Mệnh đề ?? ta có |Tl | = Do n−1 Tl = {1, rl s, r2 n−1 , rl+2 s} Khi đó, theo Mệnh đề 50 ta có Pr(Tl , SD2n ) = X |CSD2n (x)| |Tl ||SD2n | x∈Tl  l 2n−1 l+2n−1 |C )| + |C s)| n (1)| + |CSD2n (r s)| + |CSD2n (r n (r SD SD 2 · 2n+1  n n n−1 n−1 n−1 |SD | + |U | + |SD | + |U | = 2 ,l ,l+2 · 2n+1  1 n+1 n+1 = + + + = + n n+1 4·2 2 =   Như hai trường hợp l ta có Pr(Tl , SD2n ) = 1 + n 2 (iii) Giả sử H = Ui,j với ⩽ i ⩽ 2n − 1, i|2n , ⩽ j ⩽ i − Ta xét hai trường hợp i sau Trường hợp 1: i = 2n−1 Theo Mệnh đề ??, ta có 2n+1 2n+1 = n−1 = |Ui,j | = i Do Ui,j = {1, r2 n−1 , rj s, r2 n−1 +j s} Khi đó, theo Mệnh đề 50 ta có Pr(Ui,j , SD2n ) = X |CSD2n (x)| |Ui,j ||SD2n | x∈Ui,j 2n−1 j 2n−1 +j |C )| + |C s)| n (1)| + |CSD2n (r n (r s)| + |CSD2n (r SD SD 2 · 2n+1  n | + |SD2n | + |U n−1 | + |U n−1 n−1 = |SD | 2 ,j ,2 +j · 2n+1 1 (2n+1 + 2n+1 + + 4) = + n = n+1 4·2 2 =   Trường hợp 2: i ̸= 2n−1 Theo Mệnh đề ?? ta có |Ui,j | = Do  Ui,j = li r ,r li+j 2n+1 i  n s ⩽ l ⩽ −1 i X X CH (y)N N |CN (y)| S∈G/N y∈S Áp dụng Bổ đề 11 từ suy X X X X |CH/N (S)| |CN (y)| |H||G| Pr(H, G) ⩽ |CH/N (yN )||CN (y)| = S∈G/N y∈S = X S∈G/N |CH/N (S)| S∈G/N X X |CS (x)| = x∈N |CH/N (S)| S∈G/N y∈S X |S ∩ CG (x)| x∈N Nếu S ∩ CG (x) ̸= ∅ tồn x0 ∈ S ∩ CG (x) S = N x0 Khi ta có S ∩ CG (x) = N x0 ∩ CG (x)x0 = (N ∩ CG (x))x0 = CN (x)x0 Từ suy |S ∩ CG (x)| = |CN (x)x0 | = |CN (x)| Nếu S ∩ CG (x) = ∅ rõ ràng = |S ∩ CG (x)| < |CN (x)| Do trường hợp ta có |S ∩ CG (x)| ⩽ |CN (x)| Từ suy X X X X |H||G| Pr(H, G) ⩽ |CH/N (S)| |S ∩ CG (x)| ⩽ |CH/N (S)| |CN (x)| S∈G/N x∈N S∈G/N = |H/N ||G/N | Pr(H/N, G/N )|N | Pr(N ) = |H||G| Pr(H/N, G/N ) Pr(N ) Do Pr(H, G) ⩽ Pr(H/N, G/N ) Pr(N ) x∈N 67 Cuối cùng, giả sử N ∩ [H, G] = Ta chứng minh xảy dấu đẳng thức Khi đó, theo Bổ đề 11 ta có CH (y)N = CH/N (yN ) với y ∈ G N Theo lập luận ta có |H||G| Pr(H, G) = X |CH/N (S)| X |S ∩ CG (x)| x∈N S∈G/N Vì N ◁ G [N, G] ⩽ N Do từ giả thiết suy [N, G] = N ∩ [N, G] ⩽ N ∩ [H, G] = 1, hay N ⩽ Z(G) Từ suy CG (x) ∩ S = G ∩ S ̸= ∅ với x ∈ N với S ∈ G/N Do |S ∩ CG (x)| = |CN (x)| với x ∈ N Từ suy xảy dấu đẳng thức Trong trường hợp đặc biệt, tích trực tiếp ta có kết sau Mệnh đề 27 Cho N H hai nhóm, N1 H1 tương ứng