Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 98 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
98
Dung lượng
548,13 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: MỘT SỐ VẤN ĐỀ VỀ LÝ THUYẾT SỐ NGUYÊN TỐ LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Mục tiêu đề tài Dựa vào kĩ thuật Poletsky để mở rộng nguyên lý cực tiểu cho lớp không gian lồi địa phương đầy theo dãy Phương pháp nghiên cứu Luận văn nghiên cứu dựa phương pháp: - Nghiên cứu tài liệu liên quan đến đề tài, bao gồm tài liệu kinh điển báo mới, tổng hợp trình bày báo cáo tổng quan - Tham khảo, trao đổi với cán hướng dẫn - Tham khảo số báo đăng tạp chí khoa học Ý nghĩa khoa học thực tế đề tài Đề tài có giá trị mặt lý thuyết Có thể sử dụng luận văn tài liệu tham khảo cho sinh viên ngành toán đối tượng quan tâm đến kiến thức hàm đa điều hịa 284 2 Tính chất ∆U lớp vành Một phần tử r ∈ R gọi ∆-clean r biểu diễn thành r = e + t e phần lũy đẳng R t ∈ ∆(R) Vành R gọi ∆-clean phần tử R ∆-clean Chú ý, phẩn tử ∆-clean clean Mệnh đề Các điều kiện sau tương đương vành R (1) R ∆U -vành; (2) Tất phần tử clean R ∆-clean Chứng minh (1) ⇒ (2) Giả sử R ∆U -vành Lấy r ∈ R clean, r = e + u Vì R ∆U -vành, ta có u = + a với a ∈ ∆(R) Lưu ý − 2e ∈ U (R) = + ∆(R), 2e ∈ ∆(R) Khi 2e + a ∈ ∆(R) r = e + + a = (1 − e) + (2e + a) biểu diễn ∆-clean r (2) ⇒ (1) Lấy u ∈ U (R) Khi u clean nên theo giả thiết u ∆-clean Giả sử u = e + a biểu diễn ∆-clean u với a ∈ ∆(R) e lũy đẳng Ta có = eu−1 + au−1 suy eu−1 = − au−1 khả nghịch R Vì e = Điều nghĩa u = + a ∈ + ∆(R) U (R) = + ∆(R) Định lý Cho R vành, điều kiện sau tương đương (1) R clean ∆U -vành; (2) Nếu a ∈ R thỏa mãn a − a2 ∈ ∆(R), tồn tử phẩn tử lũy đẳng e ∈ R cho a − e ∈ ∆(R); (3) R ∆-clean ∆U -vành; (4) R vành ∆-clean Chứng minh (1) ⇔ (3) ⇔ (4) suy từ Mệnh đề ?? (1) ⇒ (2) Giả sử R clean ∆U -vành Khi đó, a ∈ R a − e ∈ ∆(R), với e lũy linh Tiếp theo ta chứng minh a − a2 ∈ ∆(R) Theo Mệnh đề ??, giả sử a = e + j biểu diễn ∆-clean a Khi a − a2 = (j − j ) − (ej + je) Chú ý j − j ∈ ∆(R) 2e ∈ ∆(R) Bây ta chứng minh ej + je ∈ ∆(R) Thậy vậy, ta có [ej(1 − e)]2 = = [(1 − e)je]2 theo Mệnh đề ?? ta ej − eje = ej(1 − e) ∈ ∆(R) je − eje = (1 − e)je ∈ ∆(R) Suy je − ej ∈ ∆(R) Vì ej + je = 2ej + (je − ej) ∈ ∆(R) (2) ⇒ (3) suy từ định nghĩa Rõ ràng Hệ ?? suy từ Định lý ?? Nghĩa vành đơn vị thỏa mãn tính chất ∆(R) = Cho vành R, phần tử a ∈ R gọi phần tử quy mạnh tồn x ∈ R thỏa mãn a = a2 x Một vành mà phần tử phần tử quy mạnh gọi vành quy mạnh Định lý Cho R vành Khi đó, điều kiện sau tương đương (1) R ∆U -vành quy; (2) R ∆U -vành quy mạnh; (3) R ∆U -vành quy đơn vị; (4) R thỏa mãn tính chất x2 = x với x ∈ R (R vành Boolean) Chứng minh (1) ⇒ (2) Từ R quy, iđêan phải khác khơng chứa phần tử lũy đẳng khác không Ta R vành rút gọn R aben (nghĩa là, phần tử lũy đẳng R tâm) Giả sử R vành rút gọn, tồn phần tử khác khơng a ∈ R thỏa mãn a2 = Theo Định lý ??, có phần tử lũy đẳng e ∈ RaR thỏa mãn eRe ∼ = M2 (T ), T vành không tầm thường Theo Mệnh đề ?? M2 (T ) ∆U -vành, điều mâu thuẫn Định lý ?? (2) ⇒ (3) Hiển nhiên (3) ⇒ (4) Cho x ∈ R Khi x = ue u ∈ U (R) e = e ∈ R Do R ∆U -vành, nên có u = hay y x = e, x lũy đẳng Chúng ta kết luận R vành Boolean (4) ⇒ (1) Hiển nhiên Một vành R gọi nửa quy R/J(R) quy phần tử lũy đẳng nâng lên modulo J(R) Vành R gọi vành biến đổi phần tử a ∈ R, tồn e2 = e ∈ aR thỏa mãn − e ∈ (1 − a)R Hồn tồn tương tự, có kết sau: Định lý Cho R vành Khi đó, điều kiện sau tương đương (1) R ∆U -vành nửa quy; (2) R ∆U -vành biến đổi; (3) R/J(R) vành Boolean Hệ Cho R ∆U -vành Khi đó, điều kiện sau tương đương (1) R vành nửa quy; (2) R vành biến đổi; (3) R vành clean Không gian hàm khả vi liên tục C1 (Ω) Định nghĩa Cho Ω ⊂ Rn tập mở (i) Cho f : Ω → R i = 1, , n, ta nói f liên tục khả vi cấp ∂f = Di f ∈ C0 (Ω)) có tồn g ∈ C0 (Ω) thỏa mãn ∂xi ∂f ∂f g= = Di f Ω, = Di f hiểu lớp đạo hàm ∂xi ∂xi riêng thứ i f i Ω (∃ (i) C (Ω) := ∂f f ∈ C (Ω) : ∃ ∈ C0 (Ω), ∀i = 1, , n ∂xi (iii) Cho f C1 (Ω) Ta biểu thị ∥f ∥C1 = ∥f ∥C1 ,Ω = X ∥Dα f ∥∞,Ω |α|≤1 ∥.∥C1 gọi chuẩn C1 Định lý Cho Ω ⊂ Rn tập mở, bị chặn Khi (C1 (Ω), ∥.∥C1 ) khơng gian Banach vô hạn chiều, không không gian Hilbert Chứng minh Ta xét trường hợp n = Ω = (a, b) Đầu tiên ta phải đầy đủ khơng khơng gian Hilbert Xét ánh xạ tuyến tính T : (C1 (Ω), ∥.∥C1 ) → (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ), T (f ) := (f, f ′ ) (1) ∥f, g∥C0 (Ω)×C0 (Ω) := ∥f ∥∞ + ∥g∥∞ (f, g) ∈ C0 (Ω) × C0 (Ω) Chú ý T đẳng cự, nghĩa ∥T (f )∥C0 (Ω)×C0 (Ω) = ∥f ∥C1 ∀f ∈ C1 (Ω) Đặc biệt, ta định nghĩa M := T (C1 (Ω)), ánh xạ T : (C1 (Ω), ∥.∥C1 ) → (M, ∥.∥C0 (Ω)×C0 (Ω) ) đẳng cự Bài tập Cho (E, ∥.∥E ) (F, ∥.∥F ) khơng gian Banach Cho E × F với chuẩn ∥(x, y)∥F = ∥x∥E + ∥y∥F Khi (E × F, ∥(x, y)∥E×F ) không gian Banach Do đó, ta phải M đóng (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ), để hoàn thành chứng minh Giả sử ((fh , fh′ ))h ⊂ M dãy mà lim ∥(fh − f, fh′ − g)∥C0 (Ω)×C0 (Ω) = h→∞ (2) với (f, g) ∈ C0 (Ω) × C0 (Ω chứng minh ∃f ′ = g [a, b] (3) Theo (23), ta fh → f fh′ → g [a, b] hội tụ theo điểm Theo định lý tích phân cổ điển Z x fh′ (t)dt fh (x) − fh (a) = ∀x ∈ [a, b], ∀h, a ta lấy qua giới hạn, h → ∞, đồng thức trước theo (24) Bài tập Chỉ (C1 (Ω), ∥.