Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 118 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
118
Dung lượng
631,09 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: MỘT LỚP BÀI TỐN BIÊN CHO PHƯƠNG TRÌNH VI PHÂN HÀM LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Qua việc hoàn thành luận văn, tác giả bắt đầu làm quen với việc nghiên cứu cách có hệ thống, có phương pháp có định hướng rõ ràng Các kinh nghiệm thu quý báu tác giả trình học tập nghiên cứu sau Các khó khăn chủ yếu mà tác giả gặp phải đánh giá trung gian phức tạp việc chứng minh định lí, điều xuất phát từ điều kiện biên ban đầu phức tạp Tuy nhiên luận văn thu số kết có ý nghĩa, sở tham kh?o cơng trình nghiên cứu quan trọng công bố trước Các kết sử dụng nghiên cứu tốn va chạm đàn hồi có lực cản nhớt mặt bên Việc khai triển tiệm cận xấp xỉ theo tham số bé phát triển từ cơng trình [12], cho phép đánh giá gần nghiệm toán theo điều kiện cho trước Tuy nhiên khn khổ có hạn luận văn nên tác giả chưa có dịp đề cập đến vấn đề đánh giá sai số xấp xỉ theo tham số bé bậc khai triển chưa tìm hiểu cặn kẽ khả ứng dụng kết thu toán vật lý lĩnh vực khác 474 2 Độ giao hốn tương đối nhóm Ta bắt đầu định nghĩa độ giao hốn nhóm Định nghĩa Cho G nhóm H nhóm G Ký hiệu C = {(h, g) ∈ H × G | hg = gh} Độ giao hốn tương đối nhóm H G, ký hiệu Pr(H, G), định nghĩa sau Pr(H, G) = |C| |H||G| Từ Định nghĩa ?? ta thấy Pr(G, G) = Pr(G), Pr(G) độ giao hốn nhóm G định nghĩa Định nghĩa ?? Sau số ví dụ độ giao hốn tương đối số nhóm Ví dụ Xét nhóm nhị diện D3 cho phần tử sinh hệ thức xác định sau D3 = ⟨r, s | r3 = s2 = 1, s−1 rs = r−1 ⟩ Khi D3 = {1, r, r2 , s, rs, r2 s} phép nhân phần tử D3 cho bảng sau • 1 r r2 s rs r2 s r r2 s rs r2 s r r r2 r2 r2 r rs r2 s s r s s rs s s rs r2 s r r2 r2 s r2 s s rs r r2 r rs rs r2 s s r2 Bằng cách đếm trực tiếp theo Định nghĩa ?? ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨s⟩ H = ⟨rs⟩ H = ⟨r2 s⟩ H = D3 |C| 12 8 18 Pr(H, D3 ) 3 3 Ví dụ Xét nhóm nhị diện D4 cho phần tử sinh hệ thức xác định sau D4 = ⟨r, s | r4 = s2 = 1, s−1 rs = r−1 ⟩ Khi D4 = {1, r, r2 , r3 , s, rs, r2 s, r3 s} phép nhân phần tử D4 cho bảng sau • 1 r r2 r3 s rs r2 s r3 s r r2 r3 s rs r2 s r3 s r r r2 r3 r2 r2 r3 r3 r3 1 r r2 s r3 s s rs r r2 rs r2 s r3 s s r s s rs r2 s s s rs r2 s r3 s rs rs r2 s r3 s s r3 r r2 r3 r r2 r2 s r2 s r3 s s rs r2 r3 r3 s r3 s s rs r2 s r r2 r3 r Bằng cách đếm trực tiếp theo Định nghĩa ?? ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨r2 , s⟩ H = ⟨r2 , rs⟩ H = ⟨s⟩ |C| 24 24 24 12 Pr(H, D4 ) 4 4 Các nhóm H = ⟨rs⟩ H = ⟨r2 s⟩ H = ⟨r3 s⟩ H = ⟨r2 ⟩ H = D4 |C| 12 12 12 16 40 Pr(H, D4 ) 4 Ví dụ Xét nhóm quaternion Q8 cho phần tử sinh hệ thức xác định sau Q8 = ⟨r, s | r4 = 1, s2 = r2 , s−1 rs = r−1 ⟩ Khi Q8 = {1, r, r2 , r3 , s, rs, r2 s, r3 s} phép nhân phần tử Q8 cho bảng sau • 1 r r2 r3 s rs r2 s r3 s r r2 r3 s rs s2 s r3 s r r r2 r3 r2 r2 r3 r3 r3 1 r r2 s r3 s s rs r r2 rs r2 s r3 s s r s s rs r2 s s s rs r2 s r3 s r2 r3 rs rs r2 s r3 s s r r2 r3 r r2 s r2 s r3 s s rs r r2 r3 r3 s r3 s s rs r2 s r3 r r2 Bằng cách đếm trực tiếp theo Định nghĩa ?? ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨r2 ⟩ H = ⟨s⟩ H = ⟨rs⟩ H = Q8 |C| 24 16 24 24 40 Pr(H, Q8 ) 4 Từ định nghĩa độ giao hoán tương đối ta có kết sau Mệnh đề Cho G nhóm H nhóm G Khi X X Pr(H, G) = |H||G| |CG (x)| = x∈H |H||G| |CH (y)| y∈G Chứng minh Ký hiệu C = {(x, y) ∈ H × G | xy = yx} Với x ∈ H số cặp phần tử (x, y) ∈ C |CG (x)| CG (x) tâm hóa x G Với y ∈ G số cặp phần tử (x, y) ∈ C |CH (y)| CH (y) tâm hóa y H Cho nên ta có X X |C| = |CG (x)| = x∈H |CH (y)| y∈G Từ suy cơng thức cần chứng minh Kết sau cho ta cơng thức tính độ giao hốn tương đối nhóm chuẩn tắc nhóm nhờ số lớp liên hợp Mệnh đề Cho G nhóm H nhóm chuẩn tắc G Khi Pr(H, G) = k |H| k số lớp liên hợp G nằm H Chứng minh Với x ∈ G bất kỳ, ký hiệu lớp liên hợp x G O(x) Khi ta có |O(x)| = |G : CG (x)| Gọi x1 , x2 , , xk phần tử đại diện lớp liên hợp G nằm H Vì H ◁ G với x ∈ H ta có O(x) ⊂ H Do đó, theo Mệnh đề ??, ta có k X X |CG (x)| = |O(xi )||CG (xi )| Pr(H, G) = |H||G| |H||G| = |H||G| x∈H k X i=1 i=1 k X k |G : CG (xi )||CG (xi )| = |G| = |H||G| |H| i=1 Vậy ta có điều phải chứng minh Ta cần bổ đề sau phép chứng minh kết so sánh độ giao hoán tương đối nhóm nhóm với độ giao hốn nhóm nhóm Bổ đề Cho H nhóm G Khi với phần tử x ∈ G |H : CH (x)| ⩽ |G : CG (x)| Hơn nữa, dấu đẳng thức xảy G = HCG (x) Chứng minh Lấy x ∈ G Khi đó, theo Mệnh đề ??, ta có |H||CG (x)| = |HCG (x)| ⩽ |G| |H ∩ CG (x)| Do |H| |G| ⩽ |H ∩ CG (x)| |CG (x)| Mà H ∩ CG (x) = {a ∈ H | a ∈ CG (x)} = CH (x), từ suy |H| |G| ⩽ |CG (x)| |CH (x)| Do đó, theo Định lý Lagrange ta có |H : CH (x)| ⩽ |G : CG (x)| Từ lập luận ta thấy dấu đẳng thức xảy G = HCG (x) Vậy ta có điều phải chứng minh Mệnh đề sau cho ta đánh giá độ giao hốn tương đối nhóm nhóm nhờ độ giao hốn nhóm nhóm Mệnh đề Cho H nhóm nhóm G Khi Pr(G) ⩽ Pr(H, G) ⩽ Pr(H) Chứng minh Theo Mệnh đề ?? ta có X Pr(H, G) = |H||G| |CG (x)| = x∈H X |CG (x)| |H| |G| x∈H Theo Bổ đề ?? ta có |CG (x)| |C (x)| ⩽ H với x ∈ H |G| |H| Từ suy Pr(H, G) ⩽ X |CH (x)| X = |CH (x)| = Pr(H) |H| |H| |H| x∈H x∈H Theo Mệnh đề ?? ta có Pr(H, G) = X X |CH (y)| |CH (y)| = |H||G| |G| |H| y∈G y∈G Theo Bổ đề ?? ta có |CH (y)| |C (y)| ⩾ G với y ∈ G |H| |G| Từ suy Pr(H, G) ⩾ X |CG (y)| X = |CG (y)| = Pr(G) |G| |G| |G| y∈G y∈G Vậy ta có điều phải chứng minh Mệnh đề sau cho ta điều kiện cần đủ để xảy đẳng thức Mệnh đề Cho H nhóm nhóm G Khi (i) Pr(H, G) = Pr(H) G = HCG (x) với x ∈ H (ii) Pr(H, G) = Pr(G) G = HCG (x) với x ∈ G Chứng minh (i) Từ phép chứng minh Mệnh đề ?? ta thấy Pr(H, G) = Pr(H) |CG (x)| |CH (x)| = với x ∈ H |H| |G| Theo Bổ đề ??, điều xảy G = HCG (x) với x ∈ H Vậy ta có điều phải chứng minh (ii) Lập luận hoàn