Bài toán biên hai điểm cho phương trình vi phân hàmtuyến tính cấp một

88 1 0
Bài toán biên hai điểm cho phương trình vi phân hàmtuyến tính cấp một

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: BÀI TỐN BIÊN HAI ĐIỂM CHO PHƯƠNG TRÌNH VI PHÂN HÀM TUYẾN TÍNH CẤP MỘT LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Khái niệm sở quy theo điểm P S Alexandroff đưa vào năm 1960 (xem [1]) Năm 1962, A V Arhangel’skii chứng minh không gian X ảnh compact mở không gian metric X có sở quy theo điểm (xem [2]) Sau đó, S Lin đưa khái niệm ánh xạ 1-phủ-dãy vào năm 1996 (xem [6]), tác giả với P Yan chứng minh không gian X ảnh compact 1-phủ-dãy không gian metric X có cs-mạng quy theo điểm, X có sn-mạng quy theo điể 881 2 Một số kết liên quan Trong toàn luận văn, ký hiệu J(R) Jacobson vành R U (R) tập hợp tất phần tử khả nghịch vành R có đơn vị Trong [?], tác giả định nghĩa vành R gọi U J -vành + J(R) = U (R) Cho S vành, khơng thiết phải có đơn vị, vị nhóm S◦ = (S, ◦) S tập hợp S với phép tốn ◦:S×S →S (x, y) 7→ x ◦ y = x + y − xy Mặt khác, S vành có đơn vị, S◦ đẳng cấu với vị nhóm (S, ) R với đẳng cấu ◦ : (S, ◦) → (S, ) x 7→ − x Cụ thể, y ∈ S khả nghịch vị nhóm S◦ (được gọi phần tử tựa khả nghịch hay phần tử tựa quy) − y phần tử khả nghịch vành S nhóm phần tử khả nghịch U (S) S đẳng cấu với nhóm U◦ (S) phần tử tựa khả nghịch S Phần tử nghịch đảo y S◦ gọi tựa nghịch đảo y Ta biết I = J(S) iđêan lớn S thỏa mãn U◦ (I) = I Bổ đề ([?], Bổ đề 1.1) Các điều kiện sau tương đương vành R cho: (1) U (R) = + J(R), hay R U J -vành; (2) U (R/J(R)) = {1}; (3) C(R) iđêan R (khi C(R) = J(R)), với C(R) tập phần tử tựa quy R; (4) rb − cr ∈ J(R), r ∈ R b, c ∈ C(R); (5) ru − vr ∈ J(R), u, v ∈ U (R) r ∈ R; (6) U (R) + U (R) ⊆ J(R) (khi U (R) + U (R) = J(R)) Một vành gọi hữu hạn Dedekind ab = ba = với a, b hai phần tử vành Mệnh đề ([?], Mệnh đề 1.3) Cho R U J -vành Khi (1) ∈ J(R); (2) Nếu R thể, R ∼ = F2 ; (3) R rút gọn (khơng có phần tử lũy linh khác khơng) R giao hốn; (4) Nếu x, y ∈ R thỏa mãn xy ∈ J(R) yx ∈ J(R) xRy, yRx ⊆ J(R); (5) Giả sử I ⊆ J(R) iđêan R Khi R U J -vành R/I U J -vành; (6) R hữu hạn Dedekind; Y (7) Vành Ri U J -vành vành Ri U J -vành với i∈I i ∈ I Một vành R gọi nửa địa phương vành thương R/J(R) tổng trực tiếp iđêan phải cực tiểu Mệnh đề ([?], Mệnh đề 1.4) Vành nửa địa phương R U J -vành R/J(R) ≃ F2 × × F2 Cho R vành có đơn vị Ta ký hiệu Mn (R) vành ma trận cấp n × n R Định lý ([?], Định lý 3) Cho R vành tùy ý, có đơn vị n > Khi đó, phần tử Mn (R) tổng ba phần tử khả nghịch Mn (R) Cho R vành có đơn vị, phần tử a ∈ R gọi clean a có biểu diễn a = e + u e phần tử lũy đẳng R, u phần tử khả