Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 90 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
90
Dung lượng
532,36 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: PHƯƠNG PHÁP NHÁNH - CẬN CHO BÀI TOÁN QUY HOẠCH NGUYÊN LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Giải tích khoảng nhánh toán học, đời vào năm năm mươi kỷ 20 Những ý tưởng Giải tích khoảng đưa luận án tiến sĩ Moore R E đại học Stanford vào năm 1962, sau xuất thành sách với tiêu đề “Interval analysis” vào năm 1966 [6] Năm 1991, tạp chí quốc tế “Interval Computation” sáng lập mốc son đánh dấu phát triển lĩnh vực này, (từ năm 1995, tạp chí phát hành tên “Reliable Computation”) Năm 1993, hội nghị quốc tế Giải tích khoảng tổ chức Lafayette Năm 1995, hội thảo quốc tế ứng dụng Giải tích khoảng tổ chức EL Paso, Texas 493 2 Xấp xỉ tích chập Lp Ta thấy rằng, cho f ∈ Lp (Ω) với ≤ p < ∞, tồn (fh )h ⊂ C0c (Ω) cho fh → f Lp (Ω) Ta chứng minh tính xấp xỉ này, tìm kiếm xấp xỉ theo hàm quy Chính xác Câu hỏi: (i) Có tồn (fh )h ⊂ C1c cho fh → f Lp (Ω)? (ii) Có thể xây dựng cách rõ ràng xấp xỉ thứ h hàm fh cho f ∈ Lp (Ω)? Câu trả lời cho câu hỏi thứ hai có ý nghĩa xấp xỉ số Định nghĩa (Friedrichs’ mollifiers) Một dãy mollifiers dãy hàm ϱh : Rn → R, (h = 1, 2, ) cho, với h, ϱ ∈ C∞ (Rn ); (M o1) spt(ϱh ) ⊂ B(0, 1/h); Z ϱh dx = 1; (M o2) (M o3) Rn ϱh (x) ≥ 0, ∀x ∈ Rn (M o4) Ví dụ mollifiers: Khá đơn giản để xây dựng dãy mollifiers, hàm không biến ϱ : Rn → R thỏa mãn n ϱ ∈ C∞ c (R ), spt(ϱ) ⊂ B(0, 1), ϱ ≥ Ví dụ, cho ϱ(x) := exp |x| − |x| < |x| ≥ n Khi dễ thấy ϱ ∈ C∞ c (R ) Hơn nữa, ta có dãy mollifiers định nghĩa ϱh (x) := c hn ϱ(hx), x ∈ Rn , h ∈ N −1 Z c := ϱdx Rn Chú ý: Nếu A, B ⊂ Rn , A ± B ký hiệu tập A ± B := {a ± b : a ∈ A, b ∈ B} Bài tập Chứng minh (i) Nếu A compact B đóng, A + B đóng; (ii) A B compact A + B Mệnh đề (Định nghĩa tính chất mollifiers đầu tiên) Cho f ∈ L1loc (Rn ) (ϱh )h dãy mollifiers Định nghĩa, cho h ∈ N x ∈ Rn , Z ϱh (x − y)f (y)dy, ∀x ∈ Rn fh (x) := (ϱ ∗ f )(x) := Rn Khi (i) Hàm fh : Rn → R is well defined; (ii) fh (x) = (ϱh ∗ f )(x) = (f ∗ ϱh )(x) với x ∈ Rn h ∈ N; (iii) fh (x) ∈ C0 (Rn ) với h Hàm fh gọi mollifiers thứ h f Chứng minh Để đơn giản, ta ký hiệu ϱh ≡ ϱ (i) Theo (Mo2) (Mo4), spt(ϱ) ⊂ B(0, 1/h) Khi Z Z |f (y)ϱ(x − y)|dy = Rn |f (y)ϱ(x − y)|dy B(x,1/h) Z ≤ sup ϱ Rn |f (y)|dy < ∞ B(x,1/h) Do đó, ta thay đổi x ∈ Rn , hàm gx (y) := ϱ(x − y)f (y), y ∈ Rn khả tích Rn , xác định tích phân Z Z R∋ gx (y)dy = ϱ(x − y)f (y)dy = (ϱ ∗ f )f (x), ∀x ∈ Rn Rn Rn (ii) cách thay đổi biến Z (f ∗ ϱ)(x) = f (x − y)ϱ(y)dy (z=x=y) Z f (z)ϱ(x − z)dz = (ϱ ∗ f )(x) = Rn Rn (iii) Cho x ∈ Rn xr → x, ta chứng minh (ϱ ∗ f )(xr ) → (ϱ ∗ f )(x) (1) Chú ý Z (ϱ ∗ f )(xr ) − (ϱ ∗ f )(x) = (ϱ(xr − y) − ϱ(x − y))f (y)dy, ∀r ∈ N (2) Rn Từ dãy (xr )r bị chặn Rn , tồn tập compact K ⊂ Rn thỏa mãn B(xr , 1/h) = xr − B(0, 1/h) ⊂ K, B(x, 1/h) ∈ K, ∀r ∈ N Đặc biệt ϱ(xr − y) − ϱ(x − y) = 0, ∀y ∈ / K, ∀r ∈ N (3) Bởi vì, ϱ ∈ Lip(Rn ), theo (16), tồn L > thỏa |ϱ(xr − y) − ϱ(x − y)| ≤ LχK (y)|xr − x|, ∀y ∈ Rn , ∀r ∈ N Vì ta |ϱ(xr − y)ϱ(x − y)||f (y)| ≤ LχK (y)|f (y)||xr − x|, ∀y ∈ Rn , ∀r ∈ N (4) Từ (15), (16) định lý tính hội tụ bị trội, theo (14) Nhận xét Ký hiệu ∗ tích chập hai hàm không gian Rn Lưu ý, kết mệnh đề 29 giữ f ∈ L1loc (Rn ) ϱ ≡ ϱh ∈ C0 (Rn ) thỏa (Mo2) Trên thực tế, xác định tích chập hai hàm g ∈ Lp (Rn ) với ≤ p ≤ ∞ f ∈ L1 (Rn ) Z (g ∗ f )(x) := g(x − y)f (y)dy Rn giữ (g ∗ f ) ∈ Lp (Rn ) ∥g ∗ f ∥Lp (Rn ) ≤ ∥g∥Lp (Rn ) ∥f ∥L1 (Rn ) Định lý (Friedrichs - Sobolev, Xấp xỉ theo tích chập Lp ) Cho f ∈ L1loc (Rn ) (ϱh )h dãy mollifiers Khi (i) f ∗ ϱh ∈ C ∞ (Rn ) với h ∈ N (ii) ∥f ∗ϱ∥Lp (Rn ) ≤ ∥f ∥Lp (Rn ) với h ∈ N, f ∈ Lp (Rn ) với p ∈ [1, ∞] (iii) spt(f ∗ ϱ) ⊂ spte (f ) + B(0, 1/h) với h ∈ N (iv) Nếu f ∈ Lp (Rn ) với ≤ p ≤ ∞, f ∗ ϱh ∈ C ∞ (Rn ) ∩ Lp (Rn ) với h ∈ N, f ∗ ϱh → f h → ∞, Lp (Rn ), biết ≤ p < ∞ Kết cho ta hai kết quan trọng Định lý (Bổ đề tính tốn biến) Cho Ω ⊂ Rn tập mở cho f ∈ L1loc (Ω) Giả sử Z f φdx = 0, ∀φ ∈ Cc∞ (Ω) (∗) Ω Khi f = hầu khắp nơi Ω