toàn tương tự ta có điều phải chứng minh Từ Mệnh đề ?? ta có hệ sau Hệ Cho H nhóm nhóm G Nếu Pr(H, G) = Pr(G) Pr(H) = Pr(G) Mệnh đề sau cho ta điều kiện đủ để không xảy đẳng thức Mệnh đề ?? Mệnh đề Cho H nhóm nhóm G Nếu H khơng chuẩn tắc G Pr(G) < Pr(H, G) < Pr(H) Chứng minh Giả sử H không chuẩn tắc G Trước tiên ta chứng minh tồn x ∈ H cho G ̸= HCG (x) Thật vậy, giả sử trái lại G = HCG (x) với x ∈ H Lấy g ∈ G x ∈ H Khi g −1 ∈ G = HCG (x) Giả sử g −1 = với h ∈ H, a ∈ CG (x) Khi ta có g −1 xg = (ha)x(ha)−1 = haxa−1 h−1 = hxaa−1 h−1 = hxh−1 ∈ H Điều chứng tỏ H ◁ G, trái với giả thiết Vậy ta có điều phải chứng minh Do đó, theo Bổ đề ?? ta có Pr(H, G) ̸= Pr(H) Pr(H, G) ̸= Pr(G) Kết hợp điều với Mệnh đề ?? ta có bất đẳng thức cần chứng minh Các đặc trưng ∆U -vành Ta biết + J(R) ⊆ U (R) Vành R gọi U J -vành U (R) ⊆ + J(R), nghĩa + J(R) = U (R) Lưu ý R U J -vành ∆(R) = J(R) 3.1 Các tính chất tổng quát ∆U -vành Bổ đề Cho R vành tùy ý, ta có (1) ∆(R) vành R (2) ∆(R) iđêan R ∆(R) = J(R) (3) Với r ∈ ∆(R) u ∈ U (R), ur, ru ∈ ∆(R) Y Y Y (4) Nếu R = Ri tích vành Ri , ∆( Ri ) = ∆(Ri ) i∈I i∈I (5) Nếu R vành nửa địa phương, ∆(R) = J(R) (6) ∆(R[x]/(xn )) = ∆(R)[x]/(xn ) (7) ∆(R[[x]]) = ∆(R)[[x]] Vành R gọi ∆U -vành + ∆(R) = U (R) i∈I 36 Dãy số hội tụ đến x(t) cho t thuộc R, hàm x(t) kết vấn đề Nhìn lại phương pháp chứng minh định lý 7.3, khơng khó để nhận thấy lựa chọn hàm liên tục ban đầu X0 (t) dần đến giải pháp X(t) Thực sự, bất đẳng thức áp dụng Z t |Xm+1 (t) − Xm | ≤ ∥A∥∞ |Xm (s) − Xm−1 (s)|ds, m ≥ 1, t ∈ I τ Sự khác biệt phát sinh khác biệt ban đầu Xi (t) − X0 (t) Ước lượng thu từ lập luận quy nạp sau trở thành h im |Xm+1 (t) − Xm | ≤ ∥X1 − X0 ∥∞ ∥A∥∞ [t − τ ] /m! Phần lại lập luận diễn trước đây, đưa giải pháp X(t) (7.2) Nếu (IV P) xem xét đoạn I nào, ta ước lượng khoảng cách Xm (t) X(t) đoạn nhỏ J = [a, b] nằm I chứa τ Với k > m ∥X − Xm ∥∞,J ≤ ∥X − Xk ∥∞,J + ∥Xk − Xm ∥∞,J ≤ ∥X − Xk ∥∞,J + ∥(Xk − Xk−1 ) + (Xk−1 − Xk−2 ) + · · · + (Xm+1 − Xm )∥∞,J Và sử dụng bất đẳng thức tam giác lấy giới hạn (7.10) ngụ ý ∥X − Xm ∥∞,J ≤ ∞ X ∥Xk+1 − Xk ∥∞,J , (7.11) k=m ≤ ∥X1 − X0 ∥∞,J ∞ h X ∥A∥∞,J [b − τ ] im /m! k=m Tất nhiên, chuỗi cuối lại phần lại chuỗi cho hàm mũ (∥A∥∞,J [b − τ ]) Do (7.11) ngụ ý Xm → X định mức tối đa J Chúng tơi tóm tắt định lý sau Định lý 15 (Định nghĩa xấp xỉ liên tiếp bởi) Z t Xm+1 (t) = ξ + [A(s)Xm (s) + B(s)]ds, τ t∈I 37 Tại X0 ∈ C(I, F n ) tùy ý Nếu X(t) giải pháp (IV P) I , Xm → X đồng ∥X − Xm ∥∞,J → 0, k→∞ Trên đoạn nhỏ J ⊂ I chứa τ Tính liên tục giải pháp Trở lại tình Định lý 7.3, [a, b] đoạn đóng, giải pháp X(t) tốn giá trị ban đầu X ′ = A(t)X + B(t), t ∈ I, IV P X(τ ) = ξ, Rõ ràng phụ thuộc vào τ ∈ I, ξ ∈ F n , A ∈ C(I, Mn (F)) B ∈ C(I, F n ) Kết phần khẳng định t ∈ I Giá trị X(t) hàm liên tục biến Phân tích phụ thuộc bắt đầu ước lượng cho ∥X∥∞ điều suy cách sử dụng phương pháp chứng minh Định lý 7.3 Bắt đầu với việc xấp xỉ từ Z t X0 (t) = ξ + B(s)ds, τ Kết X(t) = lim Xk (t) k→∞ Sau đáp ứng ước lượng k−1 X ∥X∥∞ = ∥ lim Xk ∥ = lim X0 (t) + (Xm+1 (t) − xm (t)) k→∞ k→∞ m=0 ≤ ∥X0 ∥ + ∞ X ∞ ∥Xm+1 − Xm ∥∞ m=0 Bây áp dụng bất đẳng thức (7.8), cho kết ∥X∥∞ ≤ ∥X0 ∥∞ + ∥X0 ∥∞ ∞ X ∥A∥m+1 [b − τ ]m+1 ∞ m=0 (m + 1)! 