1. Trang chủ
  2. » Luận Văn - Báo Cáo

Một số nguyên lý tổng quát về tập có thứ tự và ứng dụng vào bài toán điểm bất động

111 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: MỘT SỐ NGUYÊN LÝ TỔNG QUÁT VỀ TẬP CÓ THỨ TỰ VÀ ỨNG DỤNG VÀO BÀI TOÁN ĐIỂM BẤT ĐỘNG LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Nhóm topo G Birkhoff đưa vào năm 1936 [1] Sau đó, nhiều tác giả giới giới thiệu nhiều khái niệm suy rộng thu kết mở rộng số kết nhóm topo ([1], [2], [4], [5], [6], [7]) Đặc biệt, vào năm 1996, A S Gulko giới thiệu khái niệm không gian cầu trường (rectifiable space), chứng minh nhóm topo khơng gian cầu trường được, không gian cầu trường suy rộng nhóm topo Hơn nữa, tác giả đưa ví dụ nhằm mở rộng không tầm thường ([4]) Gần đây, số tác giả nghiên cứu tính chất compact tính chất Fréchet-Urysohn, tính chất FréchetUrysohn mạnh không gian cầu trường thu nhiều kết thú vị ([7], [8]) Hơn nữa, [7] tác giả đặt toán sau 46 2 ĐẠI SỐ VÀ SIGMA ĐẠI SỐ Định nghĩa Cho tập X tùy ý khác rỗng Ta gọi P (X) tập hợp tất tập X Gọi A∗ họ tập X A∗ gọi đại số tập X A∗ thỏa ba tiên đề sau: X ∈ A∗ ∀A ∈ A∗ ⇒ Ac ∈ A∗ (Đóng kín với phép toán lấy phần bù) ∀A, B ∈ A∗ , A ∪ B ∈ A∗ (Đóng kín với phép tốn hợp) Định nghĩa Cho tập X tùy ý khác rỗng Ta gọi P (X) tập hợp tất tập X Gọi A∗ họ tập X A∗ gọi σ - đại số tập X A∗ thỏa mãn ba tiên đề sau: X ∈ A∗ ∀A ∈ A∗ ⇒ Ac ∈ A∗ (Đóng[kín với phép tốn lấy phần bù) ∀A1 , A2 , , An , ∈ A∗ ⇒ Ai ∈ A∗ i≥1 Dựa vào hai định nghĩa ta có nhận xét Nhận xét Khái niệm "đại số tập tập X " khái niệm "σ - đại số tập X " gần với Điều thể qua giống hai tiên đề Sự khác biệt hai khái niệm tiên đề số Đối với "đại số tập X hợp "HỮU HẠN" phần tử thuộc A∗ phần tử thuộc A∗ Còn "σ - đại số tập X " hợp "VÔ HẠN" phần tử A∗ phần tử thuộc A∗ Mệnh đề Cho X tập tùy ý khác rỗng Gọi A∗ "đại số tập X " Khi đó: ∅ ∈ A∗ Hợp hữu hạn phần tử thuộc A∗ phần tử thuộc A∗ n [ ∗ Hay A1 , A2, , An ∈ A ⇒ Ai ∈ A∗ i=1 Giao hữu hạn phần tử thuộc A∗ phần tử thuộc A∗ (Đóng kín với phép tốn giao) n \ ∗ Hay A1 , A2, , An ∈ A ⇒ Ai ∈ A∗ i=1 Đóng kín với phép tốn hiệu nghĩa là: ∀A, B ∈ A∗ ⇒ A\B ∈ A∗ Đóng kín với phép tốn lấy hiệu đối xứng nghĩa là: ∀A, B ∈ A∗ ⇒ A△B ∈ A∗ Định lý Cho tập X khác rỗng Giả sử X có phép tốn α Phép tốn α gọi đóng kín với tập X ta lấy hai phần tử thuộc X , thao tác qua phép toán ta phần tử phần tử thuộc X Để dễ hiểu ta lấy ví dụ đơn giản Trên tập N có phép tốn cộng thơng thường Ta lấy hai phần tử thuộc N (lấy hai số tự nhiên) Dễ thấy cộng hai số tự nhiên số tự nhiên số tự nhiên thuộc N Như ta nói N đóng kín với phép cộng Trong trường hợp tổng qt tập X Tiếp theo ta chứng minh ý mệnh đề Chứng minh: Vì X ∈ A∗ (Tiên đề 1) nên X c = ∅ ∈ A∗ (Tiên đề 2) Ta quy nạp dựa theo tiên đề có điều phải chứng minh ∀A, B ∈ A∗ ta có Ac , B c ∈ A∗ Khi (Ac ∪ B c ) ∈ A∗ ⇒ [(Ac ∪ B c )]c ∈ A∗ hay A ∩ B ∈ A∗ Từ ta quy nạp lên giao hữu hạn phần tử có điều phải chứng minh Chưa chứng minh Chưa chứng minh Mở rộng Dorroh mở rộng ∆U -vành Mệnh đề Cho R vành Khi đó, điều kiện sau tương đương (1) R ∆U -vành (2) ∆(R) = U◦ (R) (3) Ánh xạ ε : (∆(R), ◦) → (U (R), ) cho ε(x) = − x đẳng cấu nhóm Chứng minh (1) ⇒ (2) Giả sử R ∆U -vành Mỗi x ∈ ∆(R), ta có − x ∈ U (R), x = − (1 − x) ∈ U◦ (R) Suy ∆(R) ⊆ U◦ (R) Ngược lại, y ∈ U◦ (R) − y ∈ U (R) = + ∆(R) Suy y ∈ ∆(R) hay ∆(R) = U◦ (R) (2) ⇒ (3) Hiển nhiên (3) ⇒ (1) Giả sử ánh xạ ε : (∆(R), ◦) → (U (R), ) cho ε(x) = − x đẳng cấu nhóm Khi u ∈ U (R), tồn x ∈ ∆(R) thỏa mãn u = ε(x) = − x Điều nghĩa U (R) ⊆ + ∆(R) hay U (R) = + ∆(R) Nếu R vành, mở rộng Dorroh vành có đơn vị Z ⊕ R, với phép toán cộng cộng theo thành phần phép nhân cho (n1 , r1 )(n2 , r2 ) = (n1 n2 , r1 r2 + n1 r2 + n2 r1 ) Chú ý Cho R vành có đơn vị Khi (1) u ∈ U (R) − u ∈ U◦ (R) (2) (1, u − 1) ∈ U (Z ⊕ R) với u ∈ U (R) (3) (1, −x)(1, −y) = (1, −x◦y) (−1, x)(−1, y) = (1, −x◦y) với x, y ∈ R Định lý Cho R vành có đơn vị Khi điều kiện sau tương đương (1) Mở rộng Dorroh Z ⊕ R ∆U -vành; (2) R ∆U -vành Chứng minh (1) ⇒ (2) Lấy u ∈ U (R) Khi − u ∈ U◦ (R) Tồn v ∈ R thỏa mãn (1 − u) ◦ v = = v ◦ (1 − u) Khi ta có (1, u−1)(1, −v) = (1, −(1−u))(1, −v) = (1, −(1−u)◦v) = (1, 