Chứng minh Chứng minh điều kiện đủ Z |f |dx = với tập compact K ∈ Ω K Thật vậy, theo (18), suy f = hầu khắp nơi K, với tập compact K ∈ Ω Ta có kết luận Ta chứng minh (18) Cho tập compact K ∈ Ω, định nghĩa g : Rn → R f (x) x ∈ K, f (x) ̸= g(x) := |f (x)| ngược lại Khi g ∈ L1 (Rn ) spte (g) ⊆ K ⊂ Ω Cho gh := g ∗ ϱh Theo định lý 12 (iii), tồn h = h(K) ∈ N cho spt(g ∗ ϱh ) ⊆ spte (g) + B(0, 1/h) ⊆ K + B(0, 1/h) ⊂ Ω (5) với h > h Do đó, theo định lý 41 (i), (ii), gh ∈ C∞ h > h |gh (x)| ≤ ∥g∥L∞ (Rn ) = 1, ∀x ∈ Rn , ∀h ∈ N (6) c Từ (∗) ta Z f gh dx = 0, ∀h ≤ h Ω Mặt khác, từ định lý 12 (iv) (??), ta giả sử, dãy tăng, gh → g hầu khắp nơi Rn Do đó, Z Z Z f gh dx → = 0= Ω |f |dx f g dx = Ω K Định lý (Xấp xỉ theo hàm C∞ Lp ) Cho Ω ⊂ Rn tập mở p Khi C∞ c (Ω) trù mật L (Ω), ∥.∥Lp , biết ≤ p < ∞ Chứng minh Cho f ∈ Lp (Ω), định nghĩa fe : Rn → R ( f (x) x ∈ Ω fe(x) := x ∈ Rn \ Ω Chú ý fe ∈ Lp (Rn ) Cho (Ωh )h dãy tăng tập mở bị chặn cho Ω = ∪∞ h=1 Ωh , Ωh ⊂ Ωh ⊂ Ωh+1 , ∀h, định nghĩa gh (x) := χΩh (x)fe(x) fh,r (x) := (ϱr ∗ gh )(x) x ∈ Rn , h, r ∈ N Theo định lý 12 (iii) suy spt(fh,r ) ⊂ B(0, 1/r) + Ωh ⊂ Ω (7) Hơn nữa, cho h ∈ N, tồn rh = r(h) ∈ N cho rh ≥ h B(0, 1/rh ) + Ωh ⊂ Ω Định nghĩa fh (x) := (ϱrh ∗ gh )(x), x ∈ Rn , h ∈ N, (8) để đơn giản, giả sử rh = h Khi đó, theo định lý 12 (i), (ii) (20), (21), fh ∈ C∞ c (Ω) ∥fh − f ∥Lp (Ω) = ∥fh − fe∥Lp (Rn ) ≤ ∥ϱh ∗ gh − ϱh ∗ fe∥Lp (Rn ) + ∥ϱh ∗ fe − fe∥Lp Rn = ∥ϱh ∗ (gh − fe)∥Lp (Rn ) + ∥ϱh ∗ fe − fe∥Lp (Rn ) (9) ≤ ∥gh − fe∥Lp (Rn ) + ∥ϱh ∗ fe − fe∥Lp (Rn ) , ∀h Từ định lý 12 (iv), ϱh ∗ fe → fe Lp (Rn ), theo định lý hội tụ miền gh → fe Lp (Rn ) Khi theo (22), ta có điều phải chứng minh Mở rộng Dorroh mở rộng ∆U -vành Mệnh đề Cho R vành Khi đó, điều kiện sau tương đương (1) R ∆U -vành (2) ∆(R) = U◦ (R) (3) Ánh xạ ε : (∆(R), ◦) → (U (R), ) cho ε(x) = − x đẳng cấu nhóm Chứng minh (1) ⇒ (2) Giả sử R ∆U -vành Mỗi x ∈ ∆(R), ta có − x ∈ U (R), x = − (1 − x) ∈ U◦ (R) Suy ∆(R) ⊆ U◦ (R) Ngược lại, y ∈ U◦ (R) − y ∈ U (R) = + ∆(R) Suy y ∈ ∆(R) hay ∆(R) = U◦ (R) (2) ⇒ (3) Hiển nhiên (3) ⇒ (1) Giả sử ánh xạ ε : (∆(R), ◦) → (U (R), ) cho ε(x) = − x đẳng cấu nhóm Khi u ∈ U (R), tồn x ∈ ∆(R) thỏa mãn u = ε(x) = − x Điều nghĩa U (R) ⊆ + ∆(R) hay U (R) = + ∆(R) Nếu R vành, mở rộng Dorroh vành có đơn vị Z ⊕ R, với phép tốn cộng cộng theo thành phần phép nhân cho (n1 , r1 )(n2 , r2 ) = (n1 n2 , r1 r2 + n1 r2 + n2 r1 ) Chú ý Cho R vành có đơn vị Khi (1) u ∈ U (R) − u ∈ U◦ (R) (2) (1, u − 1) ∈ U (Z ⊕ R) với u ∈ U (R) (3) (1, −x)(1, −y) = (1, −x◦y) (−1, x)(−1, y) = (1, −x◦y) với x, y ∈ R Định lý Cho R vành có đơn vị Khi điều kiện sau tương đương (1) Mở rộng Dorroh Z ⊕ R ∆U -vành; (2) R ∆U -vành Chứng minh (1) ⇒ (2) Lấy u ∈ U (R) Khi − u ∈ U◦ (R) Tồn v ∈ R thỏa mãn (1 − u) ◦ v = = v ◦ (1 − u) Khi ta có (1, u−1)(1, −v) = (1, −(1−u))(1, −v) = (1, −(1−u)◦v) = (1, 0) = (1, −v)(1, u−1) Điều nghĩa (1, u − 1) ∈ U (Z ⊕ R) Vì Z ⊕ R ∆U -vành, (1, u − 1) ∈ + ∆(Z ⊕ R) (0, u − 1) ∈ ∆(Z ⊕ R) Tiếp theo, ta U (R) = + ∆(R) Thật vậy, t ∈ U (R), ta có + t ∈ U◦ (R), (1 + t) ◦ s = = s ◦ (1 + t) với s ∈ R Khi (−1, + t)(−1, s) = (1, −(1 + t) ◦ s) = (1, 0) = (−1, s)(−1, + t) Do (−1, + t) ∈ U (Z ⊕ R) Theo định nghĩa ∆, ta có (0, u − 1) + (−1, + t) ∈ U (Z ⊕ R) (−1, u + t) ∈ U (Z ⊕ R) Đặt x = u + t Khi đó, (−1, x) ∈ U (Z ⊕ R) (1, −x) ∈ U (Z ⊕ R) Suy tồn (1, −y) ∈ Z ⊕ R thỏa mãn (1, −x)(1, −y) = (1, 0) = (1, −y)(1, −x) Ta có x ◦ y = = y ◦ x nên x ∈ U◦ (R) Vì − x ∈ U (R) nên x − = u + t − ∈ U (R) Suy u + t − = (u − 1) + t ∈ U (R) với t ∈ U (R) Điều nghĩa u − ∈ ∆(R), u ∈ + ∆(R) 48 πi liên tục Từ F compact (C1 (Ω), ∥.∥C1 ), T (F) compact (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ) Điều có nghĩa π1 (T (F)) = F π2 (T (F)) = F ′ compact (C0 (Ω), ∥.∥C0 ) Theo định lý Arzelà - Ascoli ta (i), (ii), (iii) Tính đầy đủ: Chứng minh Bài tập F compact (C1 (Ω), ∥.∥C1 ), cho trước (i), (ii) (iii) Nhận xét Cho F = BC1 ([a,b]) := {f ∈ C1 ([a, b]) : ∥f ∥C1 = ∥f ∥∞ + ∥f ′ ∥∞ ≤ 1} Khi F khơng compact (C1 ([a, b]), ∥.