38 = ∥X0 (t)∥∞ exp(∥A∥∞ [b − τ ]) Từ Z t ξ + B(s)ds ∥X0 (t)∥∞ = τ ∞ ≤ |ξ| + |b − a|∥B∥∞ , Ước lượng mong muốn cho ∥X∥∞ ∥X∥∞ ≤ |ξ| + |b − a|∥B∥∞ exp(∥A∥∞ [b − a]) (7.12) Ước lượng đơn giản (7.12) sử dụng để X hàm liên tục chung tất biến Do đó, thay đổi nhỏ t, A, b, τ, ξ tạo thay đổi nhỏ X Nếu ký hiệu giải pháp (IV P) thời điểm t X(t, A, B, τ, ξ), sau đó, định lý 7.6 cung cấp ý nghĩa xác cho phát biểu X(s, C, D, σ, η) → X(t, A, B, τ, ξ), (s, C, D, σ, η) → (t, A, B, τ, ξ) Đó là, X liên tục (t, A, B, τ, ξ) Định lý 16 Đặt I đoạn [a, b] bị chặn, A, C ∈ C(I, Mn (F)), B, D ∈ C(I, F n ), τ, σ ∈ I , ξη ∈ F n Giả định X kết X ′ = A(t)X + B(t), X(τ ) = ξ, t∈I Cho t thuộc I e > 0, có tồn ϵ > Y kết Y ′ = C(t)Y + D(t), y(σ) = η, t∈I |s − t| < δ, ∥C − A∥∞ < δ, |σ − τ | < δ, ∥D − B∥∞ < δ |η − ξ| < δ Vậy |Y (s) − X(t)| < ϵ (7.14) 39 Chứng minh Hiệu hai phương trình cho X(t) Y (t) ta (Y − X)′ = C(t)(Y − X) + (C(t) − A(t))X + D(t) − B(t) Do Z = Y − X Z đáp ứng giá trị toán ban đầu Z ′ = C(t)Z + E(t), Z(σ) = η − X(σ) Nơi E(t) = (C(t) − A(t))X(t) + D(t) − B(t) Chúng ta áp dụng đánh giá (7.12) cho Z thu ∥Y − X∥∞ = ∥Z∥∞ ≤ |Z(σ)| + (b − a)∥E∥∞ exp(∥C∥∞ [b − a]) (7.15) Đặt e > cho Ta thấy |Y (s) − X(t)| < |Y (s) − X(s)| + |X(s) − X(t)| ≤ ∥Y − X∥∞ + |X(s) − X(t)| (7.16) Từ X liên tục t, cho e > có ϵ > |s − t| < δ1 Ngụ ý |X(s) − X(t)| < ϵ Mà |Z(σ)| = |η − X(σ)| ≤ |η − ξ| + |X(τ ) − X(σ)| Từ X liên tục t, cho e > có ϵ2 > |η − ξ| < δ2 , Ngụ ý |τ − σ| < δ2 ϵ |Z(σ)| exp(∥C∥∞ [b − a]) < Cuối cùng, từ E(t) = (C(t) − A(t))X(t) + D(t) − B(t) Có ϵ3 ∥C − A∥∞ < ϵ3 , Ngụ ý ∥D − B∥∞ < ϵ3 ϵ |b − a|∥E∥∞ exp(∥C∥[b − a]) < Và chọn δ > thoả mãn δ = min(δ1 , δ2 , δ3 ) Vậy (7.13) hợp lệ cho ϵ (7.14) sau từ (7.15)-(7.19) 40 Không gian hữu hạn chiều Định nghĩa (i) Một không gian vector E trường số thực gọi hữu hạn chiều bao gồm hữu hạn vector độc lập tuyến tính (ii) Số lớn vector độc lập tuyến tính khơng gian vector hữu hạn chiều E gọi chiều ký hiệu dimR E Hệ B ⊂ E sinh dimR E vector độc lập tuyến tính gọi sở Định lý 17 Giả sử E không gian vector hữu hạn chiều dimR E = n (i) Nếu B ⊂ E sở, B sinh E , cụ thể spanR B = E (ii) E Rn đẳng cấu tuyến tính (iii) Giả sử ∥.∥1 ∥.∥2 hai chuẩn E Khi (E, ∥.∥1 ) (E, ∥.∥2 ) đẳng cấu topo (iv) Giả sử ∥.∥ chuẩn E Khi (E, ∥.∥) (E ′ , ∥.∥E ′ ) đẳng cấu topo Theo tập trước, không gian định chuẩn hữu hạn chiều (E, ∥.