Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 106 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
106
Dung lượng
544,24 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: PHƯƠNG PHÁP QUASI-REVERSIBILITY CHO BÀI TOÁN TRUYỀN NHIỆT NGƯỢC THỜI GIAN LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Thời đại cơng nghiệp hóa, loại vật liệu tổng hợp (gỗ công nghiệp, sợi quang học, sợi carbon, xưởng nhân tạo.v.v ) đóng vai trò quan trọng nhiều ngành khoa học kỹ thuật học, vật lý, hóa học, sinh học v.v Trong vật liệu tổng hợp, tính chất vật lý không liên tục dao động thành phần khác cấu tạo nên vật liệu Khi thành phần trộn lẫn với nhau, tính chất dao động nhanh dẫn tới cấu trúc vi mơ trở lên phức tạp 567 2 Nhóm quaternion suy rộng Mệnh đề Cho nhóm quaternion suy rộng Q4n = ⟨r, s | r2n = 1, s2 = rn = 1, s−1 rs = r−1 ⟩ với n ⩾ H nhóm Q4n Khi (i) Nếu H = Rk với k|2n, ⩽ k ⩽ 2n Pr(H, Q4n ) = n+k k | n, 2n 2n + k k ∤ n 4n (ii) Nếu H = Ui,j với i|n, ⩽ i ⩽ n, ⩽ j ⩽ i − Pr(H, Q4n ) = n+i+2 4n Chứng minh (i) Giả sử H = Rk với k|2n, ⩽ k ⩽ 2n Theo Mệnh đề 36 ta có 2n 2n = (2n, k) k |Rk | = Do 2n r ⩽ i ⩽ −1 k k Rk = ⟨r ⟩ = ik Ta xét hai trường hợp k sau Trường hợp 1: k | n Khi đó, theo Mệnh đề 37 ta có X X |CQ4n (x)| = |CQ4n (1)| + |CQ4n (rn )| + |CQ4n (rik) | 1⩽i⩽ 2n −1 k x∈Rk i̸= nk = 4n + 4n + = 8n + 2n k Do đó, theo Mệnh đề 21, ta có X Pr(Rk , Q4n ) = |Rk ||Q4n | x∈Rk 2n k − |R1 | − 2n = |CQ4n (x)| = 4n(n + k) k 4n(n + k) n+k = 2n k 2n 4n k Trường hợp 2: k ∤ n Khi đó, theo Mệnh đề 37, ta có X X |CQ4n (rik )| |CQ4n (x)| = |CQ4n (1)| + −1 1⩽i⩽ 2n k x∈Rk = 4n + 2n k − |R1 | = 4n + 2n k − 2n = 2n(2n + k) k Từ suy Pr(Rn , Q4n ) = X 2n(2n + k) 2n + k · |CQ4n (x)| = = 2n |Rk ||Q4n | k 4n 4n x∈Rk k (ii) Giả sử H = Ui,j với i|n, ⩽ i ⩽ n, ⩽ j ⩽ i − Theo Mệnh đề 36 ta có |Ui,j | = Đặt k = 4n 4n = (n, i) i 2n Khi i |Ui,j | = 4n = 2k i Do Ui,j = {rli , rli+j s | ⩽ l ⩽ k − 1} Từ suy X X |CQ4n (x)| = x∈Ui,j |CQ4n (rli )| + 0⩽l⩽k−1 = |CQ4n (1)| + |CQ4n (rn )| + X |CQ4n (rli+j s)| 0⩽l⩽k−1 X |CQ4n (rli )| + 1⩽l⩽k−1 l̸= k2 X |CQ4n (rli+j s)| 0⩽l⩽k−1 = |Q4n | + |Q4n | + (k − 2)|R1 | + k|Un,j | 4n(n + i + 2) = 4n + 4n + (k − 2)2n + 4k = i Do đó, theo Mệnh đề 21 Pr(Ui,j , Q4n ) = X 1 4n(n + i + 2) n+i+2 · |CQ4n (x)| = = 4n |Ui,j ||Q4n | i 4n 4n x∈Ui,j i Trong ví dụ sau ta tính lại độ giao hốn tương đối nhóm nhóm quaternion Q8 , tính độ giao hốn tương đối nhóm nhóm Q12 cách áp dụng Mệnh đề ?? Ví dụ (i) Với n = 2, xét nhóm quaternion Q8 (cho Ví dụ 4) Các nhóm Q8 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R4 = {1}; U2,0 = ⟨r2 , s⟩, U2,1 = ⟨r2 , rs⟩; Q8 Khi 2+2 2·2+4 2+1 = , Pr(R2 , Q8 ) = = 1, Pr(R4 , Q8 ) = = 1; 2·2 2·2 4·2 2+2+2 = ; Pr(Q8 , Q8 ) = Pr(Q8 ) = Pr(U2,0 , Q8 ) = Pr(U2,1 , Q8 ) = 4·2 (ii) Với n = 3, xét nhóm quaternion Pr(R1 , Q8 ) = Q12 = {1, r, r2 , r3 , r4 , r5 , s, rs, r2 s, r3 s, r4 s, r5 s} Các nhóm Q12 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R3 = ⟨r3 ⟩, R6 = {1}; U3,0 = ⟨r3 , s⟩, U3,1 = ⟨r3 , rs⟩, U3,2 = ⟨r3 , r2 s⟩; Q12 Khi 3+1 2·3+2 = , Pr(R2 , Q12 ) = = , 2·3 4·3 3+3 2·3+6 Pr(R3 , Q12 ) = = 1, Pr(R6 , Q12 ) = = 1; 2·3 4·3 3+3+2 Pr(U3,0 , Q12 ) = Pr(U3,1 , Q12 ) = Pr(U3,2 , Q12 ) = = ; 4·3 Pr(Q12 , Q12 ) = Pr(Q12 ) = Pr(R1 , Q12 ) = Các đặc trưng ∆U -vành Ta biết + J(R) ⊆ U (R) Vành R gọi U J -vành U (R) ⊆ + J(R), nghĩa + J(R) = U (R) Lưu ý R U J -vành ∆(R) = J(R) 38 Bước 2: Ta ∀ϵ > 0, ∀f ∈ Lp (Ω), ∃g ∈ C0c (Ω) cho ∥f −g∥Lp < ϵ ϵ Cho f hàm đơn giản đo thỏa mãn (44) (45) với ϵ ≡ ký hiệu A := {x ∈ Ω : s(x) ̸= 0} Giả sử ∥s∥∞ > 0, khơng s ≡ ∈ C0c (Ω) kết thúc chứng minh Áp dụng định lý Lusin cho hàm s, tồn hàm g ∈ C0c (Ω) thỏa mãn ϵp |Ac | = |{x ∈ Ω : s(x) ̸= g(x)}| < p , ∥s∥p∞ (23) với |g(x)| ≤ ∥x∥∞ x ∈ Ω (24) Chú ý ∥f − g∥Lp ≤ ∥f − s∥Lp + ∥s − g∥Lp < Bây ta đánh giá ∥s − g∥Lp Z Z ∥s − g∥pLp = |s − g|p dx = Ω ϵ + ∥s − g∥Lp |s − g|p dx ≤ 2p ∥s∥p∞ |Aϵ | < Aϵ (25) ϵp 2p (26) Vì (53) (54) kết thúc chứng minh Chứng minh định lý ?? Ta cần chứng minh (C0c (Ω), ∥.