nghịch R Ta ký hiệu Cl(R) tập tất phần tử clean vành R Một vành R gọi clean R = Cl(R) Hệ ([?], Hệ 1.7) Cho R vành Khi đó, điều kiện sau tương đương (i) R vành rút gọn; (ii) U (R[x]) = U (R); (iii) Cl(R[x]) = Cl(R) Cho R vành M song môđun vành R Một mở rộng tầm thường R M T (R, M ) = {(r, m) : r ∈ R m ∈ M }, với phép cộng theo thành phần phép nhân định nghĩa (r, m)(s, n) = (rs, rn + ms) Mệnh đề ([?], Mệnh đề 4.9 (2)) Cho R vành M song môđun R Gọi T (R, M ) mở rộng tầm thường Khi tập phần tử khả nghịch T (R, M ) U (T (R, M )) = T (U (R), M ) Một vành R gọi I -vành iđêan phải lũy linh khác không chứa phần tử lũy đẳng khác khơng Một hệ n2 phần tử {eij } vành R gọi hệ ma trận khả nghịch ( j ̸= j ′ eij ej ′ k = ejk j = j ′ Định lý ([?], Định lý 2.1) Cho R I -vành Nếu a phần tử lũy linh cấp n (nghĩa an = 0, an−1 ̸= 0) an−1 ∈ / J(R) iđêan (a) sinh a chứa hệ n ma trận khả nghịch KHƠNG GIAN CÁC HÀM KHẢ TÍCH Định lý Cho Ω ⊂ Rn tập mở Khi (Lp (Ω), ∥.∥Lp ) tách ≤ p < ∞ không tách p = ∞ Ta cần hai kết để chứng minh định lý ??: trước kết topo (Urysohn’s Lemma) sau quan hệ xấp xỉ không gian hàm liên tục Lp Định nghĩa Cho (X, τ ) khơng gian topo Khi C0c (X) := {f : X → R liên tục spt(f ) compact (X, d)} spt(f ) := Bao đóng{x ∈ X : f (x) ̸= 0} Bổ đề (Bổ đề Urysohn) Cho X compact địa phương không gian metric, cho K ⊂ X V ⊂ X , K compact V mở thỏa mãn K ⊂ V Khi đó, tồn hàm φ ∈ C0c (X) thỏa mãn ≤ φ ≤ 1, φ ≡ K spt(φ) ⊂ V Định lý (Xấp xỉ Lp hàm liên tục) Cho Ω ⊂ Rn tập mở Khi C0c (Ω) trù mật (Lp (Ω), ∥.∥Lp ), biết ≤ p < ∞ Chứng minh định lý 35 dựa hai kết tảng xấp xỉ hàm đo được, ta cần nhớ lại Định lý (Xấp xỉ hàm đơn giản) Cho (X, M) không gian đo cho f : X → [0, +∞] hàm đo Khi tồn dãy hàm đơn giản đo sh : X → [0, +∞], (h = 1, 2, ) thỏa mãn tính chất (i) ≤ s1 ≤ s2 ≤ ≤ sh ≤ ≤ f ; (ii) lim sh (x) = f (x), ∀x ∈ X h→∞ Z Đặc biệt, f ∈ L (X, µ), nghĩa f dµ < ∞, sh → f X L1 (X, µ), nghĩa Z ∥f − sh ∥L1 (X,µ) := |f − sh |dµ → X Định lý (Lusin - Dạng không gian metric compact địa phương) Cho µ độ đo Radon compact địa phương, không gian metric tách X Cho f : X → R hàm đo cho tồn tập Borel A ⊂ X với µ(A) < ∞, f (x) = ∀x ∈ X \A |f (x)| < ∞ µ− hầu khắp nơi x ∈ X Khi đó, với ϵ > 0, tồn g ∈ C0c (X) cho µ({x ∈ X : f (x) ̸= g(x)}) < ϵ Hơn nữa, g chọn cho supx∈X |g(x)| ≤ sup |f (x)| x∈X Chứng minh cho định lý Ta chia chứng minh định lý thành hai bước Bước 1: Ta chứng minh răng, ∀ϵ > 0, ∀f ∈ Lp (Ω) tồn hàm đơn giản đo s : Ω → R cho |{x ∈ Ω : s(x) ̸= 0} < ∞| (đặc biệt s ∈ Lp (Ω), ∀p ∈ [1, ∞]); (1) ∥f − s∥Lp < ϵ (2) Đầu tiên, giả sử f ≥ Ω Theo xấp xỉ hàm không âm đo phương pháp hàm đơn giản (Định lý 36), tồn dãy hàm đơn giản