Một lớp bài toán biên không địa phương cho phương trình vi phân hàm tuyến tính cấp 1

131 1 0
Một lớp bài toán biên không địa phương cho phương trình vi phân hàm tuyến tính cấp 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: MỘT LỚP BÀI TỐN BIÊN KHƠNG ĐỊA PHƯƠNG CHO PHƯƠNG TRÌNH VI PHÂN HÀM TUYẾN TÍNH CẤP LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Nhiều khái niệm giải tích thường định nghĩa liên quan tới điều kiện “với mọi” Tuy nhiên nhiều đối tượng giới vật chất đáp ứng với điều kiện “với mọi” Giải tích thơ phát triển cầu nối giới vật chất với giải tích cổ điển Đầu tháng năm 2002, báo cáo Hội nghị Tốn học tồn quốc lần thứ tổ chức Huế, với nhan đề “Mấy ý tưởng giải tích thơ”, đưa số khái niệm “hội tụ thô”, “liên tục thô”, “điểm bất động thô”, “lồi thô” Các khái niệm mở rộng khái niệm theo nghĩa thông thường 902 Biểu diễn ∆(R) tính chất Bổ đề Cho R vành bất kỳ, ta có (1) ∆(R) = {r ∈ R | ru + ∈ U (R), ∀u ∈ U (R)} = {r ∈ R | ur + ∈ U (R), ∀u ∈ U (R)}; (2) Với r ∈ ∆(R) u ∈ U (R), ur, ru ∈ ∆(R); (3) ∆(R) vành vành R; (4) ∆(R) iđêan R ∆(R) = J(R); Y Y (5) Với họ vành Ri , i ∈ I , ∆( Ri ) = ∆(Ri ) i∈I i∈I Chứng minh (1) Cho r ∈ ∆(R) u thuộc U (R), r + u ∈ U (R) ru−1 + ∈ U (R) u−1 r + ∈ U (R) (2) Ta có ruu′ + ∈ U (R), ∀u, u′ ∈ U (R) r ∈ ∆(R), suy ru ∈ ∆(R) Tương tự ur ∈ ∆(R) (3) Lấy r, s ∈ ∆(R) Khi −r + s + U (R) ⊆ −r + U (R) = −r − U (R) ⊆ U (R), hay ∆(R) nhóm với phép cộng R Hơn rs = r(s + 1) − r ∈ ∆(R) r(s + 1) ∈ ∆(R) theo (2) (4) Rõ ràng J(R) ⊆ ∆(R) Ta giả sử ∆(R) iđêan R r ∈ R Khi rx + ∈ U (R), với x thuộc ∆(R) suy ∆(R) ⊆ J(R) hay ∆(R) = J(R) Chiều ngược Y Y lại hiển nhiên Y Y Y (5) Lấy ri ∈ ∆( Ri ) Khi ri + U ( Ri ) ⊆ U ( Ri ) Vì Y U( i∈IY Ri ) = i∈I U (Ri )) ⊆ i∈I U (Ri ) nên i∈I Y Y ri + i∈I Yi∈I i∈I Y i∈I i∈I U (Ri ) ⊆ U (Ri ) hay U (Ri ), suy ri +U (Ri ) ⊆ U (Ri ), ∀i ∈ I nên i∈I i∈IY Y i∈I ri ∈ (ri + Yi∈I ∆(Ri ) i∈I Chiều ngược lại tương tự Cho e phần tử lũy đẳng vành R Khi phần tử − 2e khả nghịch R Từ Bổ đề (2) ta suy hệ sau Hệ Cho R vành (1) ∆(R) đóng với phép nhân phần tử lũy linh; (2) Nếu ∈ U (R), ∆(R) đóng với phép nhân phần tử lũy đẳng Định lý Cho R vành có đơn vị T vành R sinh U (R) Khi (1) ∆(R) = J(T ) ∆(S) = ∆(R), với S vành tùy ý R thỏa mãn T ⊆ S ; (2) ∆(R) Jacobson lớn chứa R đóng với phép nhân phần tử khả nghịch R Chứng minh (1) T vành