1. Trang chủ
  2. » Luận Văn - Báo Cáo

Một số nguyên lý tổng quát về tập có thứ tự và ứng dụng vào bài toán điểm bất động

104 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 104
Dung lượng 564,76 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: MỘT SỐ NGUYÊN LÝ TỔNG QUÁT VỀ TẬP CÓ THỨ TỰ VÀ ỨNG DỤNG VÀO BÀI TOÁN ĐIỂM BẤT ĐỘNG LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Giải tích phức ngành cổ điển toán học, bắt nguồn từ khoảng thể kỷ 19 chí trước Một số nhà tốn học tiếng nghiên cứu lĩnh vực : Euler, Gauss, Riemann, Cauchy, Weierstrass nhiều nhà toán học khác kỷ 20 Giải tích phức, đặc biệt phương trình vi phân miền phức có nhiều ứng dụng khí, lý thuyết số giải tích, động lực phức Vì nghiên cứu phát triển mạnh mẽ theo lý thuyết ứng dụng 157 2 Mở rộng toán tử ∆ cho vành khơng có đơn vị Bây ta thay đổi định nghĩa ∆ để làm việc vành không chứa đơn vị Cụ thể, xét tập ∆◦ (R) = {r ∈ R|r + U◦ (R) ⊆ U◦ (R)} Khi R vành có đơn vị ∆◦ (R) = ∆(R) Với vành R bất kỳ, khơng thiết phải có đơn vị Ta ký hiệu R1 vành bao gồm R đơn vị Z Khi đó, U◦ (Z) = Ta dễ dàng kiểm tra bổ đề sau Bổ đề Cho R vành, không thiết phải có đơn vị, ta có ∆◦ (R) = ∆◦ (R1 ) = ∆(R1 ) Bổ đề rằng, ta mở rộng định nghĩa ∆ cho tất vành, không thiết phải có đơn vị khẳng định Định lý tương đương với vành tùy ý Hơn nữa, điều kiện tương đương đúng, ∆(∆(R)) = ∆(R) Ta biết kết cổ điển Jacobsson J(R) vành J(eRe) = eJ(R)e, với e lũy đẳng R Ta dấu không trường hợp tổng quát ∆(R) Tuy nhiên quan hệ bao hàm e∆(R)e ⊆ ∆(eRe) giữ với giả thiết e∆(R)e ⊆ ∆(R) Trong Hệ ?? ta thêm vào giả thiết ∈ U (R) Cho R vành có đơn vị Phần tử a ∈ R gọi quy (tương ứng, quy đơn vị) R a = aua với u ∈ R (tương ứng, u ∈ U (R)) Nếu phần tử vành R quy (tương ứng, quy đơn vị) R gọi vành quy (tương ứng, vành quy đơn vị) Mệnh đề Cho R vành bất kỳ, ta có (1) Cho e2 = e thỏa mãn e∆(R)e ⊆ ∆(R) Khi e∆(R)e ⊆ ∆(eRe) (2) ∆(R) không chứa phần tử lũy đẳng khác khơng (3) ∆(R) khơng chứa phần tử quy đơn vị khác không Chứng minh (1) Nếu y ∈ U (eRe), y1 = y + (1 − e) ∈ U (R) thỏa mãn y = ey1 e Ta lấy r ∈ e∆(R)e ⊆ ∆(R) ta phần tử khả nghịch y ∈ U (eRe) ta có e − yr ∈ U (eRe) Như trên, lấy y1 = y+1−e ∈ U (R) Từ r ∈ e∆(R)e ⊆ ∆(R), ta 1−y1 r ∈ U (R) Do tồn phần tử b ∈ R thỏa mãn b(1 − y1 r) = e = eb(1 − y1 r)e = eb(e − y1 re)e = eb(e − (y + − e)re) = eb(e − yre) + eb(1 − e)re = ebe(e − yre), dấu cuối r ∈ eRe Điều cho thấy e − yre = e − yr phần tử khả nghịch trái eRe Từ − y1 r ∈ U (R) ta có (1 − y1 r)b = = (1 − (y + − e)r)b = (1 − yr)b Nhân hai vế với e ta e = e(1 − yr)be = (e − yr)be = (e − yr)ebe Điều có nghĩa ebe phần tử khả nghịch phải trái e − yr (2) Nếu e2 = e ∈ ∆(R), − e = e + (1 − 2e) ∈ U (R), − 2e khả nghịch, e = (3) Nếu a ∈ ∆(R) phần tử quy đơn vị, tồn phần tử khả nghịch u ∈ U (R) thỏa mãn au lũy đẳng Theo điều kiện (2) ta suy a phải không Hệ Cho R vành quy đơn vị, ∆(R) = Hệ Giả sử ∈ U (R) Khi e∆(R)e ⊆ ∆(eRe) với e phần tử lũy đẳng R Dưới số ví dụ mà ∆(R) ̸= J(R) Ví dụ (1) Ở Định lý 3, ta nhận thấy A vành vành R thỏa mãn U (R) = U (A), J(A) ⊆ ∆(R) Cụ thể chọn A miền giao hoán với J(A) ̸= R = A[x], ta = J(R) ⊂ J(A) ⊆ ∆(R) (xem [?], Bài tập 4.24) (2) ([?], Ví dụ 2.5) Cho R = F2 < x, y > / < x2 > Khi J(R) = U (R) = + F2 x + xRx Cụ thể, F2 x + xRx chứa ∆(R) J(R) = (3) Cho S vành tùy ý thỏa mãn J(S) = ∆(S) ̸= cho R = M2 (S) Khi đó, theo Định lý ?? (1), ∆(R) = J(R) = 0, đó, e = e11 ∈ R, e∆(R)e = eJ(R)e = J(eRe) = ∆(eRe) ≃ ∆(S) ̸= Điều quan hệ bao hàm e∆(R)e ⊆ ∆(eRe) Mệnh đề 36 nghiêm ngặt trường hợp tổng quát (4) Cho A miền giao hoán với J(A) ̸= S = A[x] Khi đó, theo (1), ̸= J(A) ⊆ ∆(S) rõ ràng J(S) = R = M2 (S), A miền giao hoán địa phương Theo Định lý ??, ∆(R) = J(R) = Lưu ý, tâm Z = Z(R) R = M2 (S) đẳng cấu với S U (Z) = U (R) ∩ Z Do đó, = ∆(R) ∩ Z ⊆ ∆(Z) ≃ J(A) ̸= Do đó, quan hệ bao hàm Hệ ?? nghiêm ngặt J(R) = = J(Z(R)) Một vành R gọi 2-nguyên thủy tập phần tử lũy linh N (R) trùng với nguyên tố B(R), tức R/B(R) vành rút gọn Mệnh đề Giả sử R vành 2-nguyên thủy Khi ∆(R[x]) = ∆(R) + J(R[x]) Chứng minh Trước tiên ta giả sử R vành rút gọn Khi theo Hệ 24 ta có U (R[x]) = U (R) Do đó, theo định nghĩa ∆(R[x]), ta có ∆(R) ⊆ ∆(R[x]) Lấy a + a0 ∈ ∆(R[x]) a ∈ R[x]x a0 ∈ R Khi đó, u ∈ U (R), a + a0 + u ∈ U (R) Ta có a0 + u ∈ U (R) a = ∆(R) = ∆(R[x]) Bây ta giả sử R vành 2-nguyên thủy Rõ ràng B(R[x]) = B(R)[x] ⊆ J(R[x]) R vành 2-nguyên thủy R/B(R) vành rút gọn J(R[x]) = B(R[x]) = B(R)[x] Áp dụng phần đầu chứng minh cho R/B(R) Mệnh đề ?? (2) ta có ∆(R) + B(R)[x] = ∆(R/B(R)[x]) = ∆(R[x]/J(R[x])) = ∆(R[x])/J(R[x]) Ta có điều cần chứng minh Các tính chất tổng quát ∆U -vành Ta biết + J(R) ⊆ U (R) Vành R gọi U J -vành U (R) ⊆ + J(R), nghĩa + J(R) = U (R) Lưu ý R U J -vành ∆(R) = J(R) Một vành R gọi ∆U -vành + ∆(R) = U (R) Mệnh đề Một vành R ∆U -vành U (R)+U (R) ⊆ ∆(R) (khi U (R) + U (R) = ∆(R)) Chứng minh Giả sử R ∆U -vành, lấy u, v ∈ U (R), ta có + u ∈ ∆(R) − v ∈ ∆(R), u + v = (1 + u) − (1 − v) ∈ ∆(R) hay U (R) + U (R) ⊆ ∆(R) Ngược lại, giả sử U (R) + U (R) ⊆ ∆(R), suy U (R) + U (R) = ∆(R) (vì ∆(R) ⊂ U (R) + U (R)) hay + ∆(R) = U (R) Vậy R ∆U -vành Mệnh đề sau trình bày số tính chất ∆U -vành Mệnh đề Cho R ∆U -vành Khi (1) ∈ ∆(R); (2) Nếu R thể, R ∼ = F2 ; (3) Nếu x2 ∈ ∆(R) x ∈ ∆(R) (do N (R) ⊆ ∆(R)); (4) R hữu hạn Dedekind; (5) Cho I ⊆ J(R) iđêan R Khi R ∆U -vành R/I ∆U -vành; Y (6) Vành Ri ∆U vành Ri ∆U , với i ∈ I i∈I (7) Nếu T vành R thỏa mãn U (T ) = U (R) ∩ T , T ∆U -vành Cụ thể áp dụng cho Z = Z(R) tâm R Chứng minh (1) Từ Mệnh đề 44 ta dễ dàng suy ∈ ∆(R) (2) Nếu R thể ∆(R) = Vì R U J -vành nên ta suy ∼ R = F2 (3) Giả sử x2 ∈ ∆(R) Khi (1+x)(1−x) = (1−x)(1+x) = 1−x2 ∈ U (R) tức 1+x ∈ U (R) Vì R ∆U -vành nên 1+x ∈ 1+∆(R), x ∈ ∆(R) (4) Giả sử a, b ∈ R với ab = Khi phần tử − ba lũy đẳng R, [b(1 − ba)]2 = = [(1 − ba)a]2 ∈ ∆(R) Từ (3), ta có b(1 − ba) ∈ ∆(R) (1 − ba)a ∈ ∆(R) Suy − ba = (1 − ba)2 = [(1 − ba)a][b(1 − ba)] ∈ ∆(R) Từ đó, ba ∈ U (R) ba = (5) Nếu I ⊆ J(R) iđêan, ∆(R/I) = ∆(R)/I theo Mệnh đề ?? Giả sử R ∆U -vành Khi đó, u + I ∈ U (R/I), ta có u ∈ U (R) u ∈ + ∆(R) Suy u + I ∈ + ∆(R)/I = + ∆(R/I) Do R/I ∆U -vành Ngược lại, giả sử R/I ∆U -vành Lấy u ∈ U (R) tùy ý Khi u + I ∈ + ∆(R)/I Ta kiểm tra u ∈ + ∆(R) Do đó, R ∆U -vành (6) Hiển nhiên (7) Từ giả thiết U (T ) = U (R) ∩ T suy ∆(R) ∩ T ⊆ ∆(T ) Bây U (R) = + ∆(R) cho + ∆(T ) ⊆ U (T ) = U (R) ∩ T = (1 + ∆(R)) ∩ T = + (∆(R) ∩ T ) ⊆ + ∆(T ) suy + ∆(T ) ⊆ U (T ) hay T ∆U -vành Định lý Vành ma trận Mn (R) ∆U -vành n = R ∆U -vành Chứng minh (⇐:) Hiển nhiên (:⇒) Giả sử Mn (R) ∆U -vành n > Đầu tiên ta chứng minh R thể, tức phần  tử khác không  khả nghịch Lấy bất 0 − a     0 0    kỳ a ∈ R, a = ̸ 0, ta có X =      ∈ Mn (R) X =    0 Do M n (R) ∆U -vành,ta lấy X ∈ ∆(Mn (R)) Lấy phần  tử khả nghịch  0 1 0 0 0  0           0  0 U =  ∈ Mn (R) Khi In −U X =               0 0 0 a khả nghịch Mn (R), hay a ∈ U (R) Do đó, R thể ∼ Tiếp  theo, ta chứng  minh R = F2 Lấy a ∈ R, a ̸= a ̸= Lấy a 0 0 a 0      0 X=  ∈ Mn (R) Khi X khả nghịch Vì Mn (R)       0 a   1−a 0  − a        ∆U -vành nên ta có In − X =   ∈ ∆(Mn (R))       0 − a Vì − a khả nghịch nên In − X khả nghịch, mâu thuẫn Do R∼ = F2     1 X1 Cuối cùng, ta n = Lấy X1 = X = ∈ 0 In−2 Mn (R) Khi X khả nghịch Mn (R) Bởi giả thuyết,  ta có X2 In − X ∈ ∆(Mn (R)) Mặt khác, ta có In − X = In−2   X2 = Suy In − X khả nghịch, mâu thuẫn Do đó, n = 1 R ∼ = M1 (R) ∆U -vành Mệnh đề Giả sử R ∆U -vành e phần tử lũy đẳng R Khi eRe ∆U -vành Chứng minh Lấy u ∈ U (eRe) Khi