∥C1 ) theo định lý Riesz’s (nhớ C1 ([a, b]) không gian vô hạn chiều) Nhưng F compact tương đối (C0 ([a, b]), ∥.∥∞ ), nghĩa là, ∀(fh )h ⊂ F tồn (fhk )k f ∈ C0 ([a, b]) thỏa mãn lim ∥fhk − f ∥∞ = k→∞ Tính tách (C1 (Ω), ∥.∥C1 ) Định lý 15 (C1 (Ω), ∥.∥C1 ) tách Chứng minh Cho T : (C1 (Ω), ∥.∥C1 ) → (M, ∥.∥C0 (Ω)×C0 (Ω) ) ánh xạ định nghĩa (56) Vì T đồng phơi tính tách được bảo tồn qua phép đồng phôi, ta cần không gian (M, ∥.∥C0 (Ω)×C0 (Ω) ) khơng gian metric (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ) tách Điều tính tách (C0 (Ω), ∥.∥∞ ) (Định lý 2), tập từ tính chất tách qua giới hạn đến không gian (Xem định lý (ii)) 16 Cấu trúc nhóm số nhóm hữu hạn Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ Ký hiệu Rk , Tl , Ui,j nhóm Dn có dạng sau Rk = ⟨rk ⟩, Tl = ⟨rl s⟩, Ui,j = ⟨ri , rj s⟩ 49 với ⩽ k ⩽ n, ⩽ l ⩽ n − 1, ⩽ i ⩽ n − 1, ⩽ j ⩽ n − Sau số tính chất nhóm nhị diện, xem [?] Mệnh đề 42 Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ Khi (i) Rk nhóm xiclíc cấp n , d = (n, k), với ⩽ k ⩽ n; d (ii) Tl nhóm xiclíc cấp với ⩽ l ⩽ n − 1; (iii) Ui,j nhóm nhị diện cấp 2n , d = (n, i), với i|n, ⩽ i ⩽ n− d ⩽ j ⩽ n − Mệnh đề 43 Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ Khi (i) Nếu n lẻ CDn (ri ) = R1 , CDn (1) = Dn , CDn (rj s) = Tj với ⩽ i ⩽ n − 1, ⩽ j ⩽ n − 1; (ii) Nếu n chẵn CDn (1) = Dn , CDn (rm ) = Dn , CDn (ri ) = R1 , CDn (rj s) = Um,j n với m = , ⩽ i ⩽ n − 1, i ̸= m, ⩽ j ⩽ n − Mệnh đề 44 Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ 3, H nhóm nhóm Dn Khi H nhóm sau Rk = ⟨rk ⟩, Tl = ⟨rl s⟩, Ui,j = ⟨ri , rj s⟩ với k|n, ⩽ k ⩽ n, ⩽ l ⩽ n − 1, i|n, ⩽ i ⩽ n − 1, ⩽ j ⩽ i − Cho nhóm quaternion suy rộng Q4n = ⟨r, s | r2n = 1, s2 = rn , s−1 rs = r−1 ⟩ với n ⩾ Ký hiệu Rk , Ui,j nhóm Q4n có dạng sau Rk = ⟨rk ⟩, Ui,j = ⟨ri , rj s⟩ với ⩽ k ⩽ 2n, ⩽ i ⩽ 2n, ⩽ j ⩽ 2n − Sau số tính chất nhóm quaternion suy rộng, xem [?] 