sinh U (R) nên phần tử T viết thành tổng hữu hạn phần tử khả nghịch R Do đó, theo Bổ đề (2) suy ∆(T ) iđêan T Theo Bổ đề (4) suy ∆(T ) = J(T ) Hơn ∆(T ) = ∆(R) nên ∆(R) = J(T ) Nếu r ∈ ∆(R), r + U (R) ⊆ U (R) Điều có nghĩa r biểu diễn thành tổng hai phần tử khả nghịch Do r ∈ T , suy ∆(R) ⊆ T Giả sử S vành R thỏa mãn T ⊆ S Khi U (S) = U (R), ∆(S) = {r ∈ S | r + U (S) ⊆ U (S)} = {r ∈ S | r + U (R) ⊆ U (R)} = S ∩ ∆(R) = ∆(R), ∆(R) ⊆ T ⊆ S (2) Theo (1), ∆(R) Jacobson R theo Bổ đề (2) ∆(R) đóng với phép nhân phần tử khả nghịch trái phải R Bây giờ, ta giả sử S Jacobson chứa R đóng với phép nhân phần tử khả nghịch Ta phải S ⊆ ∆(R) Thật vậy, s ∈ S u ∈ U (R), su ∈ S = J(S) Do su tựa khả nghịch S nên + su ∈ U (R) Theo Bổ đề (1) s ∈ ∆(R) hay S ⊆ ∆(R) Từ đặt trưng ∆(R) Định lý 27 (2) ta có hệ sau Hệ Giả sử R vành mà phần tử biểu diễn thành tổng phần tử khả nghịch Khi ∆(R) = J(R) Định lý cổ điển Amitsur nói Jacobson F -đại số R trường F lũy linh, với điều kiện dimF R < |F | Áp dụng Định lý 27 (1) ta thu hệ sau Hệ Giả sử R vành đại số trường F Nếu dimF R < |F |, ∆(R) vành lũy linh Cho R vành khơng thiết phải có đơn vị S vành R, ta ký hiệu Sˆ vành R sinh S ∪ {1} Mệnh đề Giả sử R vành có đơn vị Khi (1) Cho S vành R thỏa mãn U (S) = U (R) ∩ S Khi ∆(R) ∩ S ⊆ ∆(S); [ = U (R) ∩ ∆(R) [; (2) U (∆(R)) (3) Cho I iđêan R thỏa mãn I ⊆ J(R) Khi ∆(R/I) = ∆(R)/I Chứng minh (1) suy từ định nghĩa ∆ (2) Nếu r ∈ ∆(R), v = + r ∈ U (R) v −1 = − rv −1 ∈ [ ∩ U (R), −rv −1 ∈ ∆(R), Bổ đề ∆(R) [ ∩ U (R), r ∈ ∆(R) k ∈ Z Ta Lấy u = r + k · ∈ ∆(R) ¯ −1 = (u − k)u ¯ −1 = k¯ = k · ∈ U (R) Ta có u − k¯ = r ∈ ∆(R), − ku ¯ −1 = − (1 − ku ¯ −1 ) ∈ U (R), suy ru−1 ∈ ∆(R) theo Bổ đề (2) Khi ku k¯ ∈ U (R) Vì ∆(R) đóng với phép nhân phần tử khả nghịch nên ta áp dụng phần chứng minh v = uk¯−1 = + rk¯−1 [ , nghĩa u−1 k¯ = s + ¯l, với s ∈ ∆(R) l ∈ Z Suy u−1 k¯ = v −1 ∈ ∆(R) [ , U (R) ∩ ∆(R) [ ⊆ U (∆(R)) [ sk¯−1 ∈ ∆(R), u−1 = sk¯−1 + k¯−1 ¯l ∈ ∆(R) [ ⊆ U (R) ∩ ∆(R) [ dễ thấy Chiều ngược lại U (∆(R)) ¯ = (3) Ta ký hiệu ¯ phép chiếu từ R lên R/I Lưu ý, I ⊆ J(R), U (R) U (R) ¯ u ∈ U (R) Khi r¯ + u¯ ∈ U (R) ¯ có phần tử Lấy r¯ ∈ ∆(R) v ∈ U (R) j ∈ I thỏa mãn r + u = v + j Hơn v + j ∈ U (R), ¯ = U (R) nên chiều ngược lại ¯ = ∆(R) Vì U (R) I ⊆ J(R) Suy ∆(R) dễ thấy Áp dụng mệnh đề ta có hệ sau [ = ∆(R), nghĩa ∆ Hệ Cho R vành có đơn