u + − e ∈ U (R) Vì R ∆U -vành nên ta có u − e ∈ ∆(R) Ta chứng minh u − e ∈ ∆(eRe) Lấy tùy ý v khả nghịch eRe Rõ ràng v + − e ∈ U (R) Vì u − e ∈ ∆(R) nên u−e+v+1−e ∈ U (R) theo định nghĩa ∆, đặt u−e+v+1−e = t ∈ U (R) Ta kiểm tra et = te = ete = u − e + v , ete ∈ U (eRe) Suy u − e + U (eRe) ⊆ U (eRe), u − e ∈ ∆(eRe) Vì vậy, u ∈ e + ∆(eRe) hay eRe ∆U -vành Cho R vành M song môđun vành R Một mở rộng tầm thường R M T (R, M ) = {(r, m) : r ∈ R m ∈ M }, với phép cộng theo thành phần phép nhân định nghĩa (r, m)(s, n) = (rs, rn + ms)  r m r  : r ∈ R m ∈ M Mở rộng tầm thường T (R, M ) đẳng cấu với vành   R M vành ma trận × Hơn nữa, kiểm tra R T (R, R) ∼ = R[x]/(x2 ) Theo Mệnh đề 43, có tập phần tử khả nghịch mở rộng tầm thường T (R, M ) T (U (R), M ), ∆(T (R, M )) = T (∆(R), M )   Morita context gồm thành phần A M N B A, B vành, B NA song mơđun, tồn tích context M ×N → A  A M N × M → B với (ω, z) = ωz (z, ω) = zω , thỏa mãn vành A MB N B kết hợp với phép  toán trên ma trận A M Morita context gọi tầm thường tích context N B tầm thường, nghĩa M N = N M = (xem [?], trang 1993) Ta có   A M N B A M N B  ∼ = T (A × B, M ⊕ N )  Morita context tầm thường theo [?] Định lý Cho M (R, R) song môđun Vành R ∆U -vành T (R, M ) ∆U -vành   u m Chứng minh (:⇒) Lấy u¯ = ∈ U (T (R, M )) = T (U (R), M ), u u ∈ U (R) m ∈ M Ta u¯ − ∈ ∆(T (R, M )) Rõ ràng, u ∈ U (R) u = + a ∈ + ∆(R) với a thuộc ∆(R) Suy  a ¯= 0   + a m a  ∈ T (∆(R), M ) = ∆(T (R, M )) Vì T (R, M ) ∆U -vành (⇐:) Điều ngược lại dễ thấy  f (x − y)ϱh (y)dy − f (x)ϱ(y)dy n Rn ZR (f (x − y) − f (x))ϱh (y)dy = n ZR ≤ |f (x − y) − f (x)|ϱh (y)dy B(0,1/h) Z =ϵ ϱh (y)dy B(0,1/h) = ϵ Ta có điều phải chứng minh Chứng minh định lý 38 (i) Ta chưng minh kết n = Đủ để rằng, ϱ ∈ C1c (R), ϱ ∗ f ∈ Cm (R) với số nguyên m ≥ Cho m = giả sử ϱ ∈ C1c (R), ϱ ∗ f ∈ C1 (R) (ϱ ∗ f )′ (x) = (ϱ′ ∗ f )(x), ∀x ∈ R (35) Sau đó, ta chứng minh với m có kết luận Thật vậy, giả sử ϱ ∈ Cm c (R) m−1 ′ với m ≥ Khi ϱ ϱ ∈ Cc (R) Từ giả thiết ban đầu, ϱ ∗ f ∈ Cm−1 (R) (??) giữ Từ ϱ′ ∈ Ccm−1 (R) chí ϱ′ ∗ f ∈ Cm−1 (R), theo (??), (ϱ ∗ f )′ ∈ Cm−1 (R) giữ Vì vậy, ϱ ∗ f ∈ Cm (R), kết thúc chứng minh phát biểu (i) Ta chứng minh (??) Cho < |t| ≤ cố định x ∈ R, (ϱ ∗ f )(x + t) − (ϱ ∗ f )(x) − (ϱ′ ∗ f )(x) t Z ϱ(x − y + t) − ϱ(x − y) − tϱ′ ()x − y = f (y)dy t R (36) Lấy qua giới hạn (??) t → ∞ tốn hội tụ số hạng vế phải 68 Ta thấy, ϱ bị chặn R, Z z+t

Ngày đăng: 05/07/2023, 14:40

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w