1. Trang chủ
  2. » Luận Văn - Báo Cáo

Các nhóm cn hữu hạn

93 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 93
Dung lượng 544,13 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: CÁC NHÓM CN HỮU HẠN LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Lý thuyết ổn định đóng vai trị quan trọng tốn học nói chung, lý thuyết phương trình vi phân hay lý thuyết điều khiển Trong luận văn chúng tơi khảo sát tính ổn định vững hệ động lực tuyến tính, cụ thể hệ tuyến tính rời rạc, hệ tuyến tính rời rạc có chậm hệ tuyến tính khơng dừng không gian vô hạn chiểu 180 2 ĐẠI SỐ VÀ SIGMA ĐẠI SỐ Định nghĩa Cho tập X tùy ý khác rỗng Ta gọi P (X) tập hợp tất tập X Gọi A∗ họ tập X A∗ gọi đại số tập X A∗ thỏa ba tiên đề sau: X ∈ A∗ ∀A ∈ A∗ ⇒ Ac ∈ A∗ (Đóng kín với phép tốn lấy phần bù) ∀A, B ∈ A∗ , A ∪ B ∈ A∗ (Đóng kín với phép tốn hợp) Định nghĩa Cho tập X tùy ý khác rỗng Ta gọi P (X) tập hợp tất tập X Gọi A∗ họ tập X A∗ gọi σ - đại số tập X A∗ thỏa mãn ba tiên đề sau: X ∈ A∗ ∀A ∈ A∗ ⇒ Ac ∈ A∗ (Đóng[kín với phép toán lấy phần bù) ∀A1 , A2 , , An , ∈ A∗ ⇒ Ai ∈ A∗ i≥1 Dựa vào hai định nghĩa ta có nhận xét Nhận xét Khái niệm "đại số tập tập X " khái niệm "σ - đại số tập X " gần với Điều thể qua giống hai tiên đề Sự khác biệt hai khái niệm tiên đề số Đối với "đại số tập X hợp "HỮU HẠN" phần tử thuộc A∗ phần tử thuộc A∗ Còn "σ - đại số tập X " hợp "VÔ HẠN" phần tử A∗ phần tử thuộc A∗ Mệnh đề Cho X tập tùy ý khác rỗng Gọi A∗ "đại số tập X " Khi đó: ∅ ∈ A∗ Hợp hữu hạn phần tử thuộc A∗ phần tử thuộc A∗ n [ ∗ Hay A1 , A2, , An ∈ A ⇒ Ai ∈ A∗ i=1 Giao hữu hạn phần tử thuộc A∗ phần tử thuộc A∗ (Đóng kín với phép toán giao) n \ ∗ Hay A1 , A2, , An ∈ A ⇒ Ai ∈ A∗ i=1 Đóng kín với phép tốn hiệu nghĩa là: ∀A, B ∈ A∗ ⇒ A\B ∈ A∗ Đóng kín với phép tốn lấy hiệu đối xứng nghĩa là: ∀A, B ∈ A∗ ⇒ A△B ∈ A∗ Định lý Cho tập X khác rỗng Giả sử X có phép tốn α Phép tốn α gọi đóng kín với tập X ta lấy hai phần tử thuộc X , thao tác qua phép toán ta phần tử phần tử thuộc X Để dễ hiểu ta lấy ví dụ đơn giản Trên tập N có phép tốn cộng thơng thường Ta lấy hai phần tử thuộc N (lấy hai số tự nhiên) Dễ thấy cộng hai số tự nhiên số tự nhiên số tự nhiên thuộc N Như ta nói N đóng kín với phép cộng Trong trường hợp tổng