∥∞ ) tách (27) Thật vậy, ta giả sử rằng, từ (55), ta (Lp (Ω), ∥.∥∞ ) tách được, biết ≤ p < ∞ Đầu tiên, giả sử Ω bị chặn Cho D ⊂ (C0c (Ω), ∥.∥∞ ) trù mật đếm được, ta chứng minh D trù mật (Lp (Ω), ∥.∥Lp ) với ≤ p < ∞ (28) Từ định lý 35, ∀f ∈ Lp (Ω), ∀ϵ > 0, ∃g ∈ C0c (Ω) cho ϵ ∥f − g∥Lp < D trù mật, tồn e g ∈ D cho ∥g − e g ∥∞ < Nhớ lại ϵ 2|Ω|1/p (29) 39 Bài tập ∥f ∥Lp ≤ |Ω|1/p ∥f ∥∞ , ∀f ∈ L∞ (Ω), biết |Ω| < ∞ Điều nghĩa ϵ ∥g − g∥Lp ≤ |Ω1/p |∥g − g∥∞ < (30) Do gợi ý (57) (58) ám (56) Bây giả sử Ω không bị chặn Theo kết biết topo, tồn dãy (Ωh )h tập mở bị chặn cho Ωh ⊂ Ωh ⊂ Ωh+1 Ω= ∪∞ h=1 Ωh Hơn nữa, ý C0c (Ω) = ∪∞ h=1 Cc (Ωh ) (31) Theo (55) tồn tập Dh ⊂ (C0c (Ω), ∥.∥∞ ) trù mật đếm Cho D := ∪∞ h=1 Dh (56) giữ Từ định lý 35, ∀f ∈ Lp (Ω), ∀ϵ > 0, ∃g ∈ C0c (Ω) cho (57) Từ K := spt(g) tập compact chứa Ω, tồn h = h(g) = ϵ ∈ N cho K ⊂ Ωh Điều có nghĩa g ∈ C0c (Ωh ) ta có kết luận bước trước Bây ta chứng minh (55) Nhớ lại (C0 (K), ∥.∥∞ ) tách được, biết K ⊂ Rn tập compact (định lý 2) Cho (Ωh ) dãy tập mở bị chặn Rn Theo định nghĩa, C0c (Ωh ) ⊂ (C0 (Ω), ∥.∥∞ ) Vì (C0 (Ω), ∥.∥∞ ) tách nên với h, tồn tập D ⊂ (C0 (Ωh ), ∥.∥∞ ) trù mật đếm (32) Bây giờ, theo bổ đề Urysohn, ta sửa tập hợp hàm D eh ⊂ C0c (Ω) đẻ họ cho tập hợp hàm đếm D e D := ∪∞ h=1 Dh ⊂ (Cc (Ω), ∥.∥inf ty ) đếm trù mật (33) Áp dụng bổ đề Urysohn với K := Ωh−1 , V = Ωh cho φh ∈ C0 (Ω) cho ≤ φh (x) ≤ 1, ∀x ∈ Ω, φh (x) = 1, ∀x ∈ Ωh−1 spt(φh ) ⊂ Ωh 40 xác định g ∈ Dh , g : Ωh → R, định nghĩa e g : Ω → R hàm ( g(x) x ∈ Ωh , e g (x) := nếux ∈ Ω \ Ωh cho e := {φhe D g : g ∈ D} e (h ∈ N) D := ∪∞ h=1 D Ta chứng minh (61) Theo cách xây dựng, D đếm Vì ta cần chứng minh trù mật (C0c , ∥.∥∞ ) Sửa ϵ > 0, f ∈ C0c (Ω) cho K := spt(f ) ⊂ Ω compact Tồn h0 ∈ N cho K ⊂ Ωh0 ⊂ Ωh0 +1 Điều có nghĩa f ∈ C0c (Ωh0 ) ⊂ C0 (Ωh0 ) ⊂ C0 (Ωh0 +1 ) Theo (60), tồn f1 ∈ Dh0 +1 cho ∥f − f1 ∥∞,Ω := sup |f (x) − f1 (x)| < ϵ (34) x∈Ω Từ f ≡ Ωh0 +1 \ Ωh0 từ (62), suy |f1 (x)| < ϵ sup (35) x∈Ωh0 +1 \Ωh0 eh0 +1 , theo (62) (63) ta Bây ta định nghĩa f2 := φh0 +1 fe1 ∈ D ∥f − f2 ∥∞,Ω = sup |f (x) − f2 (x)| = x∈Ω sup |f (x) − φh0 +1 f (x)| ≤ x∈Ωh0 +1 ( max ) sup |f (x) − f1 (x)|, sup |f1 (x)| < ϵ x∈Ωh0 +1 \Ωh0 x∈Ωh0 Như (61) Cuối ta chứng minh (L∞ (Ω), ∥.