0) = (1, −v)(1, u−1) Điều nghĩa (1, u − 1) ∈ U (Z ⊕ R) Vì Z ⊕ R ∆U -vành, (1, u − 1) ∈ + ∆(Z ⊕ R) (0, u − 1) ∈ ∆(Z ⊕ R) Tiếp theo, ta U (R) = + ∆(R) Thật vậy, t ∈ U (R), ta có + t ∈ U◦ (R), (1 + t) ◦ s = = s ◦ (1 + t) với s ∈ R Khi (−1, + t)(−1, s) = (1, −(1 + t) ◦ s) = (1, 0) = (−1, s)(−1, + t) Do (−1, + t) ∈ U (Z ⊕ R) Theo định nghĩa ∆, ta có (0, u − 1) + (−1, + t) ∈ U (Z ⊕ R) (−1, u + t) ∈ U (Z ⊕ R) Đặt x = u + t Khi đó, (−1, x) ∈ U (Z ⊕ R) (1, −x) ∈ U (Z ⊕ R) Suy tồn (1, −y) ∈ Z ⊕ R thỏa mãn (1, −x)(1, −y) = (1, 0) = (1, −y)(1, −x) Ta có x ◦ y = = y ◦ x nên x ∈ U◦ (R) Vì − x ∈ U (R) nên x − = u + t − ∈ U (R) Suy u + t − = (u − 1) + t ∈ U (R) với t ∈ U (R) Điều nghĩa u − ∈ ∆(R), u ∈ + ∆(R) (2) ⇒ (1) Giả sử R ∆U -vành Ta mở rộng Dorroh Z ⊕ R ∆U -vành, nghĩa U (Z ⊕ R) = + ∆(Z ⊕ R) Lấy ω ∈ U (Z ⊕ R) Khi đó, ω có dạng ω = (1, a) ω = (−1, b) với a, b ∈ R Trường hợp ω = (1, a) ∈ U (Z ⊕ R): Lấy x = −a, tồn (1, −y) Z ⊕ R thỏa mãn (1, −x)(1, −y) = (1, 0) = (1, −y)(1, −x) Điều có nghĩa x◦y = = y ◦x x ∈ U◦ (R), 1+a = 1−x ∈ U (R) Từ R ∆U -vành, 1+a ∈ 1+∆(R) Vì a ∈ ∆(R) a+U (R) ⊆ U (R) Tiếp theo ta chứng minh (1, a) ∈ + ∆(Z ⊕ R), nghĩa ta chứng minh (0, a) + U (Z ⊕ R) ⊆ U (Z ⊕ R) Với α ∈ U (Z ⊕ R), α có dạng (1, u) (−1, v) với u, v ∈ R Nếu α = (1, u), từ chứng minh ω ta có + u ∈ U (R) Từ a + U (R) ⊆ U (R), ta lấy a + + u ∈ U (R), −(a + u) ∈ U◦ (R) Lấy b ∈ R với (−(a + u)) ◦ b = = b ◦ (−(a + u)) Đặt c = −(a + u) Khi c ◦ b = b ◦ c (1, a + u)(1, −b) = (1, −c)(1, −b) = (1, −b ◦ c) = (1, 0) = (1, −b)(1, a + u) Ta suy (1, a + u) ∈ U (Z ⊕ R) Hơn nữa, ta có (0, a) + α = (1, a + u) ∈ U (Z ⊕ R), nghĩa (0, a) + U (Z ⊕ R) ⊆ U (Z ⊕ R) Nếu α = (−1, v) ∈ U (Z⊕R), (−1, v)(−1, d) = (1, 0) = (−1, d)(−1, v) với d ∈ R Ta suy v◦d = = d◦v = v ∈ U◦ (R), 1−v ∈ U (R) Khi đó, v − ∈ U (R) Từ a + U (R) ⊆ U (R), ta có a + v − ∈ U (R) − (a + v) ∈ U (R) Do đó, a + v ∈ U◦ (R) Nghĩa tồn e ∈ R thỏa mãn (a + v) ◦ e = = e ◦ (a + v), (−1, a + v)(−1, e) = (1, −(a + v) ◦ e) = = (−1, e)(−1, a+v) Điều có nghĩa (−1, a+v) ∈ U (Z ⊕R) Hơn nữa, ta có (0, a) + α = (−1, a + v) ∈ U (Z ⊕ R) Do đó, (0, a) + U (Z ⊕ R) ⊆ U (Z ⊕ R) Trường hợp ω = (−1, a) ∈ U (Z ⊕ R): Tương tự Trường hợp Cho C vành vành D, tập hợp R[D, C] := {(d1 , , dn , c, c ) : di ∈ D, c ∈ C, n ≥ 1}, với phép cộng phép nhân định nghĩa theo thành phần gọi vành mở rộng đuôi ký hiệu R[D, C] Mệnh đề R[D, C] ∆U -vành D C ∆U -vành Chứng minh (:⇒) Đầu tiên ta chứng minh D ∆U -vành Lấy u tùy ý thuộc U (D) Khi u¯ = (u, 1, 1, 1, ) ∈ U (R[D, C]) Theo giả thuyết, u¯ ∈ + ∆(R[D, C]), (u − 1, 0, 0, 0, ) + U (R[D, C]) ⊆ U (R[D, C]) Do đó, với v ∈ U (D), (u − + v, 1, 1, 1, ) = (u − 1, 0, 0, 0, ) + (v, 1, 1, 1, ) ∈ U (R[D, C]) Vì u − + v ∈ U (D), nghĩa u − ∈ ∆(D) u ∈ + ∆(D) Để C ∆U -vành, ta lấy v ∈ U (C) thỏa mãn v¯ = (1, , 1, v, v, ) ∈ U (R[D, C]) chứng minh (⇐:) Giả sử D C ∆U -vành Lấy u¯ = (u1 , u2 , , un , v, v, ) ∈ U (R[D, C]), ui ∈ U (D) với ≤ i ≤ n v ∈ U (C) ⊆ U (D) Ta u¯ ∈ ∆(R[D, C]) u¯ − + U (R[D, C]) ⊆ U (R[D, C]) Thật vậy, tất a¯ ∈ (a1 , a2 , , am , b, b, ) ∈ U (R[D, C]) ∈ U (D), ≤ i ≤ m b ∈ U (C) ⊆ U (D) Lấy k = max{m, n} Khi đó, ta có u1 , u2 , , un ∈ U (D), v ∈ U (C) ⊆ U (D) ta suy u1 − + U (D), u2 − + U (D), , un − + U (D) ⊆ U (D), v − + U (D) ⊆ U (D) v − + U (C) ⊆ U (C) Ta có u¯ − = (u1 − 1, u2 − 1, , un − 1, un+1 − 1, , uk − 1, v − 1, v − 1, ), với uj = v j ≥ k , a ¯ = (a1 , a2 , , am , am+1 , , ak , b, b, ), với al = b với l ≥ m Khi ta có u¯ − + a ¯ = (u1 − + a1 , u2 − + a2 , , uk − + ak , v − + b, v − + b, ) Lưu ý ui − + ∈ U (D) với ≤ i ≤ k v − + b ∈ U (C) Ta suy u¯ − + a ¯ ∈ R[U (D), U (C)] = U (R[C, D]) Vì u¯ − ∈ ∆(R[D, C]) u¯ ∈ + ∆(R[D, C]), hay R[D, C] ∆U -vành Độ giao hoán tương đối mở rộng nhóm Trong mục ta nghiên cứu độ giao hốn tương đối mở rộng nhóm Mệnh đề Cho H1 H2 hai nhóm G cho H1 ⩽ H2 Khi Pr(H1 , H2 ) ⩾ Pr(H1 , G) ⩾ Pr(H2 , G) Chứng minh Theo Bổ đề ??, với x ∈ G ta có |H1 : CH1 (x)| ⩽ |H2 : CH2 (x)| ⩽ |G : CG (x)| Từ suy |CH1 (x)| |C (x)| |C (x)| ⩾ H2 ⩾ G với x ∈ G |H1 | |H2 | |G| Theo Mệnh đề ?? ta có Pr(H1 , H2 ) = X 1 X |CH2 (x)| |CH2 (x)| = |H1 ||H2 | |H1 | |H2 | x∈H1 ⩾ x∈H1 X 1 X |CG (x)| |CG (x)| = Pr(H1 , G) = |H1 | |G| |H1 ||G| x∈H1 x∈H1 Theo Mệnh đề ?? ta có X Pr(H1 , G) = ⩾ |H1 ||G| |CH1 (y)| = y∈G X |CH2 (y)| |G| y∈G |H2 | Vậy ta có điều phải chứng minh X |CH1 (y)| |G| |H1 | y∈G = X |CH2 (y)| = Pr(H2 , G) |H2 ||G| y∈H2 Mệnh đề Cho H N nhóm nhóm G cho N ⩽ H N ◁ G Khi Pr(H, G) ⩽ Pr(H/N, G/N ) Pr(N ) Hơn nữa, dấu đẳng thức xảy N ∩ [H, G] = Để chứng minh Mệnh đề ?? ta cần bổ đề sau Bổ đề Cho H N nhóm nhóm G cho N ⩽ H N ◁ G Khi CH (x)N ⩽ CH/N (xN ) N với x ∈ G Hơn nữa, đẳng thức xảy N ∩ [H, G] = Chứng minh Lấy x ∈ G Giả sử y ∈ CH (x) Khi yN ∈ CH (x)N , N ta có xN yN = (xy)N = (yx)N = yN xN Do yN ∈ CH/N (xN ) Từ suy CH (x)N ⩽ CH/N (xN ) N Giả sử N ∩ [H, G] = Ta chứng minh xảy dấu đẳng thức Thật vậy, lấy x ∈ G Giả sử yN ∈ CH/N (xN ) với y ∈ H Khi xN yN = yN xN , (xy)N = (yx)N Từ suy y −1 x−1 yx = (xy)−1 (yx) ∈ N Điều chứng tỏ y −1 x−1 yx ∈ N ∩[H, G] Do theo giả thiết, ta có y −1 x−1 yx = hay xy = yx Từ suy y ∈ CH (x) Do yN ∈ Điều chứng tỏ CH/N (xN ) ⩽ CH (x)N N Vậy ta có điều phải chứng minh Bây ta chứng minh Mệnh đề ?? CH (x)N N 83 Định lý 43 (M.Riesz - Fréchét - Kolmogorov) Cho F tập bị chặn (Lp (Rn ), ∥.∥Lp ) với ≤ p < ∞ Giả sử lim ∥τv f − f ∥Lp = v→0 với f ∈ F , nghĩa ∀ϵ > 0, ∃δ(ϵ) > : ∥τv f − f ∥Lp < ϵ, ∀v ∈ Rn với |v| < δ, ∀f ∈ F (N EF ) Khi F|Ω := {f |Ω : f ∈ F} compact tương đối (Lp (Ω), ∥.∥Lp ), nghĩa bao đóng compact (Lp (Ω), ∥.∥Lp ), với tập mở Ω ⊂ Rn với độ đo Lebesgue hữu hạn Từ định lý 13 ta suy điều kiện compact (Lp (Ω), ∥.∥Lp ) Nếu f : Ω → R, ta ký hiệu fe : Rn → R hàm định nghĩa ( f (x) x ∈ Ω fe(x) := x ∈ /Ω Hệ 16 Cho Ω ⊂ Rn tập mở với độ đo hữu hạn, cho F ⊂ Lp (Ω) cho Fe := {fe : f ∈ F} Giả sử (i) F bị chặn (Lp (Ω), ∥.∥Lp ) với ≤ p < ∞; (ii) lim ∥τv f − f ∥Lp = với f ∈ F , nghĩa Fe thỏa mãn (ENF ) v→0 Khi F compact tương đối (Lp (Ω), ∥.∥Lp ) Chứng minh Từ định lý 13, Fe tập compact tương đối Lưu ý Fe compact dãy tương đối (Lp (Rn ), ∥.∥Lp ) F compact dãy tương đối (Lp (Ω), ∥.