qt tập X Tiếp theo ta chứng minh ý mệnh đề Chứng minh: Vì X ∈ A∗ (Tiên đề 1) nên X c = ∅ ∈ A∗ (Tiên đề 2) Ta quy nạp dựa theo tiên đề có điều phải chứng minh ∀A, B ∈ A∗ ta có Ac , B c ∈ A∗ Khi (Ac ∪ B c ) ∈ A∗ ⇒ [(Ac ∪ B c )]c ∈ A∗ hay A ∩ B ∈ A∗ Từ ta quy nạp lên giao hữu hạn phần tử có điều phải chứng minh Chưa chứng minh Chưa chứng minh Cấu trúc nhóm số nhóm hữu hạn Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ Ký hiệu Rk , Tl , Ui,j nhóm Dn có dạng sau Rk = ⟨rk ⟩, Tl = ⟨rl s⟩, Ui,j = ⟨ri , rj s⟩ với ⩽ k ⩽ n, ⩽ l ⩽ n − 1, ⩽ i ⩽ n − 1, ⩽ j ⩽ n − Sau số tính chất nhóm nhị diện, xem [?] Mệnh đề Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ Khi (i) Rk nhóm xiclíc cấp n , d = (n, k), với ⩽ k ⩽ n; d (ii) Tl nhóm xiclíc cấp với ⩽ l ⩽ n − 1; (iii) Ui,j nhóm nhị diện cấp 2n , d = (n, i), với i|n, ⩽ i ⩽ n− d ⩽ j ⩽ n − Mệnh đề Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ Khi (i) Nếu n lẻ CDn (ri ) = R1 , CDn (1) = Dn , CDn (rj s) = Tj với ⩽ i ⩽ n − 1, ⩽ j ⩽ n − 1; (ii) Nếu n chẵn CDn (1) = Dn , CDn (rm ) = Dn , CDn (ri ) = R1 , CDn (rj s) = Um,j n với m = , ⩽ i ⩽ n − 1, i ̸= m, ⩽ j ⩽ n − Mệnh đề Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ 3, H nhóm nhóm Dn Khi H nhóm sau Rk = ⟨rk ⟩, Tl = ⟨rl s⟩, Ui,j = ⟨ri , rj s⟩ với k|n, ⩽ k ⩽ n, ⩽ l ⩽ n − 1, i|n, ⩽ i ⩽ n − 1, ⩽ j ⩽ i − Cho nhóm quaternion suy rộng Q4n = ⟨r, s | r2n = 1, s2 = rn , s−1 rs = r−1 ⟩ với n ⩾ Ký hiệu Rk , Ui,j nhóm Q4n có dạng sau Rk = ⟨rk ⟩, Ui,j = ⟨ri , rj s⟩ với ⩽ k ⩽ 2n, ⩽ i ⩽ 2n, ⩽ j ⩽ 2n − Sau số tính chất nhóm quaternion suy rộng, xem [?] Mệnh đề Cho nhóm quaternion suy rộng Q4n với n ⩾ Khi 2n , d = (2n, k), với ⩽ k ⩽ 2n; d 4n , d = (n, i), (ii) Ui,j nhóm quaternion suy rộng cấp d với ⩽ i ⩽ 2n, ⩽ j ⩽ 2n − (i) Rk nhóm xiclíc cấp Mệnh đề Cho nhóm Quaternion suy rộng Q4n với n ⩾ Khi CQ4n (1) = CQ4n (rn ) = Q4n , CQ4n (ri ) = R1 , CQ4n (rj s) = Un,j với ⩽ i ⩽ 2n − 1, i ̸= n, ⩽ j ⩽ 2n − Mệnh đề Cho nhóm quaternion suy rộng Q4n với n ⩾ 2, H nhóm Q4n Khi H nhóm sau Rk = ⟨rk ⟩, Ui,j = ⟨ri , rj s⟩ với k|2n, ⩽ k ⩽ 2n, ⩽ i ⩽ n, i|n, ⩽ j ⩽ i − Cho nhóm giả nhị diện n n−1 SD2n = ⟨r, s | r2 = s2 = 1, s−1 rs = r2 −1 ⟩ với n ⩾ Ký hiệu Rk , Tl , Ui,j nhóm nhóm giả nhị diện SD2n có dạng sau Rk = ⟨rk ⟩, Tl = ⟨rl s⟩, Ui,j = ⟨ri , rj s⟩ với ⩽ k ⩽ 2n , ⩽ l ⩽ 2n − 1, ⩽ i ⩽ 2n − 1, ⩽ j ⩽ 2n − Sau số tính chất nhóm giả nhị diện, xem [?] Mệnh đề Cho nhóm giả nhị diện SD2n với n ⩾ Khi (i) Rk nhóm xiclíc cấp 2n d = (2n , k), với ⩽ k ⩽ 2n ; d (ii) Tl nhóm xiclíc cấp l chẵn, cấp l lẻ với ⩽ l ⩽ 2n − 1; (iii) Ui,j nhóm giả nhị diện i lẻ với ⩽ i ⩽ 2n − 1, ⩽ j ⩽ 2n − 1; Ui,j nhóm nhị diện i chẵn j chẵn, nhóm quaternion tổng quát i chẵn j lẻ với ⩽ i ⩽ 2n − 1, i ̸= 2n−1 , ⩽ j ⩽ 2n − 1; Với i = 2n−1 , Ui,j nhóm xiclíc cấp j lẻ, Ui,j ∼ = C2 × C2 j chẵn 2n+1 Trong tất trường hợp nhóm Ui,j có cấp d n d = (2 , i) Mệnh đề Cho nhóm giả nhị diện SD2n với n ⩾ Khi CSD2n (1) = CSD2n (r2 n−1 ) = SD2n , CSD2n (ri ) = R1 , CSD2n (rj s) = U2n−1 ,j với ⩽ i ⩽ 2n − 1, i ̸= 2n−1 , ⩽ j ⩽ 2n − Mệnh đề 10 Cho nhóm giả nhị diện SD2n với n ⩾ 3, H nhóm SD2n Khi nhóm H SD2n nhóm sau (i) Rk = ⟨rk ⟩ với ⩽ k ⩽ 2n ; (ii) Tl = ⟨rl s⟩ với ⩽ l ⩽ 2n − l chẵn, ⩽ l ⩽ 2n−1 − l lẻ; (iii) Ui,j với ⩽ i ⩽ 2n−2 , i|2n , ⩽ j ⩽ i−1, U2n−1 ,j với ⩽ j ⩽ 2n−1 − 1, j chẵn Không gian hàm khả vi liên tục C1 (Ω) Định nghĩa Cho Ω ⊂ Rn tập mở (i) Cho f : Ω → R i = 1, , n, ta nói f liên tục khả vi cấp ∂f = Di f ∈ C0 (Ω)) có tồn g ∈ C0 (Ω) thỏa mãn ∂xi ∂f ∂f = Di f Ω, = Di f hiểu lớp đạo hàm g= ∂xi ∂xi riêng thứ i f i Ω (∃ (i) C (Ω) :=   ∂f f ∈ C (Ω) : ∃ ∈ C0 (Ω), ∀i = 1, , n ∂xi (iii) Cho f C1 (Ω) Ta biểu thị ∥f ∥C1 = ∥f ∥C1 ,Ω = X ∥Dα f ∥∞,Ω |α|≤1 ∥.∥C1 gọi chuẩn C1 Định lý Cho Ω ⊂ Rn tập mở, bị chặn Khi (C1 (Ω), ∥.∥C1 ) không gian Banach vô hạn chiều, không không gian Hilbert Chứng minh Ta xét trường hợp n = Ω = (a, b) Đầu tiên ta phải đầy đủ không không gian Hilbert Xét ánh xạ tuyến tính T : (C1 (Ω), ∥.∥C1 ) → (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ), T (f ) := (f, f ′ ) (1) ∥f, g∥C0 (Ω)×C0 (Ω) := ∥f ∥∞ + ∥g∥∞ (f, g) ∈ C0 (Ω) × C0 (Ω) Chú ý T đẳng cự, nghĩa ∥T (f )∥C0 (Ω)×C0 (Ω) = ∥f ∥C1 ∀f ∈ C1 (Ω) Đặc biệt, ta định nghĩa M := T (C1 (Ω)), ánh xạ T : (C1 (Ω), ∥.∥C1 ) → (M, ∥.∥C0 (Ω)×C0 (Ω) ) đẳng cự Bài tập Cho (E, ∥.∥E ) (F, ∥.