∥) đẳng cấu topo với không gian Hilbert Rn Đây đặc trưng mạnh, khơng cịn cho khơng gian định chuẩn vô hạn chiều 10 Một số kiến thức nhóm Một nhóm (G, ·) tập hợp G ̸= ∅ trang bị phép tốn hai ngơi · thỏa mãn điều kiện sau đây: (i) a · (b · c) = (a · b) · c với a, b, c ∈ G, (ii) Tồn phần tử e ∈ G cho a · e = a = e · a với a ∈ G, (iii) Với a ∈ G tồn phần tử a′ ∈ G cho a · a′ = a′ · a = e Để đơn giản, ta ký hiệu ab thay cho a · b Phần tử e xác định (ii) nhất, gọi phần tử đơn vị nhóm G, thường ký hiệu 41 Với a ∈ G, phần tử a′ xác định (iii) nhất, gọi phần tử nghịch đảo a, ký hiệu a−1 Một nhóm G gọi giao hốn (hay abel ) ab = ba với a, b ∈ G Nếu nhóm G có hữu hạn phần tử ta gọi G nhóm hữu hạn, gọi số phần tử G cấp nhóm G, ký hiệu |G| Cho G nhóm, H tập G Ta gọi H nhóm G, ký hiệu H ⩽ G, điều kiện sau thỏa mãn: (i) Phép toán G hạn chế lên H cảm sinh phép toán H , (ii) H nhóm với phép tốn cảm sinh Cho G nhóm, H tập G ta ký hiệu ⟨S⟩ nhóm bé G chứa S , gọi S tập sinh ⟨S⟩ Đặc biệt, nhóm có tập sinh gồm phần tử gọi nhóm xiclíc Mệnh đề 17 (Định lý Lagrange) Cho G nhóm hữu hạn, H nhóm G Khi |H| ước |G| Với G nhóm hữu hạn, H ⩽ G, ta ký hiệu |G : H| = |G| : |H|, gọi số nhóm H G Mệnh đề 18 Cho G nhóm, A, B hai nhóm hữu hạn G Ký hiệu AB = {ab | a ∈ A, b ∈ B} Khi |AB| = |A||B| |A ∩ B| Cho G nhóm, a phần tử G Với u phần tử G, liên hợp u a, ký hiệu ua , định nghĩa ua = a−1 ua Với H nhóm G, ta gọi H nhóm chuẩn tắc G, ký hiệu H ◁ G, ∈ H với a ∈ G, h ∈ H Cho N nhóm chuẩn tắc G Ký hiệu G/N = {aN | a ∈ G} Khi G/N nhóm với phép tốn xác định sau Với a, b ∈ G (aN )(bN ) = abN Nhóm G/N gọi nhóm thương G N 42 Với S tập G, tâm hóa S G, ký hiệu CG (S), định nghĩa CG (S) = {a ∈ G | ua = u với u ∈ S} Trong trường hợp S = {x}, ta dùng ký hiệu CG (x) thay cho CG (S) Tâm nhóm G, ký hiệu Z(G), định nghĩa Z(G) = CG (G) Mệnh đề 19 Cho G nhóm khơng giao hốn Khi đó, nhóm thương G/Z(G) khơng nhóm xiclíc Cho G nhóm Với x y hai phần tử G, giao hoán tử x y , ký hiệu [x, y], định nghĩa [x, y] = x−1 y −1 xy Nhóm giao hốn tử G, ký hiệu G′ , định nghĩa nhóm sinh tập tất giao hoán tử {[x, y] | x, y ∈ G} Cho hai nhóm G H Một ánh xạ f : G → H gọi đồng cấu nhóm với a, b ∈ G f (ab) = f (a)f (b) Nếu đồng cấu f đơn ánh (tương ứng, tốn ánh, song ánh) ta gọi f đơn cấu (tương ứng, toàn cấu, đẳng cấu) Ta ký hiệu Aut(G) nhóm tất tự đẳng cấu G Cho N H hai nhóm bất kỳ, cho θ : H → Aut(N ) đồng cấu nhóm Khi đó, tập hợp G = {(x, h) | x ∈ N, h ∈ H} nhóm với phép tốn xác định sau Với (x1 , h1 ), (x2 , h2 ) ∈ G, (x1 , h1 )(x2 , h2 ) = (x1 θ(h1 )(x2 ), h1 h2 ) Nhóm G xác định gọi tích nửa trực tiếp N H ứng với tác động θ, ký hiệu G = N ×θ H Trong trường 43 hợp đặc biệt θ đồng cấu tầm thường tích nửa trực tiếp tích trực tiếp Sau số kiến thức p-nhóm nhóm abel hữu hạn Cho p số nguyên tố Một nhóm G gọi p-nhóm |G| mơt lũy thừa p Ta thấy nhóm con, nhóm thương p-nhóm p-nhóm Mệnh đề 20 Cho p số nguyên tố Khi (i) Mọi nhóm có cấp p nhóm xiclíc (ii) Mọi nhóm có cấp p2 nhóm abel Mệnh đề 21 Mọi nhóm abel hữu hạn G biểu diễn cách thành tích trực tiếp nhóm xiclíc G∼ = Cn1 × Cn2 × · · · × Cnk ni ⩾ 2, i = 