1. Trang chủ
  2. » Luận Văn - Báo Cáo

Phương trình sóng với điều kiện biên không thuần nhất chứa tích phân giá trị biên

101 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 101
Dung lượng 529,52 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: PHƯƠNG TRÌNH SĨNG VỚI ĐIỀU KIỆN BIÊN KHƠNG THUẦN NHẤT CHỨA TÍCH PHÂN GIÁ TRỊ BIÊN LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Như biết, toán biên elliptic phương trình đạo hàm riêng xuất phát từ mơ hình tốn độc lập thời gian ngành khoa học kỹ thuật (xem [12]) Bên cạnh tốn biên elliptic mơ tả khơng gian Sobolev với số mũ thường W1,p(Ω), bắt gặp mơ hình tốn khơng nhất, chẳng hạn số toán liên quan đến chất lỏng điện biến (hay cịn gọi chất lỏng thơng minh) thường nhà tốn học mơ tả không gian Sobolev với số mũ biến thiên W1,p(x) (Ω), p(x) hàm số 191 2 So sánh không gian vector hữu hạn chiều không gian vector vô hạn chiều Chúng ta nhắc lại sơ qua điểm khác không gian vector hữu hạn chiều không gian vector vô hạn chiều từ cách nhìn đại số topo Định nghĩa (i) Cho E F hai khơng gian vector Ta nói E F đẳng cấu tuyến tính tồn ánh xạ T : E → F ánh xạ tuyến tính − từ E vào F (ii) Cho (E, ∥.∥E ) (F, ∥.∥F ) Ta nói (E, ∥.∥E ) (F, ∥.∥F ) đẳng cấu topo tồn ánh xạ liên tục T : E → F ánh xạ tuyến tính − với ánh xạ ngược liên tục T −1 : F → E (ii) Cho (E, ∥.∥E ) (F, ∥.∥F ) Ta nói (E, ∥.∥E ) (F, ∥.∥F ) đẳng cấu metric tồn ánh xạ T : E → F ánh xạ tuyến tính − từ E vào F với ∥T (x)∥F = ∥x∥E với x ∈ E Ta nhớ lại khái niệm không gian đối ngẫu không gian vector định chuẩn Định nghĩa Cho (E, ∥.∥) không gian vector định chuẩn Không gian đối ngẫu E ′ E không gian tuyến tính định nghĩa bởi: E ′ := {f : E → R : f tuyến tính liên tục} E ′ trang bị chuẩn ∥f ∥E ′ := |f (x)| < +∞ x∈E\{0} ∥x∥ sup Định lý (E ′ , ∥.∥E ′ ) không gian Banach Chứng minh Ta chứng minh dãy Cauchy E ′ hội tụ Giả sử {fn } dãy Cauchy E ′ , tức ∥fm − fn ∥E ′ → m, n → ∞, với x ∈ E ta có |fm (x) − fn (x)| = |(fm − fn )(x)| tính tuyến tính, hay |fm (x) − fn (x)| ≤ ∥fm − fn ∥E ′ ∥x∥E → m, n → ∞, {fn } dãy Cauchy E ′ Ta suy fn (x) dãy Cauchy R, fn (x) hội tụ, nghĩa tồn f (x) cho f (x) = lim fn (x) n→∞ Ta cần chứng minh f (x) tuyến