đo sh : Ω → [0, +∞], (h = 1, 2, ) cho ≤ s1 ≤ s2 ≤ ≤ sk ≤ ≤ f ; lim sh (x) = f (x) h→∞ (3) ∀x ∈ Ω (4) Từ (46) ta sh ∈ Lp (Ω) |s ∈ Ω : sh (x) ̸= 0| < ∞ ∀h, (5) ∥sh − f ∥ ≤ 2f Ω, ∀h (6) Theo (47) (49), ta cso thể áp dụng định lý hội theo Lebesgue, ≤ p < ∞, ta lim ∥sh − f ∥Lp = (7) h→∞ Cho ϵ > 0, từ (50), tồn h = h(ϵ) ∈ N cho ∥sh − f ∥Lp < ϵ Nếu ta định nghĩa s := sh , theo (44) (45) Trường hợp tổng quát f : Ω → R chứng minh tách f = + f − f − áp dụng (44) (45), tách thành f + f − Bước 2: Ta ∀ϵ > 0, ∀f ∈ Lp (Ω), ∃g ∈ C0c (Ω) cho ∥f −g∥Lp < ϵ ϵ Cho f hàm đơn giản đo thỏa mãn (44) (45) với ϵ ≡ ký hiệu A := {x ∈ Ω : s(x) ̸= 0} Giả sử ∥s∥∞ > 0, khơng s ≡ ∈ C0c (Ω) kết thúc chứng minh Áp dụng định lý Lusin cho hàm s, tồn hàm g ∈ C0c (Ω) thỏa mãn |Ac | = |{x ∈ Ω : s(x) ̸= g(x)}| < ϵp , 4p ∥s∥p∞ (8) với |g(x)| ≤ ∥x∥∞ x ∈ Ω (9) Chú ý ∥f − g∥Lp ≤ ∥f − s∥Lp + ∥s − g∥Lp < Bây ta đánh giá ∥s − g∥Lp Z Z ∥s − g∥pLp = |s − g|p dx = Ω ϵ + ∥s − g∥Lp |s − g|p dx ≤ 2p ∥s∥p∞ |Aϵ | < Aϵ (10) ϵp 2p (11) Vì (53) (54) kết thúc chứng minh Chứng minh định lý ?? Ta cần chứng minh (C0c (Ω), ∥.∥∞ ) tách (12) Thật vậy, ta giả sử rằng, từ (55), ta (Lp (Ω), ∥.∥∞ ) tách được, biết ≤ p < ∞ Đầu tiên, giả sử Ω bị chặn Cho D ⊂ (C0c (Ω), ∥.∥∞ ) trù mật đếm được, ta chứng minh D trù mật (Lp (Ω), ∥.∥Lp ) với ≤ p < ∞ (13) Từ định lý 35, ∀f ∈ Lp (Ω), ∀ϵ > 0, ∃g ∈ C0c (Ω) cho ϵ ∥f − g∥Lp < D trù mật, tồn e g ∈ D cho ∥g − e g ∥∞ < ϵ 2|Ω|1/p Nhớ lại Bài tập ∥f ∥Lp ≤ |Ω|1/p ∥f ∥∞ , ∀f ∈ L∞ (Ω), biết |Ω| < ∞ (14) Điều nghĩa ϵ ∥g − g∥Lp ≤ |Ω1/p |∥g − g∥∞ < (15) Do gợi ý (57) (58) ám (56) Bây giả sử Ω không bị chặn Theo kết biết topo, tồn dãy (Ωh )h tập mở bị chặn cho Ωh ⊂ Ωh ⊂ Ωh+1 Ω= ∪∞ h=1 Ωh Hơn nữa, ý C0c (Ω) = ∪∞ h=1 Cc (Ωh ) (16) Theo (55) tồn tập Dh ⊂ (C0c (Ω), ∥.∥∞ ) trù mật đếm Cho D := ∪∞ h=1 Dh (56) giữ Từ định lý 35, ∀f ∈ Lp (Ω), ∀ϵ > 0, ∃g ∈ C0c (Ω) cho (57) Từ K := spt(g) tập compact chứa Ω, tồn h = h(g) = ϵ ∈ N cho K ⊂ Ωh Điều có nghĩa g ∈ C0c (Ωh ) ta có kết luận bước trước Bây ta chứng minh (55) Nhớ lại (C0 (K), ∥.∥∞ ) tách được, biết K ⊂ Rn tập compact (định lý ??) Cho (Ωh ) dãy tập mở bị chặn Rn Theo định nghĩa, C0c (Ωh ) ⊂ (C0 (Ω), ∥.∥∞ ) Vì (C0 (Ω), ∥.∥∞ ) tách nên với h, tồn tập D ⊂ (C0 (Ωh ), ∥.∥∞ ) trù mật đếm (17) Bây giờ, theo bổ đề Urysohn, ta sửa tập hợp hàm D eh ⊂ C0c (Ω) đẻ họ cho tập hợp hàm đếm D e D := ∪∞ h=1 Dh ⊂ (Cc (Ω), ∥.∥inf ty ) đếm trù mật (18) Áp dụng bổ đề Urysohn với K := Ωh−1 , V = Ωh cho φh ∈ C0 (Ω) cho ≤ φh (x) ≤ 1, ∀x ∈ Ω, φh (x) = 1, ∀x ∈ Ωh−1 spt(φh ) ⊂ Ωh |(f ∗ ϱh )(x) − f (x)| = f (x − y)ϱh (y)dy − f (x) n ZR Z f (x)ϱ(y)dy = f (x − y)ϱh (y)dy − n Rn

Ngày đăng: 05/07/2023, 15:04