∥L∞ ) không tách Ta tìm họ rời khơng đếm Ui : i ∈ I tập mở L∞ (Ω) Cho a ∈ Ω cho ωa := B(a, ) > với B(a, ) ⊂ Ω Định nghĩa n o Ua := f ∈ L∞ (Ω) : ∥f − χωa ∥L∞ < Chú ý a ∈ I := Ω 41 • Ua mở (L∞ (Ω), ∥.∥L∞ ), ∀a ∈ Ω: hiển nhiên • Ua ∩ Ub = ∅ a ̸= b, thật vậy, theo phản chứng, f ∈ Ua ∩ Ub , điều nghĩa ∥χωa − χωb ∥L∞ ≤ ∥χωa − f ∥L∞ + ∥f − χωb ∥L∞ < 1 + = 2 Mặt khác ∥χωa − χωb ∥L∞ = a ̸= b, mâu thuẫn • I = Ω không đếm 12 Không gian hàm Lipschitz Lip(Ω) Định nghĩa Cho A ⊂ Rn (i) Hàm f : A ⊂ Rn → R gọi "Lipschitz" tồn số L>0 thỏa |f (x) − f (y)| ≤ L|x − y|, ∀x, y ∈ A Tập hợp hàm Lipschitz f : A ⊂ Rn → R ký hiệu Lip(A) (ii) Cho f ∈ Lip(A) Một số không âm |f (x) − f (y)| Lip(f ) = Lip(f, A) := sup : x, y ∈ A, x ̸= y |x − y| gọi số Lipschitz f Nhận xét Định nghĩa hàm Lipschitz khái niệm metric Thật vậy, (X, d) (Y, ϱ) không gian metric, ánh xạ f : X → Y gọi Lipschitz có số L > thỏa mãn ϱ(f (x), f (y)) ≤ Ld(x, y), ∀x, y ∈ X Mệnh đề 22 Cho A ⊂ Rn f ∈ Lip(A) 42 (i) f liên tục A; (ii) tồn f¯ : A → R với f |A = f Lip(f ) = Lip(f ) Nhận xét Từ mệnh đề 11 suy f ∈ Lip(A), với A ⊂ Rn , ln có nghĩa hàm f : A → R ngược lại Hơn nữa, ánh xạ mở rộng E : Lip(A) → Lip(A), E(f ) := f song ánh Theo kết này, ta hiểu Lip(A) = Lip(A) Lưu ý tính chất mở rộng khơng cịn khơng gian C1 (Ω) Mệnh đề 23 Cho Ω ⊂ Rn tập lồi bị chặn Khi C1 (Ω) ⊂ Lip(Ω) Chứng minh Cho f ∈ C1 (Ω) Theo định lý giá trị trung bình ∀x, y ∈ Ω, ∃z ∈ xy := {tx + (1 − t)y : ≤ t ≤ 1} ⊂ Ω thỏa mãn f (x) − f (y) = (∇f (z), x − y)Rn Nghĩa |f (x) − f (y)| = |(∇f (z), x − y)Rn | ≤ sup(|∇f |)|x − y| = L|x − y|, ∀x, y ∈ Ω Ω Nhận xét (i) khơng Ω khơng lồi p Ví dụ: Cho Ω = {(x, y) ∈ R : y < |x|, x2 + y < 1} ( y β y > f (x, y) := y ≤ với 1, β < Khi f ∈ C1 \ Lip(Ω) Thật vậy, dễ thấy f ∈ C1 Ta chứng minh f ∈ / Lip(Ω) Theo phản chứng, giả