∥F ) không gian Banach Cho E × F với chuẩn ∥(x, y)∥E×F = ∥x∥E + ∥y∥F Khi (E × F, ∥(x, y)∥F ) khơng gian Banach Do đó, ta phải M đóng (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ), để hồn thành chứng minh Giả sử ((fh , fh′ ))h ⊂ M dãy mà lim ∥(fh − f, fh′ − g)∥C0 (Ω)×C0 (Ω) = h→∞ (2) với (f, g) ∈ C0 (Ω) × C0 (Ω chứng minh ∃f ′ = g [a, b] (3) Theo (26), ta fh → f fh′ → g [a, b] hội tụ theo điểm Theo định lý tích phân cổ điển Z x fh′ (t)dt fh (x) − fh (a) = ∀x ∈ [a, b], ∀h, a ta lấy qua giới hạn, h → ∞, đồng thức trước theo (27) Bài tập Chỉ (C1 (Ω), ∥.∥C1 ) khơng gian Banach, X ∥Dα u∥∞ ∥u∥C1 := |α|≤1 Ω ⊂ Rn tập mở bị chặn C1 (Ω) không gian vector vơ hạn chiều chứa tập hợp đa thức C1 (Ω) khơng khơng gian Hilbert Tính compact (C1 (Ω), ∥.∥C1 ) Định lý Cho F ⊂ C1 (Ω) Fi := {Di f : f ∈ F}, i = 1, , n Khi F compact (C1 (Ω), ∥.∥C1 ) F Fi , với i = 1, , , n (i) Bị chặn (C0 (Ω), ∥.∥C0 ); (ii) đóng (C0 (Ω), ∥.∥C0 ); (iii) liên tục Ω Chứng minh Ta xét trường hợp n = Ω = (a, b) Sự cần thiết: Chỉ rằng, F compact (C1 (Ω), ∥.∥C1 ), (i), (ii) (iii) Cho T : (C1 (Ω), ∥.∥C1 ) → (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ) ánh xạ định nghĩa (25) Trong chứng minh định lý 36 ta tồn T −1 : (M, ∥.∥C0 (Ω)×C0 (Ω) ) → (C1 (Ω), ∥.∥C1 ) 65 22 Các khái niệm Định nghĩa 27 Cho tập hợp R khác rỗng, R ta trang bị hai phép toán mà ta gọi phép cộng phép nhân thỏa mãn: R nhóm Abel với phép tốn cộng, R nửa nhóm với phép toán nhân phép toán nhân phân phối với phép toán cộng, nghĩa x(y + z) = xy + xz, (x + y)z = zx + yz với x, y, z ∈ R Phần tử trung hòa phép cộng ký hiệu (thường gọi phần tử không) Phần tử đơn vị phép nhân có ký hiệu Nếu vành có nhiều phần tử có đơn vị ̸= Định nghĩa 28 Tập A vành R gọi vành R A vành hai phép toán cộng nhân R (bao gồm tính đóng hai phép toán A) Định nghĩa 29 Ideal trái (phải) vành R vành A thỏa mãn điều kiện ∈ A(ar ∈ A), a ∈ A, r ∈ R Vành I R vừa ideal trái, vừa ideal phải gọi ideal vành R Cho I ideal vành R, ta ký hiệu R/I =: {r + I|r ∈ R} gọi tập thương R theo I Trên tập thương R/I ta xây dựng hai phép toán (x + I) + (y + I) = (x + y) + I, (x + I)(y + I) = (xy) + I với x, y ∈ R Định nghĩa 30 Tập thương R/I với hai phép toán xác định lập thành vành gọi vành thương R theo I 66 22.0.1 Định lý đồng cấu vành Định nghĩa 31 Cho R, R′ hai vành Ánh xạ f : R → R′ gọi đồng cấu vành f bảo tồn hai phép tốn cộng nhân R, nghĩa f (x + y) = f (x) + f (y), f (xy) = f (x)f (x), với x, y ∈ R 22.0.2 23 Một số kết liên quan Vô hạn chiều Định nghĩa 32 (i) Không gian vector thực E gọi vơ hạn chiều khơng hữu hạn chiều ta viết dimR E = ∞ (ii) Nếu dimR E = ∞, hệ B ⊂ E gọi sở (đại số Hamel) E hệ vector độc lập tuyến tính (nghĩa tập hữu hạn độc lập tuyến tính) B tập lớn tất tập chứa vector độc lập tuyến tính E Điều chứng minh theo nguyên lý cực đại Hausdorff, với không gian vector vơ hạn chiều E có sở B phần tử thuộc E biểu diễn (hữu hạn) theo tổ hợp tuyến tính phần tử thuộc B Khi dimR E = ∞, (E, ∥.∥E ) (E ′ , ∥.∥E ′ ) không thiết đẳng cấu topo Tuy nhiên, ta chứng minh vài tính chất topo (E ′ , ∥.∥E ′ ) tính tách giữ (E, ∥.∥E ) Định lý 28 (E, ∥.∥E ) tách (E ′ , ∥.∥E ′ ) tách Trước chứng minh định lý ta cần sử dụng điều kiện trù mật cho khơng gian định chuẩn, hệ định lý Hahn-Banach thứ hai hình học 67 Mệnh đề 42 (Điều kiện trù mật không gian con) Cho (E, ∥.∥E ) không gian định chuẩn Giả sử M ⊂ E không gian không trù mật (E, ∥.∥E ) lấy x0 ∈ E \ M Khi tồn f ∈ E ′ cho ⟨f, x⟩E ′ ×E = 0, ∀x ∈ M ⟨f, x0 ⟩E ′ ×E = Chứng minh Từ định lý Hahn-Banach thứ hai hình học, tồn g ∈ E ′ cho siêu phẳng H := {x ∈ E : ⟨g, x⟩E ′ ×E = α}, tách tập M {x0 } cách nghiêm ngặt, tức ⟨g, x⟩E ′ ×E < α < ⟨g, x0 ⟩E ′ ×E ∀x ∈ M (27) Từ M không gian con, theo (??), suy λ ⟨g, x⟩E ′ ×E < α, ∀λ ∈ R, ⟨g, x⟩E ′ ×E = 0, ∀x ∈ M (28) Do đó, ta xác định hàm f ∈ E ′ f := g, ⟨g, x0 ⟩E ′ ×E ta có điều phải chứng minh Chứng minh Định lý ?? Cho D := {fh : h ∈ N} ⊂ (E ′ , ∥.∥E ′ ), trù mật Với h có phần tử xh ∈ E với ∥xh ∥ = 1 |fh (x)| ≥ ∥fh ∥E ′ Cho e := spanQ {xh : h ∈ N} D := spanR {xh : h ∈ N}, D tức là, tập tất tổ hợp tuyến tính phần tử {xh : e đếm được, D không gian h ∈ N} với hệ số thực Khi D E theo cách xây dựng ˜ ⊂ (D, ∥.∥) trù mật D 68 Để đưa kết luận chứng minh, ta cần phải D ⊂ (D, ∥.∥) trù mật Theo phản chứng, D không trù mật, lấy x0 ∈ E \ D Khi từ mệnh đề ??, tồn f ∈ E ′ cho ⟨f, x⟩E ′ ×E = 0, ∀x ∈ D ⟨f, x0 ⟩E ′ ×E = Từ D trù mật, có dãy (fhk )k mà lim ∥fhk − f ∥E ′ = k→∞ Tuy nhiên, từ ∥xhk ∥ = 1, ∥fhk − f ∥E ′ ≥ |fhk (xhk ) − f (xhk )| = |f (xhk )| ≥ ∥fhk ∥E ′ ∀k ∈ N Do dó ∥fhk ∥E ′ → k → ∞, nghĩa f ≡ 0, mâu thuẫn với f (x0 ) = Vì D = E 24 Nhóm nhị diện Mệnh đề 43 Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ 3, H nhóm Dn Khi (i) Nếu H = Rk với k|n, ⩽ k ⩽ n Pr(H, Dn ) =  n+k   2n n n lẻ, n chẵn k ∤ ,   n + 2k n chẵn k | n 2n 69 (ii) Nếu H = Tl với ⩽ l ⩽ n − Pr(H, Dn ) =  n+1   n lẻ, 2n n   + n chẵn 2n (iii) Nếu H = Ui,j với i|n, ⩽ i ⩽ n − 1, ⩽ j ⩽ i − Pr(H, Dn ) =  n+i+2     4n         n lẻ, n+i+4 n n chẵn i ∤ , 4n n n + 2i + n chẵn i | 4n Chứng minh (i) Giả sử H = Rk với k|n, ⩽ k ⩽ n Theo Mệnh đề 46 ta có |Rk | = Do Rk = ⟨rk ⟩ =  n n = (n, k) k  n kl r 0⩽l ⩽ −1 k Khi X X |CDn (x)| = |CDn (1)| + |CDn (rkl )| 1⩽l⩽ nk −1 x∈Rk Ta xét hai trường hợp n sau Trường hợp 1: n lẻ Theo Mệnh đề 47 ta có X kl |CDn (r )| = 1⩽l⩽ nk −1 Từ suy X |CDn (x)| = |Dn | + x∈Rk n k  n k  − |R1 | − |R1 | = 2n + n k  −1 n= n(n + k) k 70 Áp dụng Mệnh đề 67 ta có Pr(Rk , Dn ) = X n+k n+k |CDn (x)| = n n = |Rk ||Dn | k 2n 2n x∈Rk k Trường hợp 2: n chẵn Ta xét hai trường hợp k n Trường hợp 2a: k ∤ Khi đó, theo Mệnh đề 47 ta có X kl |CDn (r )| = n k 1⩽l⩽ nk −1 Từ suy X |CDn (x)| = |Dn | + n x∈Rk k  − |R1 |  − |R1 | = 2n + n k  −1 n= n(n + k) k Áp dụng Mệnh đề 67, ta có X 1 n+k n+k |CDn (x)| = n n = |Rk ||Dn | k 2n 2n x∈Rk k n Trường hợp 2b: k | Khi đó, theo Mệnh đề 47 ta có  n X X n  |CDn (rkl )| = |Dn |+ − |R1 | |CDn (rkl )| = CDn r + k n n Pr(Rk , Dn ) = 1⩽l⩽ k −1 1⩽l⩽ k −1 n l̸= 2k Từ suy X |CDn (x)| = |Dn | + |Dn | + x∈Rk = 2n + 2n + n k n k  − |R1 |  −2 n= n(n + 2k) k Áp dụng Mệnh đề 67 ta có Pr(Rk , Dn ) = X 1 n(n + 2k) n + 2k |CDn (x)| = n = |Rk ||Dn | k 2n 2n x∈Rk k 71 Vậy ta có điều phải chứng minh (ii) Giả sử H = Tl với ⩽ l ⩽ n − Theo Mệnh đề 46, |Tl | = Tl = ⟨rl s⟩ = {1, rl s} Theo Mệnh đề 67, ta có Pr(Tl , Dn ) = X 1 |CDn (x)| = (|CDn (1)| + |CDn (rl s)|) |Tl ||Dn | · 2n x∈Tl = (|Dn | + |CDn (rl s)|) 4n Ta áp dụng Mệnh đề 47 cho hai trường hợp n sau Nếu n lẻ |CDn (rl s)| = |Tl | = Từ suy n+1 (2n + 2) = 4n Pr(Tl , Dn ) = Nếu n chẵn, giả sử m = n |CDn (rl s)| = |Um,l | = 2n 2n = = (n, m) m Từ suy Pr(Tl , Dn ) = n+2 (2n + 4) = 4n 2n Vậy ta có điều phải chứng minh (iii) Giả sử H = Ui,j với i|n, ⩽ i ⩽ n − 1, ⩽ j ⩽ i − Theo Mệnh đề 46 ta có |Ui,j | = Do Ui,j = ⟨ri , rj s⟩ = Khi X |CDn (x)| = |CDn (1)| + x∈Ui,j  2n 2n = (n, i) i

Ngày đăng: 05/07/2023, 18:25