50 Mệnh đề 45 Cho nhóm quaternion suy rộng Q4n với n ⩾ Khi 2n , d = (2n, k), với ⩽ k ⩽ 2n; d 4n (ii) Ui,j nhóm quaternion suy rộng cấp , d = (n, i), d với ⩽ i ⩽ 2n, ⩽ j ⩽ 2n − (i) Rk nhóm xiclíc cấp Mệnh đề 46 Cho nhóm Quaternion suy rộng Q4n với n ⩾ Khi CQ4n (1) = CQ4n (rn ) = Q4n , CQ4n (ri ) = R1 , CQ4n (rj s) = Un,j với ⩽ i ⩽ 2n − 1, i ̸= n, ⩽ j ⩽ 2n − Mệnh đề 47 Cho nhóm quaternion suy rộng Q4n với n ⩾ 2, H nhóm Q4n Khi H nhóm sau Rk = ⟨rk ⟩, Ui,j = ⟨ri , rj s⟩ với k|2n, ⩽ k ⩽ 2n, ⩽ i ⩽ n, i|n, ⩽ j ⩽ i − Cho nhóm giả nhị diện n n−1 SD2n = ⟨r, s | r2 = s2 = 1, s−1 rs = r2 −1 ⟩ với n ⩾ Ký hiệu Rk , Tl , Ui,j nhóm nhóm giả nhị diện SD2n có dạng sau Rk = ⟨rk ⟩, Tl = ⟨rl s⟩, Ui,j = ⟨ri , rj s⟩ với ⩽ k ⩽ 2n , ⩽ l ⩽ 2n − 1, ⩽ i ⩽ 2n − 1, ⩽ j ⩽ 2n − Sau số tính chất nhóm giả nhị diện, xem [?] Mệnh đề 48 Cho nhóm giả nhị diện SD2n với n ⩾ Khi (i) Rk nhóm xiclíc cấp 2n d = (2n , k), với ⩽ k ⩽ 2n ; d (ii) Tl nhóm xiclíc cấp l chẵn, cấp l lẻ với ⩽ l ⩽ 2n − 1; (iii) Ui,j nhóm giả nhị diện i lẻ với ⩽ i ⩽ 2n − 1, ⩽ j ⩽ 2n − 1; Ui,j nhóm nhị diện i chẵn j chẵn, nhóm quaternion tổng quát i chẵn j lẻ với ⩽ i ⩽ 2n − 1, i ̸= 2n−1 , ⩽ j ⩽ 2n − 1; 51 Với i = 2n−1 , Ui,j nhóm xiclíc cấp j lẻ, Ui,j ∼ = C2 × C2 j chẵn Trong tất trường hợp nhóm Ui,j có cấp d = (2n , i) 2n+1 d Mệnh đề 49 Cho nhóm giả nhị diện SD2n với n ⩾ Khi CSD2n (1) = CSD2n (r2 n−1 ) = SD2n , CSD2n (ri ) = R1 , CSD2n (rj s) = U2n−1 ,j với ⩽ i ⩽ 2n − 1, i ̸= 2n−1 , ⩽ j ⩽ 2n − Mệnh đề 50 Cho nhóm giả nhị diện SD2n với n ⩾ 3, H nhóm SD2n Khi nhóm H SD2n nhóm sau (i) Rk = ⟨rk ⟩ với ⩽ k ⩽ 2n ; (ii) Tl = ⟨rl s⟩ với ⩽ l ⩽ 2n − l chẵn, ⩽ l ⩽ 2n−1 − l lẻ; (iii) Ui,j với ⩽ i ⩽ 2n−2 , i|2n , ⩽ j ⩽ i−1, U2n−1 ,j với ⩽ j ⩽ 2n−1 − 1, j chẵn 17 Không gian hàm liên tục C0 (Ω) Định nghĩa 15 (i) Cho tập A ⊂ Rn , C0 (A) := {f : A → R, f liên tục x ∈ A} (ii) Cho K ⊂ Rn tập compact cho f ∈ C0 (K) Ta ký hiệu ∥f ∥∞ số thực không âm xác định ∥f ∥∞ = ∥f ∥∞,K = sup |f (x)| x∈K ∥.∥∞ gọi chuẩn (hay chuẩn vô cùng) Định lý 16 Cho Ω ⊂ Rn tập mở bị chặn Khi (C0 (Ω), ∥.∥∞ ) khơng gian Banach vô hạn chiều 52 Chứng minh Ta giới hạn n = Ω = (a, b) ta phải chứng minh (C0 (Ω), ∥.∥∞ ) không gian định chuẩn vô hạn chiều R Ta chứng minh khơng gian Banach Nghĩa phải dãy Cauchy (fh )h ⊂ (C0 (Ω), ∥.