sử f ∈ Lip(Ω) Khi tồn L > thỏa mãn, với (x, y) ∈ Ω với x > 0, y > 0, x 1/β |f (x, y) − f (−x, y)| = 2y β ≤ 2Lx ⇔ y ≤ L Từ 1/2 < 1/β , ta chọn (x, y) ∈ Ω thỏa mãn điều mấu thuẫn với bất đẳng thức trước x 1/β √ , x>y> L 43 (ii) Quan hệ bao hàm chặt Ví dụ: Cho Ω = (−1, 1) f (x) = |x| Khi f ∈ Lip(Ω) \ C1 (Ω) Mặc dù không gian hàm Lipschitz Lip(Ω) rộng hàm khả vi liên tục C1 (Ω), chúng có chung tính chất quan trọng, tính khả vi, chứng minh trường hợp chiều Định lý 22 (Rademacher) Cho Ω ∈ Rn tập mở cho f ∈ Lip(Ω) Khi f khả vi x, Ln hầu khắp nơi, x ∈ Ω, nghĩa bỏ tập có độ đo không N ⊂ Ω, với x ∈ Ω \ N tồn hàm tuyến tính varphi : Rn → R thỏa mãn f (y) − f (x) − φ(y − x) = y→x y−x lim Đặc biệt, với x ∈ Ω \ N tồn ∇f (x) Định nghĩa Cho Ω ⊂ Rn tập mở bị chặn, cho f ∈ Lip(Ω) Ta biểu thị ∥f ∥Lip = ∥f ∥Lip,Ω := ∥f ∥∞,Ω + Lip(f, Ω) ∥.∥Lip gọi chuẩn Lip Định lý 23 (Lip(Ω), ∥.∥Lip ) không gian Banach vô hạn chiều không không gian Hilbert, biết Ω ∈ Rn tập mở bị chặn Chứng minh Dễ thấy (Lip(Ω), ∥.∥Lip ) khơng gian tuyến tính định chuẩn, ý Lip(f + g) ≤ Lip(f ) + Lip(g) ∀f, g ∈ Lip(Ω) (36) Ta phải tính đầy đủ Cho (fh )h dãy Cauchy (Lip(Ω), ∥.∥Lip ), nghĩa với ϵ > tồn h = h(ϵ) ∈ N thỏa mãn |fh (x) − fk (y)| + |fh (x) − fk (y) − fh (z) + fk (z)| ≤ |y − z| (37) ∥fh − fk ∥∞ + Lip(fh − fk ) = ∥fh − fk ∥Lip ≤ ϵ ∀k > h > h, x, y, z ∈ Ω với y ̸= z Theo (??) (??), suy tồn L > thỏa mãn Lip(fh ) ≤ L ∀h, (38) 44 theo (??), (fh )h dãy Cauchy (C0 (Ω), ∥.∥∞ ) Khi đó, tồn f ∈ C0 (Ω) thỏa mãn fh → f Ω Theo (??), ta Lip(f ) ≤ L, f ∈ Ω Lấy qua giới hạn (??), k → ∞, ϵ > tồn h = h(ϵ) ∈ N cho |fh (x) − f (x)| + fh (y) − f (y) − fh (z) + f (z) ≤ϵ y−z ∀h > h, x, y, z ∈ Ω, y ̸= z Điều có nghĩa lim ∥fh − f ∥Lip = h→∞ Từ tập hợp hàm đa thức chứa Lip(Ω), Lip(Ω) vô hạn chiều Cuối cùng, ta cần phải chứng minh khơng phải không gian Hilbert, lập luận tương tự trường hợp trước, cách sử dụng đẳng thức hình bình hành Theo hệ mệnh đề ?? ta kết sau Hệ 15 Bao hàm C1 (Ω) ⊂ Lip(Ω) ánh xạ song Lipszhitz, nghĩa ∥f ∥C1 ≤ ∥f ∥Lip ≤ L∥f ∥C1 ∀f ∈ C1 (Ω), L nghiêm ngặt, biết Ω ⊂ Rn tập lồi, mở bị chặn Đặc biệt, C1 (Ω) khơng gian đóng (Lip(Ω), ∥.