nhóm N H Khi Pr(N1 × H1 , N × H) = Pr(N1 , N ) Pr(H1 , H) Chứng minh Giả sử x = (x1 , x2 ) ∈ N1 × H1 Khi CN ×H (x) = {(a1 , a2 ) ∈ N × H | (x1 , x2 )(a1 , a2 ) = (a1 , a2 )(x1 , x2 )} = {(a1 , a2 ) ∈ N × H | (x1 a1 , x2 a2 ) = (a1 x1 , a2 x2 )} Do |CN ×H (x)| = |CN (x1 )||CH (x2 )| Từ suy X x∈N1 ×H1 |CN ×H (x)| = X x1 ∈N1 |CN (x1 )| X x2 ∈H1 |CH (x2 )| 68 Áp dụng Mệnh đề 50 ta có Pr(N1 × H1 , N × H) = |N1 × H1 ||N × H| X |CN ×H (x)| x∈N1 ×H1 = X X |CN (x1 )| |CH (x2 )| |N1 ||H1 ||N ||H| = |N1 ||N | x1 ∈N1 X |CN (x1 )| x1 ∈N1 x2 ∈H1 X |CH (x2 )| |H1 ||H| x2 ∈H1 = Pr(N1 , N ) Pr(H1 , H) Vây ta có điều phải chứng minh Đặc biệt, ta có kết sau Hệ 27 Cho H N hai nhóm Khi Pr(H, N × H) = Pr(H) Đối với tích nửa trực tiếp vấn đề tính độ giao hoán tương đối trở nên phức tạp nhiều Trong phần lại mục ta trường hợp đặc biệt Mệnh đề sau cho ta cơng thức tính độ giao hốn tương đối nhóm abel với tích nửa trực tiếp nhóm xiclíc cấp Mệnh đề 28 Cho A nhóm giao hốn, α tự đẳng cấu A cho α2 = idA C2 = ⟨u⟩ nhóm xiclíc cấp với u phần tử sinh Ký hiệu G = A×θ C2 tích nửa trực tiếp A nhóm xiclíc C2 = ⟨u⟩ với tác động θ : C2 → Aut(A) cho công thức θ(u) = α Khi Pr(A, G) = |Aα | + 2|A| Aα = {a ∈ A | α(a) = a} Chứng minh Giả sử x = (x1 , 1) ∈ A Khi ta có CG (x) = CA (x) ∪ CG\A (x) 69 Vì A nhóm giao hốn nên CA (x) = A Ta có CG\A (x) = {(a, u) ∈ G \ A | (x1 , 1)(a, u) = (a, u)(x1 , 1)} = {(a, u) ∈ G \ A | (x1 a, u) = (aθ(u)(x1 ), u)} = {(a, u) ∈ G \ A | (ax1 , u) = (aα(x1 ), u)} Ta xét hai trường hợp x1 sau Trường hợp 1: x1 ∈ Aα Khi aα(x1 ) = ax1 với a ∈ A Do |CG\A | = |A| Trường hợp 2: x1 ∈ A \ Aα Khi aα(x1 ) ̸= ax1 với a ∈ A Do CG\A = ∅, |CG\A | = Từ suy X X X X |CG (x)| = x∈A (|CA (x)| + |CG\A (x)|) = x∈A |CA (x)| + x∈A = |A| + X |CG\A (x)| + x∈Aα X |CG\A (x)| x∈A |CG\A (x)| x∈A\Aα = |A|2 + |A||Aα | + = |A|(|A| + |Aα |) Theo Mệnh đề 50 ta có Pr(A, G) = X |CG (x)| |A||G| x∈A = |A| |C2 | |A|(|A| + |Aα |) = |A| + |Aα | |Aα | = + 2|A| 2|A| Vậy ta có điều phải chứng minh 22 KHÔNG GIAN CÁC HÀM LIÊN TỤC Nhận xét Định lý Arzelà - Ascoli khơng cịn C0 (A) A ⊂ Rn khơng compact Ví dụ lấy C0b (R) không gian hàm liên tục bị chặn R, nghĩa   0 Cb (R) := f ∈ C (R) : sup |f | < ∞ R 70 Khi dễ thấy (C0b (R), ∥.