∥Lp ) Do đặc tính tập compact khơng gian metric (Định lý 43) có điều phải chứng minh Cuối cùng, nhớ lại đặc tính compact (Lp (Rn ), ∥.∥Lp ) Định lý 44 Cho F ⊂ Lp (Rn ) với ≤ p < ∞ Khi F compact tương đối (Lp (Rn ), ∥.∥Lp ) (i) F bị chặn (Lp (Rn ), ∥.∥Lp ); (ii) với ϵ > 0, tồn rϵ > thỏa mãn ∥f ∥Lp (Rn \B(0,rϵ )) < ϵ ∀f ∈ F; 84 (iii) lim ∥τv f − f ∥Lp = f ∈ F v→∞ Nhận xét 18 (i) Giả thiết (ENF ) cần thiết định lý 13 Thật vậy, xét họ F := {fh : h ∈ N} fh : R → R định nghĩa   ≤ x ≤ h fh (x) := h 0 ngược lại Ω := (0, 1) Khi dễ thấy ∥f ∥L1 R = với h ∈ N F|Ω không compact tương đối (L1 (Ω), ∥.∥L1 ), khơng có dãy (fh )h hội tụ L1 (Ω) Mặt khác, v > 0, với h > 1/v Z Z v ∥τv fh − fh ∥L1 (R) ≥ fh (x + v) dx = −∞ fh (x) = Do đó, (ENF ) khơng cịn cho F (ii) Nếu Ω khơng có độ đo hữu hạn, kết định lý 13 khơng cịn Thật vậy, xét họ F := {fh : h ∈ N} fh : R → R định nghĩa fh (x) := f (x + h) f ∈ Lip(R) với spt(f ) = [−a, a], a > 0, f không triệt tiêu Khi ∥f ∥L1 (R) = ∥f ∥L1 (R) > ∀h (45) Hơn F thỏa mãn (ENF ), |τv f − f (x)| = |f (x + v)f (x)| ≤ L|v|X [−a−1,a+1] (x) ∀x ∈ R, v ∈ [−1, 1] ∥τc fh − fh ∥L1 (R) = ∥τv f − f ∥L1 (R) ∀h L := Lip(f ) Cho Ω := R quan sát F = F|Ω không compact tương đối (L1 (R), ∥.∥L1 ) Ngược lại mâu thuẫn nảy sinh (3), từ fh (x) → với x ∈ R Tính tách (Lp (Ω), ∥.∥Lp ) Nhận xét 19 Cho Ω ⊂ tập bị chặn, quan hệ bao hàm C0 (Ω) ⊂ L∞ (Ω) chặt Hơn nữa, với f ∈ C0 (Ω) ∥f ∥∞,Ω = ∥f ∥L∞ (Ω) (∗) 85 Thật ∥f ∥L∞ (Ω) := inf{M > : |f (x)| ≤ M, x ∈ Ω} ≤ sup |f (x)| := ∥f ∥∞,Ω x∈Ω Để chứng minh bất đẳng thức ngược lại, ta quan sát, N ⊂ Ω tập không đáng kể với mối quan hệ đến L, Ω \ N ⊇ Ω Vì thế, theo tính liên tục f , tồn M > cho |f (x)| < M, x ∈ Ω ⇒ |f (x)| ≤ M ∀x ∈ Ω Đặc biệt, từ (∗), C0 (Ω) hóa đóng (L∞ (Ω), ∥.∥L∞ (Ω) ) Không gian đối ngẫu Lp (Ω) Định lý 45 (Định lý biểu diễn Riesz) Cho ≤ p < ∞ ký hiệu   p < p < ∞ p′ := p − (số mũ của) p ∞ p = ′ Khi ánh xạ T : Lp (Ω) → (Lp (Ω))′ , định nghĩa Z uf dx, ∀f ∈ Lp (Ω), ⟨T (u), f ⟩(Lp (Ω))×Lp (Ω) := Ω đẳng cấu metric có đặc trưng xác định ′ Lp (Ω) ≡ (Lp (Ω))′ ≤ p < ∞ Chứng minh Ta chia chứng minh