∥Lip ) Chứng minh Ta chứng minh khẳng định trường hợp n = Ω = (a, b) Theo mệnh đề ?? nhận xét ?? (ii), ta cần quan hệ bao hàm phép đẳng cự Điều suy Bài tập Nếu f ∈ C1 ([a, b]) ∥f ∥Lip = ∥f ∥C1 Tính compact Lip(Ω) Định lý 24 Cho Ω ⊂ Rn tập mở bị chặn, giả sử F = BLip(Ω) := {f ∈ Lip(Ω) : ∥f ∥Lip ≤ 1} Khi BLip(Ω) compact (Lip(Ω), ∥.∥∞ ) 45 Chứng minh Ta cần F compact (C0 (Ω), ∥.∥∞ ) Áp dụng định lý Arzelà - Ascoli (Định lý 31) Chứng minh (i) F bị chặn (C0 (Ω), ∥.∥∞ ): hiển nhiên theo định nghĩa (ii) F đóng (C0 (Ω), ∥.∥∞ ): nghĩa là, (fh )h ⊂ F với ∥fh − f ∥∞ , f ∈ F Thật fh ∈ FLef trightarrow|fh (x)|+ |fh (y) − fh (z)| ≤1 y−z ∀h, x, y, z ∈ Ω với y ̸= z Lấy qua giới hạn, h → ∞, ta |f (x)| + |f (y) − f (z)| ≤1 y−z ∀x, y, z ∈ Ω với y ̸= z từ f ∈ F (iii) F liên tục Ω Thật vậy, đủ để nhận thấy rằng, theo định nghĩa |f (y) − f (z)| ≤ |y − z| ∀y, z ∈ Ω, f ∈ F Ta có điều phải chứng minh Nhận xét Chú ý BC1 (Ω) := {f ∈ C1 (Ω) : ∥f ∥C1 ≤ 1} không compact (C1 (Ω), ∥.∥∞ ) Đây đặc trưng tốt có Lip(Ω) khơng có C1 (Ω) Tính tách (Lip(Ω), ∥.∥Lip ) Định lý 25 Cho Ω ⊂ Rn tập mở bị chặn Khi (Lip(Ω), ∥.∥Lip ) khơng tách Chứng minh Ta cần tồn họ tách rời không đếm {Uα : α ∈ I} tập mở (Lip(Ω), ∥.∥Lip ) (Mệnh đề 1) Ta chia chứng minh thành hai bước Bước 1: Giả sử n = Ω = (a, b) ta chứng minh kết luận Cho {uα : α ∈ (a, b)} ⊂ (Lip(a, b)) họ hàm uα (x) := |x − α| x ∈ (a, b), α ∈ I := (a, b) Ta chứng minh ∥uα − uβ ∥Lip ≥ Lip(uα − uβ ) ≥ α ̸= β (39) 46 Thật |uα (x) − uβ (x) − uα (y) + uβ (y)| Lip(uα − uβ ) = sup : x, y ∈ (a, b), x ̸= y |x − y| |uα (α) − uβ (α) − uα (β) + uβ (β)| |α − β| =2 = |α − β| |α − β| ≥ Vì họ Uα := {f ∈ Lip((a, b)) : ∥f − uα ∥Lip < ∀α ∈ I} Ta điều mong muốn Bước 2: Giả sử Ω tập mở bị chặn Từ Ω mở, tồn hình cầu mở (a1 , b1 ) × · · · × (an , bn ) ⊂ Ω Cho {fα : α ∈ (a1 , b1 )} ⊂ Lip(Ω) họ hàm định nghĩa fα (x) := uα (x1 ) x = (x1 , x2 , , xn ) ∈ Ω, α ∈ I := (a1 , b1 ), uα hàm biến theo định nghĩa bước Theo (??) ta được, α ̸= β Lip(fα − fβ , Ω) ≥ Lip(uα − uβ , (a1 , b1 )) ≥ Vì vậy, họ Uα := {f ∈ Lip(Ω) : ∥f − fα ∥Lip < 1} ∀α ∈ I Ta điều cần chứng minh Ta xem xét lớp Lip(Ω) hàm liên tục Lipschitz f : Ω → R mà định nghĩa thỏa mãn ước lượng |f (x) − f (y)| < C|x − y| ∀x, y ∈ Ω (L) Với C > Giống hàm thỏa mãn (L), hàm thỏa mãn tính chất (H) quan trọng, hàm thỏa mãn tính chất (H) gọi hàm thỏa mãn điều kiện Holder với số mũ α |f (x) − f (y)| ≤ C|x − y|α với số C, α > ∀x, y ∈ Ω (H) 47 Bài tập Cho Ω ⊂ Rn tập mở liên thông giả sử (H) với C > α > Khi f ≡ const Do điều kiện Holder khơng cịn ý nghĩa cho hàm với số mũ lớn tập mở liên thông Định nghĩa Cho A ⊂ Rn , hàm f : A → R gọi liên tục Holder với mũ α > thỏa mãn (H) với sơ C > 13 Nhóm quaternion suy rộng Mệnh đề 24 Cho nhóm quaternion suy rộng Q4n = ⟨r, s | r2n = 1, s2 = rn = 1, s−1 rs = r−1 ⟩ với n ⩾ H nhóm Q4n Khi (i) Nếu H = Rk với k|2n, ⩽ k ⩽ 2n Pr(H, Q4n ) = n+k k | n, 2n 2n + k k ∤ n 4n (ii) Nếu H = Ui,j với i|n, ⩽ i ⩽ n, ⩽ j ⩽ i − Pr(H, Q4n ) = n+i+2 4n Chứng minh (i) Giả sử H = Rk với k|2n, ⩽ k ⩽ 2n Theo Mệnh đề 36 ta có |Rk | = Do k Rk = ⟨r ⟩ = 2n 2n = (2n, k) k 2n r ⩽ i ⩽ −1 k ik 48 Ta xét hai trường hợp k sau Trường hợp 1: k | n Khi đó, theo Mệnh đề 37 ta có X X |CQ4n (x)| = |CQ4n (1)| + |CQ4n (rn )| + |CQ4n (rik) | −1 1⩽i⩽ 2n k x∈Rk i̸= nk 2n = 4n + 4n + = 8n + 2n k Do đó, theo Mệnh đề 21, ta có X Pr(Rk , Q4n ) = |Rk ||Q4n | k − |R1 | − 2n = |CQ4n (x)| = x∈Rk 4n(n + k) k n+k 4n(n + k) = 2n k 2n 4n k Trường hợp 2: k ∤ n Khi đó, theo Mệnh đề 37, ta có X X |CQ4n (rik )| |CQ4n (x)| = |CQ4n (1)| + 1⩽i⩽ 2n −1 k x∈Rk = 4n + 2n k − |R1 | = 4n + 2n k − 2n = 2n(2n + k) k Từ suy Pr(Rn , Q4n ) = X 1 2n(2n + k) 2n + k · |CQ4n (x)| = = 2n |Rk ||Q4n | k 4n 4n x∈Rk k (ii) Giả sử H = Ui,j với i|n, ⩽ i ⩽ n, ⩽ j ⩽ i − Theo Mệnh đề 36 ta có |Ui,j | = Đặt k = 4n 4n = (n, i) i 2n Khi i |Ui,j | = 4n = 2k i Do Ui,j = {rli , rli+j s | ⩽ l ⩽ k − 1}