∥C1 ) không gian Banach, X ∥Dα u∥∞ ∥u∥C1 := |α|≤1 Ω ⊂ Rn tập mở bị chặn C1 (Ω) khơng gian vector vơ hạn chiều chứa tập hợp đa thức C1 (Ω) không không gian Hilbert Tính compact (C1 (Ω), ∥.∥C1 ) Định lý Cho F ⊂ C1 (Ω) Fi := {Di f : f ∈ F}, i = 1, , n Khi F compact (C1 (Ω), ∥.∥C1 ) F Fi , với i = 1, , , n (i) Bị chặn (C0 (Ω), ∥.∥C0 ); (ii) đóng (C0 (Ω), ∥.∥C0 ); (iii) liên tục Ω Chứng minh Ta xét trường hợp n = Ω = (a, b) Sự cần thiết: Chỉ rằng, F compact (C1 (Ω), ∥.∥C1 ), (i), (ii) (iii) Cho T : (C1 (Ω), ∥.∥C1 ) → (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ) ánh xạ định nghĩa (22) Trong chứng minh định lý 34 ta tồn T −1 : (M, ∥.∥C0 (Ω)×C0 (Ω) ) → (C1 (Ω), ∥.∥C1 ) liên tục Do F compact (C1 (Ω), ∥.∥C1 ) tương đương với T (F) compact (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ) Giờ ta quan sát, xác biểu thị πi : C0 (Ω) × C0 (Ω) → C0 (Ω), (i = 1, 2) phép chiếu không gian tọa độ, nghĩa πi (f1 , f2 ) = fi (f1 , f2 ) ∈ C0 (Ω) × C0 (Ω), πi liên tục Từ F compact (C1 (Ω), ∥.∥C1 ), T (F) compact (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ) Điều có nghĩa π1 (T (F)) = F π2 (T (F)) = F ′ compact (C0 (Ω), ∥.∥C0 ) Theo định lý Arzelà - Ascoli ta (i), (ii), (iii) Tính đầy đủ: Chứng minh Bài tập F compact (C1 (Ω), ∥.∥C1 ), cho trước (i), (ii) (iii) Nhận xét Cho F = BC1 ([a,b]) := {f ∈ C1 ([a, b]) : ∥f ∥C1 = ∥f ∥∞ + ∥f ′ ∥∞ ≤ 1} Khi F khơng compact (C1 ([a, b]), ∥.∥C1 ) theo định lý Riesz’s (nhớ C1 ([a, b]) không gian vô hạn chiều) Nhưng F compact tương đối (C0 ([a, b]), ∥.∥∞ ), nghĩa là, ∀(fh )h ⊂ F tồn (fhk )k f ∈ C0 ([a, b]) thỏa mãn lim ∥fhk − f ∥∞ = k→∞ Tính tách (C1 (Ω), ∥.∥C1 ) Định lý (C1 (Ω), ∥.∥C1 ) tách Chứng minh Cho T : (C1 (Ω), ∥.∥C1 ) → (M, ∥.∥C0 (Ω)×C0 (Ω) ) ánh xạ định nghĩa (22) Vì T đồng phơi tính tách được bảo tồn qua phép đồng phơi, ta cần khơng gian (M, ∥.∥C0 (Ω)×C0 (Ω) ) khơng gian metric (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ) tách Điều tính tách (C0 (Ω), ∥.∥∞ ) (Định lý ??), tập từ tính chất tách qua giới hạn đến không gian (Xem định lý ?? (ii)) Không gian hàm Lipschitz Lip(Ω) Định nghĩa Cho A ⊂ Rn (i) Hàm f : A ⊂ Rn → R gọi "Lipschitz" tồn số L>0 thỏa |f (x) − f (y)| ≤ L|x − y|, ∀x, y ∈ A Tập hợp hàm Lipschitz f : A ⊂ Rn → R ký hiệu Lip(A) (ii) Cho f ∈ Lip(A) Một số không âm |f (x) − f (y)| Lip(f ) = Lip(f, A) := sup : x, y ∈ A, x ̸= y |x − y| gọi số Lipschitz f Nhận xét Định nghĩa hàm Lipschitz khái niệm metric Thật vậy, (X, d) (Y, ϱ) không