tính liên tục Tính tuyến tính hiển nhiên, ta cần chứng minh tính liên tục, hay ta chứng minh f (x) bị chặn |f (x)| = lim |fn (x)| ≤ lim ∥fn ∥E ′ ∥x∥E , n→∞ n→∞ Vì fn ∈ E ′ nên fn tuyến tinh bị chặn, tức tồn M > cho ∥fn ∥ ≤ M , từ ta suy |f (x)| ≤ lim M ∥x∥E = M ∥x∥E n→∞ Ta có điều phải chứng minh Lưu ý: Nếu f ∈ E ′ x ∈ E ta viết ⟨f, x⟩E ′ ×E thay cho f (x) ta gọi ⟨., ⟩E ′ ×E tích vơ hướng khơng gian đối ngẫu E, E ′ Ký hiệu chung không gian đối ngẫu thực E không gian Hilbert Độ giao hoán tương đối mở rộng nhóm Trong mục ta nghiên cứu độ giao hốn tương đối mở rộng nhóm Mệnh đề Cho H1 H2 hai nhóm G cho H1 ⩽ H2 Khi Pr(H1 , H2 ) ⩾ Pr(H1 , G) ⩾ Pr(H2 , G) Chứng minh Theo Bổ đề 7, với x ∈ G ta có |H1 : CH1 (x)| ⩽ |H2 : CH2 (x)| ⩽ |G : CG (x)| Từ suy |CH1 (x)| |C (x)| |C (x)| ⩾ H2 ⩾ G với x ∈ G |H1 | |H2 | |G| Theo Mệnh đề 14 ta có Pr(H1 , H2 ) = X 1 X |CH2 (x)| |CH2 (x)| = |H1 ||H2 | |H1 | |H2 | x∈H1 ⩾ x∈H1 X X |CG (x)| = |CG (x)| = Pr(H1 , G) |H1 | |G| |H1 ||G| x∈H1 x∈H1 Theo Mệnh đề 14 ta có X Pr(H1 , G) = ⩾ |H1 ||G| |CH1 (y)| = y∈G X |CH2 (y)| |G| y∈G |H2 | X |CH1 (y)| |G| |H1 | y∈G = X |CH2 (y)| = Pr(H2 , G) |H2 ||G| y∈H2 Vậy ta có điều phải chứng minh Mệnh đề Cho H N nhóm nhóm G cho N ⩽ H N ◁ G Khi Pr(H, G) ⩽ Pr(H/N, G/N ) Pr(N ) Hơn nữa, dấu đẳng thức xảy N ∩ [H, G] = Để chứng minh Mệnh đề ?? ta cần bổ đề sau Bổ đề Cho H N nhóm nhóm G cho N ⩽ H N ◁ G Khi CH (x)N ⩽ CH/N (xN ) N với x ∈ G Hơn nữa, đẳng thức xảy N ∩ [H, G] = Chứng minh Lấy x ∈ G Giả sử y ∈ CH (x) Khi yN ∈ ta có xN yN = (xy)N = (yx)N = yN xN CH (x)N , N Do yN ∈ CH/N (xN ) Từ suy CH (x)N ⩽ CH/N (xN ) N Giả sử N ∩ [H, G] = Ta chứng minh xảy dấu đẳng thức Thật vậy, lấy x ∈ G Giả sử yN ∈ CH/N (xN ) với y ∈ H Khi xN yN = yN xN , (xy)N = (yx)N Từ suy y −1 x−1 yx = (xy)−1 (yx) ∈ N Điều chứng tỏ y −1 x−1 yx ∈ N ∩[H, G] Do theo giả thiết, ta có y −1 x−1 yx = hay xy = yx Từ suy y ∈ CH (x) Do yN ∈ CH (x)N N Điều chứng tỏ CH/N (xN ) ⩽ CH (x)N N Vậy ta có điều phải chứng minh Bây ta chứng minh Mệnh đề ?? Chứng minh Từ Mệnh đề 14 ta có X X X |CH (y)| |H||G| Pr(H, G) = |CH (y)| = y∈G = S∈G/N y∈S X X S∈G/N y∈S = |CN (y)| |CN (y)| X X |CH (y)N | |CH (y)| |CN (y)| = |CN (y)| |N ∩ CH (y)| |N | S∈G/N y∈S X X CH (y)N 29 Khi l chẵn với ⩽ l ⩽ 2n − Theo Mệnh đề 33, ta có |Tl | = Do Tl = {1, rl s} Khi đó, theo Mệnh đề 14 ta có X 1 Pr(Tl , SD2n ) = = |Tl ||SD2n | |CSD2n (x)| = · 2n+1 x∈Tl |CSD2n (1)| + |CSD2n (rl s)|   1 1 |SD2n | + |U2n−1 ,l | = (2n+1 + 4) = + n n+1 n+1 2·2 2·2 2 Khi l lẻ với ⩽ l ⩽ 2n−1 − Theo Mệnh đề 33 ta có |Tl | = Do n−1 Tl = {1, rl s, r2 n−1 , rl+2 s} Khi đó, theo Mệnh đề 14 ta có X |CSD2n (x)| |Tl ||SD2n | Pr(Tl , SD2n ) = x∈Tl l 2n−1 l+2n−1 |C )| + |C s)| n (1)| + |CSD2n (r s)| + |CSD2n (r n (r SD SD 2 · 2n+1  n | + |U n−1 | + |SD2n | + |U n−1 n−1 |SD | = 2 ,l ,l+2 · 2n+1  1 n+1 n+1 + = + + + = · 2n+1 2n =   Như hai trường hợp l ta có Pr(Tl , SD2n ) = 1 + n 2 (iii) Giả sử H = Ui,j với ⩽ i ⩽ 2n − 1, i|2n , ⩽ j ⩽ i − Ta xét hai trường hợp i sau Trường hợp 1: i = 2n−1 Theo Mệnh đề 33, ta có 2n+1 2n+1 = n−1 = i |Ui,j | = Do Ui,j = {1, r2 n−1 , rj s, r2 n−1 +j s} Khi đó, theo Mệnh đề 14 ta có Pr(Ui,j , SD2n ) = X |CSD2n (x)| |Ui,j ||SD2n | x∈Ui,j 30 2n−1 j 2n−1 +j |C )| + |C s)| n (1)| + |CSD2n (r n (r s)| + |CSD2n (r SD SD 2 · 2n+1  n n n−1 n−1 n−1 |SD | + |SD | + |U | + |U | = 2 ,j ,2 +j · 2n+1 1 = (2n+1 + 2n+1 + + 4) = + n n+1 4·2 2  =  Trường hợp 2: i ̸= 2n−1 Theo Mệnh đề 33 ta có |Ui,j | = Do 2n+1 i  2n li li+j r ,r s 0⩽l⩽ −1 i  Ui,j = Khi đó, theo Mệnh đề 14, ta có X X |CSD2n (rli )| + |CSD2n (x)| = 0⩽l⩽ 2i −1 = |CSD2n (1)| + |CSD2n (r2 n−1 0⩽l⩽ 2i −1 )| + X |CSD2n (rli )| + n 1⩽l⩽ 2i −1 l̸=  = |SD2n | + |SD2n | + = n+1 +2 n+1  + 2n i |CSD2n (rli+j s)| n n x∈Ui,j X X |CSD2n (rli+j s)| n 0⩽l⩽ 2i −1 2n−1 i  − |R1 | + 2n |U n−1 | i ,li+j 2n 2n+1 (2n−1 + i + 2) 2n − 2n + = i i i  Do đó, theo Mệnh đề 14 ta có Pr(Ui,j , SD2n ) = = X 1 2n+1 (2n−1 + i + 2) |CSD2n (x)| = n+1 |Ui,j ||SD2n | i x∈Ui,j 2n+1 i i+2 2n+1 (2n−1 + i + 2) 2n−1 + i + = = + n+1 n+1 2(n+1) i 2 i Vậy ta có điều phải chứng minh Trong ví dụ sau ta tính độ giao hốn tương đối nhóm nhóm giả nhị diện SD8 SD16 cách áp dụng Mệnh đề 31 Ví dụ (i) Với n = 3, xét nhóm giả nhị diện SD8 = ⟨r, s | r8 = s2 = 1, s−1 rs = r3 ⟩ Các nhóm SD8 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R4 = ⟨r4 ⟩, R8 = {1}; T0 = ⟨s⟩, T1 = ⟨rs⟩, T2 = ⟨r2 