thành ba bước Bước 1: Ta chứng minh T phép đẳng cự, nghĩa ′ ∥T (u)∥(Lp (Ω))′ = ∥u∥Lp′ (Ω) , ∀u ∈ Lp (Ω) (46) Theo bất đẳng thức Holder, suy bất đẳng thức ′ ∥T (u)∥(Lp (Ω))′ ≤ ∥u∥Lp′ (Ω) , ∀u ∈ Lp (Ω) (47) Ta bất thức ngược lại Đầu tiên, giả sử < p < ∞, điều có nghĩa < p′ < ∞ Nếu ∥u∥Lp′ (Ω) = 0, đó, u = hầu khắp nơi 86 Ω bất đẳng thức rõ ràng Giả sử < ∥u∥Lp′ (Ω) < ∞, ta cần giả sử < |u(x)| < ∞ hầu khắp nơi x ∈ Ω Định nghĩa ′ fu (x) := |u(x)|p −2 u(x) hầu khắp nơi x ∈ Ω Quan sát fn ∈ Lp (Ω), từ ′ 1/p−1 |fu (x)|p = |u(x)|p hầu khắp nơi x ∈ Ω ⇒ ∥fu ∥Lp (Ω) = ∥u∥Lp′ (Ω) Vì Z ′ ′ ⟨T (u), fu ⟩(Lp (Ω))×Lp (Ω) = Ω u|u|p −2 udx = ∥u∥pLp′ (Ω) (48) Từ (5) (6), suy ′ ∥u∥pLp′ (Ω) = ⟨T (u), fu ⟩(Lp (Ω))′ ×Lp (Ω) ≤ ∥T (u)∥(Lp (Ω))′ ∥fu ∥Lp (Ω) 1/p−1 = ∥T (u)∥(Lp (Ω))′ ∥u∥Lp′ (Ω) Điều có nghĩa ∥T (u)∥(Lp (Ω))′ ≥ ∥u∥Lp′ (Ω) ′ ∀u ∈ Lp (Ω) (49) Vì (5) (7) cho ta (4) Cuối cùng, cho trường hợp p = 1, p′ = ∞, giả sử < M < ∥u(x)∥L∞ (Ω) Khi tập hợp EM := {x ∈ Ω : |u(x)| > M } ∈ M |EM | > Từ không gian đo (Ω, Mn ∩ Ω, Ln ) σ−hữu hạn, tồn tập F ∈ Mn ∩ Ω cho < |EM ∩ F | < ∞ Tập hợp fu (x) := sign(u(x))χEM ∩F (x) hầu khắp nơi x ∈ Ω |EM ∩ F | Khi Z ∥fu ∥L1 (Ω) = |fu (x)|dx = Ω ⟨T (u), fu ⟩(L1 (Ω))′ ×L1 (Ω) = |EM ∩ F | Z |u|dx ≥ M, ∀M ∈ (0, ∥u∥L∞ (Ω) ) EM ∩F (43b) 87 Từ (5) (43b), suy M ≤ ⟨T (u), fu ⟩(L1 (Ω))′ ×L1 (Ω) ≤ ∥T (u)∥(L1 (Ω))′ ∥fu ∥L1 (Ω) = ∥T (u)∥(L1 (Ω))′ , ∀M ∈ (0, ∥u∥L∞ (Ω) ), Từ ∥T (u)∥(L1 (Ω))′ ≥ ∥u∥L∞ (Ω) , ∀u ∈ L∞ (Ω) (24b) Từ (5) (44b), đồng (4) p = Bước 2: Đầu tiên giả sử |Ω| < ∞ ta chứng minh T toàn ánh, ′ nghĩa ∀ϕ ∈ (Lp (Ω))′ , ∃u ∈ Lp (Ω) cho T (u) = ϕ ⇔ ⟨T (u), f ⟩(Lp (Ω))′ ×Lp (Ω) = ϕ(f ), ∀f ∈ Lp (Ω) Bởi |Ω| < ∞, χE ∈ Lp (Ω) với E ∈ M := Mn ∩ Ω, p ∈ [1, ∞) Định nghĩa tập hợp hàm ν : M → R ν(E) := ϕ(χE ), E ∈ M Chỉ ν σ -hữu hạn, độ đo có dấu; (50) ν ≪ Ln M (51) Thật |ν(E)| < ∞ với E ∈ M, ν σ -hữu hạn Giả sử (Eh )h ⊂ M dãy rời nhau, ta chưng minh ν(∪∞ h=1 Eh ) = ∞ X ν(Eh ) Tập hợp E := ∪∞ h=1 Eh Với số nguyên m h=1 ! m m m

Ngày đăng: 05/07/2023, 15:05

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w