∥∞ ) không gian Banach Giả sử f : R → R hàm định nghĩa ( − |x| x ≤ f (x) = x > Giả sử h : R → R, (h = 1, 2, ) định nghĩa fh (x) := f (x + h) giả sử F := {fh : h ∈ N} Khi dễ thấy họ hàm F ⊂ C0b (R) bị chặn liên tục Tuy nhiên F không compact (C0b (R), ∥.∥∞ ) Thật vậy, ý ∃f (x) := lim fh (x) = 0, ∀x ∈ R ∥fh − f ∥∞ = 1, ∀h h→∞ Điều có nghĩa dãy hội tụ (fh )h (C0b (R), ∥.∥∞ ) khơng chấp nhận Tính tách (C0b (R), ∥.∥∞ ) Định nghĩa 24 Giả sử (X, τ ) khơng gian topo Khi (X, τ ) gọi thỏa mãn tiên đề hai tính đếm có sở đếm cho topo τ Định lý 33 Giả sử (X, d) khơng gian metric Khi (i) (X, d) tách thỏa tiên đề thứ hai tính đếm (ii) Mỗi khơng gian (X, d) tách (X, d) tách (iii) Giả sử (Y, ϱ) không gian metric khác T : (X, d) → (Y, ϱ) đồng cấu Khi (X, d) tách (Y, ϱ) tách Nhận xét Phải nhấn mạnh mục quan trọng giải tích cho mục xấp xỉ Nghĩ số hợp lý chứng minh định lý Ascoli Cuối phải nhớ lại tiêu chuẩn để kiểm tra không gian topo không gian tách 71 Mệnh đề 29 Giả sử (X, τ ) không gian topo Giả sử tồn họ {Ui : i ∈ I} thỏa mãn (i) Ui tập mở với i ∈ I ; (ii) Ui ∪ Uj = ∅ i ̸= j (iii) I khơng đêm Khi (X, τ ) không tách Bài tập Giả sử l∞ := {x ∈ RN : sup |x(n)| < ∞} n∈N trang bị chuẩn ∥x∥l∞ := sup |x(n)| n∈N Hãy (l∞ , ∥.∥l∞ ) không gian Banach không tách Gợi ý: Giả sử I = 2N := {x : N → {0, 1}} ⊂ l∞  Ux = Bl∞ x,  n := y ∈ l∞ : ∥y − x∥l∞ < o x ∈ I Khi ta xét họ {Ux : x ∈ I} sử dụng mệnh đề 27 Định lý 34 Giả sử K ⊂ Rn tập compact Khi (C0 (K), ∥.∥∞ ) tách Chúng ta chứng minh cho trường hợp n = 1, K = [a, b] Trước ta cần phải nêu kết xấp xỉ quan trọng tốn giải tích Định lý 35 (Định lý xấp xỉ Weierstrass) Giả sử f ∈ C([a, b]) Khi tồn dãy hàm đa thức ph : R → R, (h = 1, 2, ) với hệ số thực, nghĩa ph ∈ R[x], thỏa mãn ph → f [a, b] 72 Nhận xét 10 Bởi đa thức hàm đơn giản nhất, máy tính trực tiếp đánh giá đa thức Định lý có ý nghĩa lý thuyết thực tiễn Đặc biệt nội suy đa thức Chứng minh định lý 29 Chúng ta cần kết n = K = [a, b] Giả sử D tập hợp hàm đa thức với hệ số hữu tỷ, nghĩa là, D := Q[x] Ta biết D đếm Chứng minh D trù mật C0 ([a, b]), ∥.