gian metric, ánh xạ f : X → Y gọi Lipschitz có số L > thỏa mãn ϱ(f (x), f (y)) ≤ Ld(x, y), ∀x, y ∈ X Mệnh đề Cho A ⊂ Rn f ∈ Lip(A) (i) f liên tục A; r 0⩽l ⩽ −1 k Khi X X |CDn (x)| = |CDn (1)| + |CDn (rkl )| 1⩽l⩽ nk −1 x∈Rk Ta xét hai trường hợp n sau Trường hợp 1: n lẻ Theo Mệnh đề ta có X kl |CDn (r )| = 1⩽l⩽ nk −1 Từ suy X |CDn (x)| = |Dn | + x∈Rk n k n k − |R1 | − |R1 | = 2n + n k −1 n= n(n + k) k 32 Áp dụng Mệnh đề ?? ta có Pr(Rk , Dn ) = X n+k n+k |CDn (x)| = n n = |Rk ||Dn | k 2n 2n x∈Rk k Trường hợp 2: n chẵn Ta xét hai trường hợp k n Trường hợp 2a: k ∤ Khi đó, theo Mệnh đề ta có X kl |CDn (r )| = n k 1⩽l⩽ nk −1 Từ suy X |CDn (x)| = |Dn | + n x∈Rk k − |R1 | − |R1 | = 2n + n k −1 n= n(n + k) k Áp dụng Mệnh đề ??, ta có X 1 n+k n+k |CDn (x)| = n n = |Rk ||Dn | k 2n 2n x∈Rk k n Trường hợp 2b: k | Khi đó, theo Mệnh đề ta có n X X n |CDn (rkl )| = |Dn |+ − |R1 | |CDn (rkl )| = CDn r + k n n Pr(Rk , Dn ) = 1⩽l⩽ k −1 1⩽l⩽ k −1 n l̸= 2k Từ suy X |CDn (x)| = |Dn | + |Dn | + x∈Rk = 2n + 2n + n k n k − |R1 | −2 n= n(n + 2k) k Áp dụng Mệnh đề ?? ta có Pr(Rk , Dn ) = X 1 n(n + 2k) n + 2k |CDn (x)| = n = |Rk ||Dn | k 2n 2n x∈Rk k 33 Vậy ta có điều phải chứng minh (ii) Giả sử H = Tl với ⩽ l ⩽ n − Theo Mệnh đề 8, |Tl | = Tl = ⟨rl s⟩ = {1, rl s} Theo Mệnh đề ??, ta có Pr(Tl , Dn ) = X 1 |CDn (x)| = (|CDn (1)| + |CDn (rl s)|) |Tl ||Dn | · 2n x∈Tl = (|Dn | + |CDn (rl s)|) 4n Ta áp dụng Mệnh đề cho hai trường hợp n sau Nếu n lẻ |CDn (rl s)| = |Tl | = Từ suy n+1 (2n + 2) = 4n Pr(Tl , Dn ) = Nếu n chẵn, giả sử m = n |CDn (rl s)| = |Um,l | = 2n 2n = = (n, m) m Từ suy Pr(Tl , Dn ) = n+2 (2n + 4) = 4n 2n Vậy ta có điều phải chứng minh (iii) Giả sử H = Ui,j với i|n, ⩽ i ⩽ n − 1, ⩽ j ⩽ i − Theo Mệnh đề ta có |Ui,j | = Do Ui,j = ⟨ri , rj s⟩ = Khi X |CDn (x)| = |CDn (1)| + x∈Ui,j 2n 2n = (n, i) i n ril , ril+j s ⩽ l ⩽ − i X 1⩽l⩽ n −1 i |CDn (ril )| + X 0⩽l⩽ n −1 i |CDn (ril+j s)| 34 Ta xét hai trường hợp n Trường hợp 1: n lẻ Khi đó, theo Mệnh đề ta có n n X il |CDn (r )| = n 1⩽l⩽ −1 i X 0⩽l⩽ Từ suy X − |R1 | = n |CDn (ril+j s)| = n −1 i |CDn (x)| = 2n + n x∈Ui,j Áp dụng Mệnh đề ?? ta có X Pr(Ui,j , Dn) = i |Ui,j ||Dn | n i i −1 , n 2n |Til+j | = i i −1 + |CDn (x)| = x∈Ui,j 2n n(n + i + 2) = i i n(n + i + 2) n+i+2 = 2n i 4n 2n i Trường hợp 2: n chẵn Ta xét hai trường hợp i n Trường hợp 2a: i ∤ Khi đó, theo Mệnh đề ta có X |CDn (ril )| = 1⩽l⩽ ni −1 X n i |CDn (ril+j s)| = 0⩽l⩽ ni −1 Từ suy X |CDn (x)| = 2n + n x∈Ui,j Áp dụng Mệnh đề ?? ta có X Pr(Ui,j , Dn) = |Ui,j ||Dn | − |R1 | = n x∈Ui,j n i n i −1 , 4n n