∥∞ ) hội tụ (tại phần tử thuộc không gian) Giả sử (fh )h dãy Cauchy, theo định nghĩa ta có, ∀ϵ > 0, ∃k ∈ N cho ∥fh − fk ∥∞ = sup |fh (x) − fk (x)| < ϵ ∀h, k ≥ k x∈Ω Điều có nghĩa ∀ϵ > 0, ∃k ∈ N cho |fh (x) − fk (x)| < ϵ ∀h, k ≥ k, ∀x ∈ Ω (20) Từ (??), (fh (x))h ⊂ R dãy Cauchy Do dó: ∃f (x) := lim fh (x), h→∞ ∀x ∈ Ω (21) Từ (??), lấy qua giới hạn (??), cho k → ∞ ta ∀ϵ > 0, ∃k ∈ N cho |fh (x) − f (x)| ≤ ϵ ∀h ≥ k, x ∈ Ω, theo định nghĩa fh → f Ω Do dó f ∈ C0 (Ω) Tính compact (C0 (Ω), ∥.∥∞ ) Bây tìm hiểu đặc trưng tập compact (C0 (Ω), ∥.∥∞ ) Đầu tiên ta nhớ lại số khái niệm kết quan trọng liên quan đến chủ đề compact không gian metric Định nghĩa 16 Cho (X, d) không gian metric ký hiệu B(x, r) hình cầu mở X , tâm x bán kính r > với x ∈ X (i) Điểm x0 ∈ X gọi điểm giới hạn tập A ⊂ X A ∩ (B(x0 , r)\{x0 }) ̸= ∅, ∀r > (ii) Tập A ⊂ X gọi bị chặn tồn R0 > cho d(x, y) ≤ R0 với x, y ∈ A (iii) Tập A ∩ X gọi bị chặn hoàn toàn với ϵ > 0, A phủ họ hữu hạn hình cầu B(x1 , ϵ), B(x2 , ϵ), , B(xN , ϵ), 53 nghĩa A ⊂ ∪N i=1 B(xi , ϵ) (iv) Họ A ⊂ X gọi compact dãy dãy A có dãy hội tụ điểm thuộc A (v) Tập A ⊂ X gọi có tính chất Bolzano-Weierstrass (BW) tập vơ hạn A có điểm giới hạn thuộc A Nhận xét Dễ thấy tập bị chặn hoàn toàn tập bị chặn, điều ngược lại không không gian topo (X, τ ) tập hợp compact tập hợp compact dãy có tính chất (BW) Các tính chất khơng giữ trường hợp tổng quát Định lý 17 (Các tiên đề chuẩn tập compact không gian metric) Nếu A tập không gian metric (X, d), ta có điều sau tương đương: (i) A compact; (ii) A compact dãy; (iii) (A, d) đầy đủ bị chặn hoàn toàn; (iv) A có tính chất BW Nhận xét Nếu (X, d) đầy đủ, A ⊆ X đóng (A, d) đầy đủ Hệ Cho A ⊂ Rn Khi đó: A compact ⇔ A đóng bị chặn Định lý 18 (Riesz) Cho (E, ∥.∥) không gian định chuẩn ta ký hiệu BE := {x ∈ E : ∥x∥ ≤ 1} Khi BE compact dimR E < ∞ Nhận xét Định lý 44 cho tập A bị chặn không gian định chuẩn vô hạn chiều (E, ∥.