∥∞ ) tức ∀f ∈ C0 ([a, b]), ∀ϵ > 0, ∃q ∈ D cho ∥f − q∥∞ ≤ ϵ Từ định lý xấp xỉ Weierstrass, với ϵ > 0, tồn p ∈ R[x], nghĩa là, p(x) = αm xm + · · · + α1 x1 + α0 , với αi ∈ R, i = 0, 1, , m thỏa mãn ∥f − p∥∞ < ϵ (26) Định nghĩa q(x) := βm xm + · · · + β1 x1 + β0 với βi ∈ Q ϵ |αi − βi | < Pm i=0 c i , i = 0, 1, , m, c := max{|a|, |b|} Khi |p(x) − q(x)| ≤ m X i=0 ϵ |αi − βi ||x|i ≤ , ∀x ∈ [a, b] (27) Do đó, từ (49) (50) ta ∥f − q∥∞ ≤ ∥f − p∥∞ + ∥p − q∥∞ ≤ 23 ϵ ϵ + = ϵ 2 Độ giao hoán tương đối nhóm Ta bắt đầu định nghĩa độ giao hốn nhóm Định nghĩa 25 Cho G nhóm H nhóm G Ký hiệu C = {(h, g) ∈ H × G | hg = gh} 73 Độ giao hốn tương đối nhóm H G, ký hiệu Pr(H, G), định nghĩa sau Pr(H, G) = |C| |H||G| Từ Định nghĩa 11 ta thấy Pr(G, G) = Pr(G), Pr(G) độ giao hốn nhóm G định nghĩa Định nghĩa ?? Sau số ví dụ độ giao hốn tương đối số nhóm Ví dụ Xét nhóm nhị diện D3 cho phần tử sinh hệ thức xác định sau D3 = ⟨r, s | r3 = s2 = 1, s−1 rs = r−1 ⟩ Khi D3 = {1, r, r2 , s, rs, r2 s} phép nhân phần tử D3 cho bảng sau • 1 r r2 s rs r2 s r r2 s rs r2 s r r r2 r2 r2 r rs r2 s s r s s rs s s rs r2 s r r2 r2 s r2 s s rs r r2 r rs rs r2 s s r2 Bằng cách đếm trực tiếp theo Định nghĩa 11 ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨s⟩ H = ⟨rs⟩ H = ⟨r2 s⟩ H = D3 |C| 12 8 18 Pr(H, D3 ) 3 3 Ví dụ Xét nhóm nhị diện D4 cho phần tử sinh hệ thức xác định sau D4 = ⟨r, s | r4 = s2 = 1, s−1 rs = r−1 ⟩ Khi D4 = {1, r, r2 , r3 , s, rs, r2 s, r3 s} phép nhân phần tử D4 cho bảng sau 74 • 1 r r2 r3 s rs r2 s r3 s r r2 r3 s rs r2 s r3 s r r r2 r3 r2 r2 r3 r3 r3 1 r r2 s r3 s s rs r r2 rs r2 s r3 s s r s s rs r2 s s s rs r2 s r3 s rs rs r2 s r3 s s r3 r r2 r3 r r2 r2 s r2 s r3 s s rs r2 r3 r3 s r3 s s rs r2 s r r2 r3 r Bằng cách đếm trực tiếp theo Định nghĩa 11 ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨r2 , s⟩ H = ⟨r2 , rs⟩ H = ⟨s⟩ |C| 24 24 24 12 Pr(H, D4 ) 4 4 Các nhóm H = ⟨rs⟩ H = ⟨r2 s⟩ H = ⟨r3 s⟩ H = ⟨r2 ⟩ H = D4 |C| 12 12 12 16 40 Pr(H, D4 ) 4 Ví dụ Xét nhóm quaternion Q8 cho phần tử sinh hệ thức xác định sau Q8 = ⟨r, s | r4 = 1, s2 = r2 , s−1 rs = r−1 ⟩ Khi Q8 = {1, r, r2 , r3 , s, rs, r2 s, r3 s} phép nhân phần tử Q8 cho bảng sau

Ngày đăng: 03/07/2023, 11:33

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w