s⟩ T3 = ⟨r3 s⟩, T4 = ⟨r4 s⟩, T6 = ⟨r6 s⟩; U2,0 = ⟨r2 , s⟩, U2,1 = ⟨r2 , rs⟩, U4,0 = ⟨r4 , s⟩, U4,2 = ⟨r4 , r2 s⟩; SD8 Khi Pr(R1 , SD8 ) = 1 + = , Pr(R2 , SD8 ) = + = , 8 Pr(R4 , SD8 ) = + = 1, Pr(R8 , SD8 ) = 1; Pr(T0 , SD8 ) = Pr(T1 , SD8 ) = Pr(T2 , SD8 ) = Pr(T3 , SD8 ) 1 = Pr(T4 , SD8 ) = Pr(T6 , SD8 ) = + = ; 8 2+2 + = , 16 1 Pr(U4,0 , SD8 ) = Pr(U4,2 , SD8 ) = + = ; 8 Pr(SD8 , SD8 ) = 16 Pr(U2,0 , SD8 ) = Pr(U2,1 , SD8 ) = (ii) Với n = 4, xét nhóm giả nhị diện SD16 = ⟨r, s | r1 = s2 = 1, s−1 rs = r7 ⟩ Các nhóm SD16 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R4 = ⟨r4 ⟩, R8 = ⟨r8 ⟩, R16 = {1}; T0 = ⟨s⟩, T1 = ⟨rs⟩, T2 = ⟨r2 s⟩, T3 = ⟨r3 s⟩, T4 = ⟨r4 s⟩, T5 = ⟨r5 s⟩, T6 = ⟨r6 s⟩, T7 = ⟨r7 s⟩, T8 = ⟨r8 s⟩, T10 = ⟨r10 s⟩, T12 = ⟨r12 s⟩, T14 = ⟨r14 s⟩; U2,0 = ⟨r2 , s⟩, U2,1 = ⟨r2 , rs⟩, U4,0 = ⟨r4 , s⟩, U4,2 = ⟨r4 , r2 s⟩, U4,3 = ⟨r4 , r3 s⟩, U8,0 = ⟨r8 , s⟩, U8,2 = ⟨r8 , r2 s⟩, U8,4 = ⟨r8 , r4 s⟩; SD16 Khi Pr(R1 , SD16 ) = 1 + = , Pr(R2 , SD16 ) = + = , 16 16 16 32 1 P r(R4 , SD16 ) = + = = Pr(R8 , SD16 ) = + = 1, Pr(R16 , SD16 ) = 16 2 16 Pr(T0 , SD16 ) = Pr(T1 , SD16 ) = Pr(T2 , SD16 ) = Pr(T3 , SD16 ) = Pr(T4 , SD16 ) = Pr(T5 , SD16 ) = Pr(T6 , SD16 ) = Pr(T7 , SD16 ) = Pr(T8 , SD16 ) 1 = Pr(T10 , SD16 ) = Pr(T12 , SD16 ) = Pr(T14 , SD16 ) = + = ; 16 16 11 2+1 = , Pr(U2,0 , SD16 ) = Pr(U2,1 , SD16 ) = + 32 32 4+2 Pr(U4,0 , SD16 ) = Pr(U4,1 , SD16 ) = Pr(U4,2 , SD16 ) = Pr(U4,3 , SD16 ) = + = , 32 16 1 Pr(U8,0 , SD16 ) = Pr(U8,2 , SD16 ) = Pr(U8,4 , SD16 ) = Pr(U8,6 , SD16 ) = + = ; 16 16 11 Pr(SD16 , SD16 ) = Pr(SD16 ) = 32 10 KHÔNG GIAN CÁC HÀM LIÊN TỤC Nhận xét Định lý Arzelà - Ascoli không cịn C0 (A) A ⊂ Rn khơng compact Ví dụ lấy C0b (R) khơng gian hàm liên tục bị chặn R, nghĩa   0 Cb (R) := f ∈ C (R) : sup |f | < ∞ R Khi dễ thấy (C0b (R), ∥.∥∞ ) không gian Banach Giả sử f : R → R hàm định nghĩa ( − |x| x ≤ f (x) = x > Giả sử h : R → R, (h = 1, 2, ) định nghĩa fh (x) := f (x + h) giả sử F := {fh : h ∈ N} Khi dễ thấy họ hàm F ⊂ C0b (R) bị chặn liên tục Tuy nhiên F không compact (C0b (R), ∥.∥∞ ) Thật vậy, ý ∃f (x) := lim fh (x) = 0, ∀x ∈ R ∥fh − f ∥∞ = 1, ∀h h→∞ 33 Điều có nghĩa dãy hội tụ (fh )h (C0b (R), ∥.