1, 2, k , n1 | n2 | · · · | nk Sau số kiến thức nhóm đối xứng nhóm thay phiên Cho X tập hợp Một song ánh từ tập X đến gọi phép tập X Ký hiệu S(X) tập tất phép tập X Khi S(X) nhóm với phép tốn hợp thành ánh xạ Ta gọi S(X) nhóm đối xứng tập X Ta dùng ký hiệu Sn để nhóm đối xứng tập X = {1, 2, , n} gọi Sn nhóm đối xứng bậc n Định lý 18 Mọi phép π ∈ Sn với n ⩾ phân tích thành tích xích rời Phân tích không kể đến thứ tự nhân tử Cho π ∈ Sn với n ⩾ Khi đó, theo Định lý ??, ta có phân tích π thành tích xích rời π = (a11 a12 · · · a1k1 )(a21 a22 · · · a2k2 ) · · · (as1 as2 · · · asks ) ta giả thiết k1 ⩾ k2 ⩾ · · · ⩾ ks Ta gọi (k1 , k2 , , ks ) kiểu phép π Mệnh đề 22 Hai phép nhóm đối xứng Sn với n ⩾ liên hợp với chúng có kiểu 44 Cho σ ∈ Sn với n ⩾ Ta nói cặp (σ(i), σ(j)) nghịch σ i < j σ(i) > σ(j) Dấu phép σ, ký hiệu sign(σ), xác định công thức sign(σ) = (−1)t t số nghịch σ Nếu sign(σ) = ta gọi σ phép chẵn, sign(σ) = −1 ta gọi σ phép lẻ Mệnh đề 23 Cho σ, τ ∈ Sn với n ⩾ Khi (i) sign(στ ) = sign(σ)sign(τ ) (ii) Nếu σ xích độ dài k sign(σ) = (−1)k+1 Với n ⩾ ta ký hiệu An tập phép chẵn bậc n Khi An nhóm chuẩn tắc số Sn Ta gọi An nhóm thay phiên bậc n Cuối mục kết độ giao hốn nhóm Định nghĩa Cho G nhóm Ký hiệu C = {(x, y) ∈ G × G | xy = yx} Độ giao hoán G, ký hiệu Pr(G), định nghĩa sau Pr(G) = |C| |G|2 Mệnh đề 24 Nếu G nhóm khơng giao hốn Pr(G) ⩽ 11 Một vài tính chất đại số ∆U -vành Mệnh đề 25 Cho R vành 2-nguyên thủy Nếu vành đa thức R[x] ∆U -vành, R ∆U -vành Chứng minh R vành 2-nguyên thủy, theo Mệnh đề 22, ∆(R[x]) = ∆(R) + J(R[x]) Mặt khác ta có J(R[x]) = I[x] với I iđêan lũy linh R Bây giờ, ta giả sử R[x] ∆U -vành Khi U (R) ⊆ U (R[x]) = + ∆(R[x]) = + ∆(R) + I[x], 45 điều có nghĩa U (R) ⊆ + ∆(R) + I = + ∆(R) ⊆ U (R), I iđêan lũy linh (nên I ⊆ ∆(R)) Do U (R) = + ∆(R), hay R ∆U -vành Mệnh đề 26 Cho R vành m ∈ N (1) R ∆U -vành R[x]/xm R[x] ∆U -vành (2) R ∆U -vành vành chuỗi lũy thừa R[[x]] ∆U -vành Chứng minh (1) Điều suy từ Mệnh đề ?? (5), từ xR[x]/xm R[x] ⊆ J(R[x]/xm R[x]) (R[x]/xm R[x])/(xR[x]/xm R[x]) ∼ = R (2) Ta xét (x) = xR[[x]] iđêan R[[x]] Khi (x) ⊆ J(R[[x]]) Vì R ∼ = R[[x]]/(x) nên (2) suy từ Mệnh đề ?? (5) Bổ đề Cho R, S vành i : R → S, ϵ : S → R đồng cấu vành thỏa mãn ϵi = idR Khi đó, khẳng định sau (1) ϵ(∆(S)) ⊆ ∆(R) (2) Nếu S ∆U -vành, R ∆U -vành (3) Nếu R ∆U -vành ker ϵ ⊆ ∆(S), S ∆U -vành Chứng minh (1) Dễ thấy, ϵ(U (S)) ⊆ U (R) U (R) = ϵi(U (R)) ⊆ ϵ(U (S)) nên ϵ(U (S)) = U (R) Lấy a ∈ ∆(S) Rõ ràng, a + U (S) ⊆ U (S), ϵ(a) + ϵ(U (S)) ⊆ ϵ(U (S)) ϵ(a) + U (R) ⊆ U (R) Điều có nghĩa ϵ(a) ∈ ∆(R) Do đó, ϵ(∆(S)) ⊆ ∆(R) (2) Cho S ∆U -vành Khi U (S) = + ∆(S), theo (1) U (R) = ϵ(U (S)) = + ∆(S) ⊆ + ∆(R) Do U (R) = + ∆(R) (3) Giả sử R ∆U -vành Ta phải ϵ−1 (U (R)) ⊆ + ∆(S), điều có nghĩa U (S) = + ∆(S) Thật vậy, với y ∈ ϵ−1 (U (R)), ta lấy ϵ(y) ∈ U (R) = 1+∆(R), R ∆U -vành Suy y −1 = i(x)+v , v tùy ý thuộc ker(ϵ) x ∈ ∆(R) Lấy tùy ý u khả nghịch thuộc S Lưu ý x + U (R) ⊆ U (R) Ta có ϵ(i(x) + u) = x + ϵ(u) ∈ x + ϵ(U (S)) = x + U (R) ⊆ U (R) = ϵ(U (S)) i(x) + u = u′ + a u′ ∈ U (S) a ∈ ker(ϵ) Suy y − + u = u′ + a + v ∈ U (S) + ker(ϵ) ⊆ U (S) + ∆(S) theo giả thuyết Từ U (S) + ∆(S) ⊆ U (S) với vành có đơn vị S , ta có 46 y − + u ∈ U (S) với u ∈ U (S) Điều có nghĩa y − ∈ ∆(S) hay y ∈ + ∆(S) Ta có điều phải chứng minh Cho vành R nhóm G, ta ký hiệu vành nhóm X R G RG Một phần tử tùy ý α ∈ RG có dạng α = rg g rg ∈ R g∈G Giả sử R vành M vị nhóm, RM gọi vành vị nhóm định nghĩa giống vành nhóm Mệnh đề 27 Cho R vành, M vị nhóm RM vành vị nhóm Nếu RM ∆U -vành R ∆U -vành Chứng minh Ta xét quan hệ bao hàm ι : R → RM (ι(r) = re với e phần tử đơn vị vị nhóm ! M ) ϵ : RM → R đồng cấu mở rộng X X xác định ϵ rm m = rm ([?] Mệnh đề II.3.1) Khi ta đủ m∈M m∈M điều kiện để áp dụng Bổ đề ?? (2) Ta có kết quả, vành đa thức R[X] ∆U -vành R ∆U -vành Với vành đa thức vành giao hoán, ta kết tốt Ta biết R vành giao hốn có đơn vị f = a0 + a1 x + · · · + an xn ∈ R[x] f khả nghịch R[x] a0 khả nghịch R a1 , a2 , , an phần tử lũy linh trong R Từ nhận xét ta có mệnh đề sau Mệnh đề 28 Cho R vành giao hốn có đơn vị Vành đa thức R[x] R ∆U R ∆U 12 Không gian hàm Lipschitz Lip(Ω) Định nghĩa Cho A ⊂ Rn (i) Hàm f : A ⊂ Rn → R gọi "Lipschitz" tồn số L>0 thỏa |f (x) − f (y)| ≤ L|x − y|, ∀x, y ∈ A Tập hợp hàm Lipschitz f : A ⊂ Rn → R ký hiệu Lip(A) 47 (ii) Cho f ∈ Lip(A) Một số không âm |f (x) − f (y)| : x, y ∈ A, x ̸= y Lip(f ) = Lip(f, A) := sup |x − y| gọi số Lipschitz f Nhận xét 10 Định nghĩa hàm Lipschitz khái niệm metric Thật vậy, (X, d) (Y, ϱ) không gian metric, ánh xạ f : X → Y gọi Lipschitz có số L > thỏa mãn ϱ(f (x), f (y)) ≤ Ld(x, y), ∀x, y ∈ X Mệnh đề 29 Cho A ⊂ Rn f ∈ Lip(A) (i) f liên tục A; (ii) tồn f¯ : A → R với f |A = f Lip(f ) = Lip(f ) Nhận xét 11 Từ mệnh đề 19 suy f ∈ Lip(A), với A ⊂ Rn , có nghĩa hàm f : A → R ngược lại Hơn nữa, ánh xạ mở rộng E : Lip(A) → Lip(A), E(f ) := f song ánh Theo kết này, ta hiểu Lip(A) = Lip(A) Lưu ý tính chất mở rộng khơng cịn khơng gian C1 (Ω) Mệnh đề 30 Cho Ω ⊂ Rn tập lồi bị chặn Khi C1 (Ω) ⊂ Lip(Ω) Chứng minh Cho f ∈ C1 (Ω) Theo định lý giá trị trung bình ∀x, y ∈ Ω, ∃z ∈ xy := {tx + (1 − t)y : ≤ t ≤ 1} ⊂ Ω thỏa mãn f (x) − f (y) = (∇f (z), x − y)Rn Nghĩa |f (x) − f (y)| = |(∇f (z), x − y)Rn | ≤ sup(|∇f |)|x − y| = L|x − y|, ∀x, y ∈ Ω Ω Nhận xét 12 (i) không Ω khơng lồi 48 Ví dụ: Cho Ω = {(x, y) ∈ R : y < ( f (x, y) := p |x|, x2 + y < 1} y β y > 0 y ≤ với 1, β < Khi f ∈ C1 \ Lip(Ω) Thật vậy, dễ thấy f ∈ C1 Ta chứng minh f ∈ / Lip(Ω) Theo phản chứng, giả sử f ∈ Lip(Ω) Khi tồn L > thỏa mãn, với (x, y) ∈ Ω với x > 0, y > 0, x 1/β |f (x, y) − f (−x, y)| = 2y β ≤ 2Lx ⇔ y ≤ L x 1/β √ Từ 1/2 < 1/β , ta chọn (x, y) ∈ Ω thỏa mãn x > y > , L điều mấu thuẫn với bất đẳng thức trước (ii) Quan hệ bao hàm chặt Ví dụ: Cho Ω = (−1, 1) f (x) = |x| Khi f ∈ Lip(Ω) \ C1 (Ω) Mặc dù không gian hàm Lipschitz Lip(Ω) rộng hàm khả vi liên tục C1 (Ω), chúng có chung tính chất quan trọng, tính khả vi, chứng minh trường hợp chiều Định lý 19 (Rademacher) Cho Ω ∈ Rn tập mở cho f ∈ Lip(Ω) Khi f khả vi x, Ln hầu khắp nơi, x ∈ Ω, nghĩa bỏ tập có độ đo không N ⊂ Ω, với x ∈ Ω \ N tồn hàm tuyến tính varphi : Rn → R thỏa mãn f (y) − f (x) − φ(y − x) = y→x y−x lim Đặc biệt, với x ∈ Ω \ N tồn ∇f (x) Định nghĩa Cho Ω ⊂ Rn tập mở bị chặn, cho f ∈ Lip(Ω) Ta biểu thị ∥f ∥Lip = ∥f ∥Lip,Ω := ∥f ∥∞,Ω + Lip(f, Ω) ∥.∥Lip gọi chuẩn Lip Định lý 20 (Lip(Ω), ∥.∥Lip ) không gian Banach vô hạn chiều không không gian Hilbert, biết Ω ∈ Rn tập mở bị chặn 49 Chứng minh Dễ thấy (Lip(Ω), ∥.∥Lip ) không gian tuyến tính định chuẩn, ý Lip(f + g) ≤ Lip(f ) + Lip(g) ∀f, g ∈ Lip(Ω) (22) Ta phải tính đầy đủ Cho (fh )h dãy Cauchy (Lip(Ω), ∥.∥Lip ), nghĩa với ϵ > tồn h = h(ϵ) ∈ N thỏa mãn |fh (x) − fk (y)| + |fh (x) − fk (y) − fh (z) + fk (z)| ≤ |y − z| (23) ∥fh − fk ∥∞ + Lip(fh − fk ) = ∥fh − fk ∥Lip ≤ ϵ ∀k > h > h, x, y, z ∈ Ω với y ̸= z Theo (49) (50), suy tồn L > thỏa mãn Lip(fh ) ≤ L ∀h, (24) theo (50), (fh )h dãy Cauchy (C0 (Ω), ∥.∥∞ ) Khi đó, tồn f ∈ C0 (Ω) thỏa mãn fh → f Ω Theo (51), ta Lip(f ) ≤ L, f ∈ Ω Lấy qua giới hạn (50), k → ∞, ϵ > tồn h = h(ϵ) ∈ N cho |fh (x) − f (x)| + fh (y) − f (y) − fh (z) + f (z) ≤ϵ y−z ∀h > h, x, y, z ∈ Ω, y ̸= z Điều có nghĩa lim ∥fh − f ∥Lip = h→∞ Từ tập hợp hàm đa thức chứa Lip(Ω), Lip(Ω) vô hạn chiều Cuối cùng, ta cần phải chứng minh khơng phải không gian Hilbert, lập luận tương tự trường hợp trước, cách sử dụng đẳng thức hình bình hành Theo hệ mệnh đề 20 ta kết sau Hệ Bao hàm C1 (Ω) ⊂ Lip(Ω) ánh xạ song Lipszhitz, nghĩa ∥f ∥C1 ≤ ∥f ∥Lip ≤ L∥f ∥C1 L ∀f ∈ C1 (Ω), nghiêm ngặt, biết Ω ⊂ Rn tập lồi, mở bị chặn Đặc biệt, C1 (Ω) khơng gian đóng (Lip(Ω), ∥.∥Lip ) 50 Chứng minh Ta chứng minh khẳng định trường hợp n = Ω = (a, b) Theo mệnh đề 20 nhận xét 15 (ii), ta cần quan hệ bao hàm phép đẳng cự Điều suy Bài tập Nếu f ∈ C1 ([a, b]) ∥f ∥Lip = ∥f ∥C1 Tính compact Lip(Ω) Định lý 21 Cho Ω ⊂ Rn tập mở bị chặn, giả sử F = BLip(Ω) := {f ∈ Lip(Ω) : ∥f ∥Lip ≤ 1} Khi BLip(Ω) compact (Lip(Ω), ∥.∥∞ ) Chứng minh Ta cần F compact (C0 (Ω), ∥.∥∞ ) Áp dụng định lý Arzelà - Ascoli (Định lý ??) Chứng minh (i) F bị chặn (C0 (Ω), ∥.∥∞ ): hiển nhiên theo định nghĩa (ii) F đóng (C0 (Ω), ∥.∥∞ ): nghĩa là, (fh )h ⊂ F với ∥fh − f ∥∞ , f ∈ F Thật fh ∈ FLef trightarrow|fh (x)|+ |fh (y) − fh (z)| ≤1 y−z ∀h, x, y, z ∈ Ω với y ̸= z Lấy qua giới hạn, h → ∞, ta |f (x)| + |f (y) − f (z)| ≤1 y−z ∀x, y, z ∈ Ω với y ̸= z từ f ∈ F (iii) F liên tục Ω Thật vậy, đủ để nhận thấy rằng, theo định nghĩa |f (y) − f (z)| ≤ |y − z| ∀y, z ∈ Ω, f ∈ F Ta có điều phải chứng minh Nhận xét 13 Chú ý BC1 (Ω) := {f ∈ C1 (Ω) : ∥f ∥C1 ≤ 1} không compact (C1 (Ω), ∥.∥∞ ) Đây đặc trưng tốt có Lip(Ω) khơng có C1 (Ω)