vị, ∆(∆(R)) tốn tử đóng [ , ∆(R) ⊆ T Chứng minh ∆(R) Jacobson T = ∆(R) Vì ∆(R) chứa tất phần tử lũy linh nên T /∆(R) đẳng cấu với Z Zn := Z/nZ, với n > nhân tử bình phương Theo Mệnh đề 42 (3) Hệ 12 ta có ∆(T )/∆(R) = ∆(T /∆(R)) = J(T /∆(R)) = hay ∆(T ) = ∆(R) Từ Mệnh đề 42 (1), áp dụng cho S = Z(R) tâm R, ta có hệ sau Hệ ∆(R) ∩ Z(R) ⊆ ∆(Z(R)) Ký hiệu ( R[[x]] = {a0 + a1 x + a2 x2 + · · · |ai ∈ R} = ∞ X ) xi |ai ∈ R i=0 Mỗi phần tử f ∈ R[[x]], f = ∞ X xi với x0 = gọi chuỗi lũy i=0 thừa hình thức biến x với hệ tử thuộc R Ta định nghĩa phép cộng ∞ ∞ X X i phép nhân, lấy f, g ∈ R[[x]], f = x , g = bi xi Ta định i=0 i=0 nghĩa f = g = bi với i = 0, 1, ! ∞ ∞ i X X X (ai + bi )xi , f g = f +g = i=0 ai−j bj i=0 xi j=0 Với phép tốn R[[x]] vành giao hốn có đơn vị Cho vành R, ký hiệu Tn (R) tập tất ma trận tam giác cấp n vành R, Jn (R) iđêan Tn (R) bao gồm tất ma trận tam giác cấp n thực Dn (R) vành ma trận đường chéo cấp n Từ Mệnh đề 42 (3) ta suy trực tiếp hệ sau Hệ Cho R vành tùy ý Khi đó, khẳng định sau (1) ∆(Tn (R)) = Dn (∆(R)) + Jn (R); (2) ∆(R[x]/(xn )) = ∆(R)[x]/(xn ); (3) ∆(R[[x]]) = ∆(R)[[x]] Hệ Cho R vành Khi đó, ∆(R) = J(R) ∆(R/J(R)) = Một vành R có hạng ổn định a, x, b ∈ R thỏa mãn ax + b = 1, tồn y ∈ R cho a + by khả nghịch R Định lý sau vài lớp vành mà ∆(R) = J(R) Định lý ∆(R) = J(R) R thỏa mãn điều kiện sau (1) R/J(R) đẳng cấu với tích vành ma trận thể (2) R vành nửa địa phương (3) R vành clean thỏa mãn ∈ U (R) (4) R U J -vành, nghĩa U (R) = + J(R) (5) R có hạng ổn định (6) R = F G nhóm đại số trường F Chứng minh (1) Giả sử R đẳng cấu với tích vành ma trận thể Theo Hệ 17 ta cần ∆(R/J(R)) = Để làm điều này, ta giả sử J(R) = 0, nghĩa R tích vành ma trận thể Nếu R vành ma trận Mn (S), với S vành chứa đơn vị n ≥ Theo Định lý ??, phần tử R tổng ba phần tử khả nghịch, theo Hệ 12 ∆(R) = J(R) = Khi S thể rõ ràng ∆(S) = Do (1) suy trực tiếp từ Bổ đề (5) (2) Là trường hợp đặc biệt (1) (3) Giả sử R vành clean  thỏa mãn ∈U (R) Nếu e ∈ R lũy đẳng 1 − (1 − 2e) tổng hai phần tử khả 2 nghịch Điều có nghĩa phần tử R tổng ba phần tử khả nghịch Theo Hệ 12 ta suy ∆(R) = J(R) (4) Giả sử U (R) = 1+U (R) Giả sử R U J -vành Khi đó, r ∈ ∆(R) ta có r + U (R) ⊆ U (R), nghĩa r + + J(R) ⊆ + J(R) Suy r ∈ J(R) ∆(R) = J(R) (5) Giả sử R có hạng ổn định Lấy r ∈ ∆(R), ta r ∈ J(R) Với s ∈ R ta có Rr +R(1−rs) = R Vì R có hạng ổn định nên tồn − 2e ∈ U (R) e = x ∈ R cho r + x(1 − sr) ∈ U (R), suy x(1 − sr) ∈ r + U (R) ⊆ U (R), (1 − sr) khả nghịch hay r ∈ J(R) (6) Giả sử R = F G nhóm đại số trường F Khi đó, phần tử R tổng phần tử khả nghịch Theo Hệ 12 ta suy ∆(R) = J(R) Ta biết vành nửa địa phương có hạng ổn định 1, điều kiện (2) (5) tương đương Bổ đề Giả sử G nhóm nhóm R phép tốn cộng Khi G đóng với phép nhân phần tử khả nghịch đóng với phép nhân phần tử tựa khả nghịch R Chứng minh Lấy r ∈ R G nhóm cộng, rG ⊆ G (1 − r)G ⊆ G Định lý Giả sử R vành có đơn vị G nhóm phép cộng R Khi điều kiện sau tương đương (1) G = ∆(R); (2) G Jacobson lớn đóng với phép nhân phần tử tựa khả nghịch R; (3) G nhóm lớn R phép cộng bao gồm phần tử tựa khả nghịch đóng với phép nhân phần tử tựa khả nghịch R Chứng minh Theo Định lý 27 (2) Bổ đề ∆(R) Jacobson R đóng với phép nhân phần tử tựa khả nghịch Giả sử G nhóm cộng bao gồm phần tử tựa khả nghịch đóng với phép nhân phần tử tựa khả nghịch R Cụ thể, G Jacobson không chứa đơn vị R, theo Bổ đề 7, G đóng với phép nhân phần tử khả nghịch R Do theo Định lý 27 (2) ta G ⊆ ∆(R) Không gian hàm Lipschitz Lip(Ω) Định nghĩa Cho A ⊂ Rn (i) Hàm f : A ⊂ Rn → R gọi "Lipschitz" tồn số L>0 thỏa |f (x) − f (y)| ≤ L|x − y|, ∀x, y ∈ A Tập hợp hàm Lipschitz f : A ⊂ Rn → R ký hiệu Lip(A) (ii) Cho f ∈ Lip(A) Một số không âm   |f (x) − f (y)| : x, y ∈ A, x ̸= y Lip(f ) = Lip(f, A) := sup |x − y| gọi số Lipschitz f Nhận xét Định nghĩa hàm Lipschitz khái niệm metric Thật vậy, (X, d) (Y, ϱ) không gian metric, ánh xạ f : X → Y gọi Lipschitz có số L > thỏa mãn ϱ(f (x), f (y)) ≤ Ld(x, y), ∀x, y ∈ X Mệnh đề Cho A ⊂ Rn f ∈ Lip(A) (i) f liên tục A; (ii) tồn f¯ : A → R với f |A = f Lip(f ) = Lip(f ) Nhận xét Từ mệnh đề 42 suy f ∈ Lip(A), với A ⊂ Rn , ln có nghĩa hàm f : A → R ngược lại Hơn nữa, ánh xạ mở rộng E : Lip(A) → Lip(A), E(f ) := f song ánh Theo kết này, ta hiểu Lip(A) = Lip(A) Lưu ý tính chất mở rộng khơng cịn khơng gian C1 (Ω) Mệnh đề Cho Ω ⊂ Rn tập lồi bị chặn Khi C1 (Ω) ⊂ Lip(Ω) Chứng minh Cho f ∈ C1 (Ω) Theo định lý giá trị trung bình ∀x, y ∈ Ω, ∃z ∈ xy := {tx + (1 − t)y : ≤ t ≤ 1} ⊂ Ω thỏa mãn f (x) − f (y) = (∇f (z), x − y)Rn χEh ϕ(χEh ) = ϕ(χE ) − ϕ ν(Eh ) = ϕ(χE ) − ν(E) − h=1 h=1 h=1

Ngày đăng: 06/07/2023, 10:00

Tài liệu cùng người dùng

Tài liệu liên quan