∥∞ ) không chấp nhận Tính tách (C0b (R), ∥.∥∞ ) Định nghĩa Giả sử (X, τ ) không gian topo Khi (X, τ ) gọi thỏa mãn tiên đề hai tính đếm có sở đếm cho topo τ Định lý 10 Giả sử (X, d) khơng gian metric Khi (i) (X, d) tách thỏa tiên đề thứ hai tính đếm (ii) Mỗi không gian (X, d) tách (X, d) tách (iii) Giả sử (Y, ϱ) không gian metric khác T : (X, d) → (Y, ϱ) đồng cấu Khi (X, d) tách (Y, ϱ) tách Nhận xét Phải nhấn mạnh mục quan trọng giải tích cho mục xấp xỉ Nghĩ số hợp lý chứng minh định lý Ascoli Cuối phải nhớ lại tiêu chuẩn để kiểm tra không gian topo không gian tách Mệnh đề 12 Giả sử (X, τ ) không gian topo Giả sử tồn họ {Ui : i ∈ I} thỏa mãn (i) Ui tập mở với i ∈ I ; (ii) Ui ∪ Uj = ∅ i ̸= j (iii) I khơng đêm Khi (X, τ ) không tách Bài tập Giả sử l∞ := {x ∈ RN : sup |x(n)| < ∞} n∈N trang bị chuẩn ∥x∥l∞ := sup |x(n)| n∈N ∞ Hãy (l , ∥.∥l∞ ) không gian Banach không tách 34 Gợi ý: Giả sử I = 2N := {x : N → {0, 1}} ⊂ l∞  Ux = Bl∞ x,  n := y ∈ l∞ : ∥y − x∥l∞ < o x ∈ I Khi ta xét họ {Ux : x ∈ I} sử dụng mệnh đề 40 Định lý 11 Giả sử K ⊂ Rn tập compact Khi (C0 (K), ∥.∥∞ ) tách Chúng ta chứng minh cho trường hợp n = 1, K = [a, b] Trước ta cần phải nêu kết xấp xỉ quan trọng toán giải tích Định lý 12 (Định lý xấp xỉ Weierstrass) Giả sử f ∈ C([a, b]) Khi tồn dãy hàm đa thức ph : R → R, (h = 1, 2, ) với hệ số thực, nghĩa ph ∈ R[x], thỏa mãn ph → f [a, b] Nhận xét Bởi đa thức hàm đơn giản nhất, máy tính trực tiếp đánh giá đa thức Định lý có ý nghĩa lý thuyết thực tiễn Đặc biệt nội suy đa thức Chứng minh định lý 33 Chúng ta cần kết n = K = [a, b] Giả sử D tập hợp hàm đa thức với hệ số hữu tỷ, nghĩa là, D := Q[x] Ta biết D đếm Chứng minh D trù mật C0 ([a, b]), ∥.∥∞ ) tức ∀f ∈ C0 ([a, b]), ∀ϵ > 0, ∃q ∈ D cho ∥f − q∥∞ ≤ ϵ Từ định lý xấp xỉ Weierstrass, với ϵ > 0, tồn p ∈ R[x], nghĩa là, p(x) = αm xm + · · · + α1 x1 + α0 , với αi ∈ R, i = 0, 1, , m thỏa mãn ∥f − p∥∞ < ϵ Định nghĩa q(x) := βm xm + · · · + β1 x1 + β0 với βi ∈ Q |αi − βi | < ϵ Pm i=0 c i , i = 0, 1, , m, (12) 35 c := max{|a|, |b|} Khi |p(x) − q(x)| ≤ m X i=0 ϵ |αi − βi ||x|i ≤ , ∀x ∈ [a, b] (13) Do đó, từ (58) (59) ta ∥f − q∥∞ ≤ ∥f − p∥∞ + ∥p − q∥∞ ≤ 11 ϵ ϵ + = ϵ 2 Định lý tồn cho hệ thống tuyến tính Định lý 13 (Định lý tồn cho hệ thống tuyến tính) Cho I đoạn thực giả sử A ∈ C(I, Mn (F)), B ∈ C(I, F n ) Cho τ ∈ I, ξ ∈ F n tồn giải pháp X (IV P) đoạn I Chứng minh Cho t ∈ I , giả sử J = [c; d] đoạn bị chặn I cho τ, π ∈ J , Bởi định lý 7.3 tồn hàm Xj khác biệt đoạn [a, b] cho XJt (s) = A(s)XJ (s) + B(s), XJ (τ ) = ξ, s∈J Định nghĩa X(t) = Xj(t) Nếu ta chọn J1 = [c1 , c2 ] ⊂ I cho τ, t ∈ J1 , J1 ∩ J đoạn bị chặn chứa τ, t kết áp dụng cho đoạn cho thấy XJ1 (s) = XJ (s), s ∈ J1 ∩ J Đặc biệt, XJ1 (t) = XJ (t) Để định nghĩa X(t) không phụ thuộc vào J chọn Vì X có tính khả vi [a, b] thỏa mãn X ′ (t) = A(t)X(t) + B(t), X(τ ) = ξ, t∈I Nó giải pháp (IV P) đoạn I Nó nhất, Y mơt giải pháp I t thuộc I có đoạn nhỏ J chứa τ, t kết cho J ngụ ý X(t) = Y (t) 36 Trước tiếp tục phát triển lý thuyết, xem xét ví dụ khác Xét toán với n = : x′ = 3t2 x, x(0) = 1, t∈R Phương trình tích phân tương ứng Z t 3s2 x(s)ds = (T x)(t), x(t) = + t ∈ R Nếu x0 (t) = 1, t Z 3s2 xm (s)ds, xm+1 (t) = + m = 0, 1, Do Z x1 (t) = + t 3s2 ds = + t3 , t Z 3s2 [1 + s3 ]ds = + t3 + t6 /2, x2 (t) = + Z x3 (t)1 + t 3s2 [1 + s3 + s6 /2]ds = + t3 + t6 /2 + t9 /6, Và quy nạp cho thấy xm = + t3 + (t3 )m (t3 )2 (t3 )3 + + ··· + 3! m! Chúng ta nhận xm (i) môt tổng riêng cho việc triển khai dãy số hàm x(t) = et Dãy số hội tụ đến x(t) cho t thuộc R, hàm x(t) kết vấn đề Nhìn lại phương pháp chứng minh định lý 7.3, khơng khó để nhận thấy lựa chọn hàm liên tục ban đầu X0 (t) dần đến giải pháp X(t) Thực sự, bất đẳng thức áp dụng Z t |Xm+1 (t) − Xm | ≤ ∥A∥∞ |Xm (s) − Xm−1 (s)|ds, τ m ≥ 1, t ∈ I 37 Sự khác biệt phát sinh khác biệt ban đầu Xi (t) − X0 (t) Ước lượng thu từ lập luận quy nạp sau trở thành h im |Xm+1 (t) − Xm | ≤ ∥X1 − X0 ∥∞ ∥A∥∞ [t − τ ] /m! Phần lại lập luận diễn trước đây, đưa giải pháp X(t) (7.2) Nếu (IV P) xem xét đoạn I nào, ta ước lượng khoảng cách Xm (t) X(t) đoạn nhỏ J = [a, b] nằm I chứa τ Với k > m ∥X − Xm ∥∞,J ≤ ∥X − Xk ∥∞,J + ∥Xk − Xm ∥∞,J ≤ ∥X − Xk ∥∞,J + ∥(Xk − Xk−1 ) + (Xk−1 − Xk−2 ) + · · · + (Xm+1 − Xm )∥∞,J Và sử dụng bất đẳng thức tam giác lấy giới hạn (7.10) ngụ ý ∥X − Xm ∥∞,J ≤ ∞ X ∥Xk+1 − Xk ∥∞,J , (7.11) k=m ≤ ∥X1 − X0 ∥∞,J ∞ h X ∥A∥∞,J [b − τ ] im /m! k=m Tất nhiên, chuỗi cuối lại phần lại chuỗi cho hàm mũ (∥A∥∞,J [b − τ ]) Do (7.11) ngụ ý Xm → X định mức tối đa J Chúng tơi tóm tắt định lý sau Định lý 14 (Định nghĩa xấp xỉ liên tiếp bởi) Z t Xm+1 (t) = ξ + [A(s)Xm (s) + B(s)]ds, t∈I τ Tại X0 ∈ C(I, F n ) tùy ý Nếu X(t) giải pháp (IV P) I , Xm → X đồng ∥X − Xm ∥∞,J → 0, Trên đoạn nhỏ J ⊂ I chứa τ k→∞ 38 12 Tính liên tục giải pháp Trở lại tình Định lý 7.3, [a, b] đoạn đóng, giải pháp X(t) tốn giá trị ban đầu X ′ = A(t)X + B(t), t ∈ I, IV P X(τ ) = ξ, Rõ ràng phụ thuộc vào τ ∈ I, ξ ∈ F n , A ∈ C(I, Mn (F)) B ∈ C(I, F n ) Kết phần khẳng định t ∈ I Giá trị X(t) hàm liên tục biến Phân tích phụ thuộc bắt đầu ước lượng cho ∥X∥∞ điều suy cách sử dụng phương pháp chứng minh Định lý 7.3 Bắt đầu với việc xấp xỉ từ Z t X0 (t) = ξ + B(s)ds, τ Kết X(t) = lim Xk (t) k→∞ Sau đáp ứng ước lượng   k−1 X ∥X∥∞ = ∥ lim Xk ∥ = lim X0 (t) + (Xm+1 (t) − xm (t)) k→∞ k→∞ m=0 ≤ ∥X0 ∥ + ∞ X ∞ ∥Xm+1 − Xm ∥∞ m=0 Bây áp dụng bất đẳng thức (7.8), cho kết ∥X∥∞ ≤ ∥X0 ∥∞ + ∥X0 ∥∞ ∞ X ∥A∥m+1 [b − τ ]m+1 ∞ m=0 (m + 1)! = ∥X0 (t)∥∞ exp(∥A∥∞ [b − τ ]) Từ Z t ∥X0 (t)∥∞ = B(s)ds ξ + τ ≤ |ξ| + |b − a|∥B∥∞ , ∞ 39 Ước lượng mong muốn cho ∥X∥∞   ∥X∥∞ ≤ |ξ| + |b − a|∥B∥∞ exp(∥A∥∞ [b − a]) (7.12) Ước lượng đơn giản (7.12) sử dụng để X hàm liên tục chung tất biến Do đó, thay đổi nhỏ t, A, b, τ, ξ tạo thay đổi nhỏ X Nếu ký hiệu giải pháp (IV P) thời điểm t X(t, A, B, τ, ξ), sau đó, định lý 7.6 cung cấp ý nghĩa xác cho phát biểu X(s, C, D, σ, η) → X(t, A, B, τ, ξ), (s, C, D, σ, η) → (t, A, B, τ, ξ) Đó là, X liên tục (t, A, B, τ, ξ) Định lý 15 Đặt I đoạn [a, b] bị chặn, A, C ∈ C(I, Mn (F)), B, D ∈ C(I, F n ), τ, σ ∈ I , ξη ∈ F n Giả định X kết X ′ = A(t)X + B(t), X(τ ) = ξ, t∈I Cho t thuộc I e > 0, có tồn ϵ > Y kết Y ′ = C(t)Y + D(t), y(σ) = η, t∈I |s − t| < δ, ∥C − A∥∞ < δ, |σ − τ | < δ, ∥D − B∥∞ < δ |η − ξ| < δ Vậy |Y (s) − X(t)| < ϵ (7.14) Chứng minh Hiệu hai phương trình cho X(t) Y (t) ta (Y − X)′ = C(t)(Y − X) + (C(t) − A(t))X + D(t) − B(t) Do Z = Y − X Z đáp ứng giá trị tốn ban đầu Z ′ = C(t)Z + E(t), Z(σ) = η − X(σ)

Ngày đăng: 05/07/2023, 16:58

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w