∥) không thiết phải bị chặn hồn tồn Ví dụ A = BE Định nghĩa 17 Cho A ⊂ Rn Một họ tập F ⊂ C0 (A) gọi tựa liên tục với ϵ > 0, ∃δ(ϵ) > cho f ∈ F, |f (x) − f (y)| < ϵ với x, y ∈ A thỏa |x − y| < δ 54 Ta thêm tiên đề chuẩn tập compact (C0 (K), ∥.∥∞ ) K ⊂ Rn compact Định lý 19 (Arzelà - Ascoli) Cho K ⊂ Rn compact giả sử F ⊂ C0 (K) Khi F compact (C0 (K), ∥.∥∞ ) F là: (i) đóng (C0 (K), ∥.∥∞ ); (ii) bị chặn (C0 (K), ∥.∥∞ ); (iii) liên tục Hệ Cho K ⊂ Rn compact cho F ⊂ C0 (K) Giả sử F bị chặn liên tục Khi F compact (C0 (K), ∥.∥∞ ) Cụ thể hệ cho ta kết đặc biệt sau Hệ 10 Cho fh : [a, b] → R, (h = 1, 2, ) dãy hàm liên tục Giả sử rằng: (i) ∃M > cho |f (x) ≤ M, ∀x ∈ [a, b], ∀h (ii) (fh )h liên tục đều, nghĩa là, ∀ϵ > 0, ∃δ(ϵ) > cho |fh (x) − fh (y)| < ϵ, ∀x, y ∈ [a, b] với |x − y| < δ, ∀h Khi ta có dãy (fhk )k hàm f ∈ C0 ([a, b]) thỏa mãn fhk → f [a, b] Định lý 20 Giả sử M > số cho trước F = {f ∈ C1 ([a, b]) : ∥.∥C1 ≤ M } Khi F tập compact tương đối (C0 ([a, b]), ∥.∥∞ ); Chứng minh định lý 29 Tính đầy đủ: Giả sử có (i), (ii) (iii) ta F compact Theo tính chất tập compact định lý ?? ta F compact dãy Vì dãy (fh )h ∈ F có dãy (fhk )k hội tụ hàm f ∈ F , nghĩa là, ∥fhk − f ∥∞ → k → ∞ Nhớ K compact tách Giả sử D := {xi : i ∈ N} đếm trù mật K F bị chặn nghĩa tồn M1 > thỏa mãn ∥f − g∥∞ ≤ M1 , ∀f, g ∈ F 55 Cụ thể ta thay f0 ∈ F , đó: ∥f0 − fh ∥∞ ≤ M1 , ∀h ∈ N Hơn ∥fh ∥∞ = ∥(fh − f0 ) + f0 ∥∞ ≤ ∥fh − f0 ∥∞ + ∥f0 ∥∞ ≤ M1 + ∥f0 ∥∞ := M2 Do ta có số M2 > thỏa mãn |fh (x)| ≤ M2 , ∀x ∈ K, ∀h Bây ta xây dựng dãy hội tụ theo trình chéo Cantor Bước 1: (fh (x1 ))h dãy số thực [−M2 , M2 ] Suy dãy có dãy (fh(1) (x1 ))h hội tụ R; Bước 2: Xét dãy (fh(1) (x2 ))h ⊂ [−M2 , M2 ] Do dãy (fh(2) (x2 ))h hội tụ Chú ý dãy (fh(2) (x1 ))h hội tụ có dãy (fh(1) (x1 ))h hội tụ Tiếp tục trình ta Bước k: Một dãy (fh(k) )h (fh(k−1) )h thỏa mãn (fhk (xj ))h hội tụ với j = 1, k Ta có tình sau đây: Định nghĩa: gk := fkk : K → R Lưu ý rằng, i = 1, 2, , dãy (gk )k≥i dãy (fki )k≥i Cụ thể, dãy (gk )k dãy (fh )h theo cách xây dựng ∀x ∈ D (22) (gk )k hội tụ (C0 (K), ∥.∥∞ ) (23) (gk (x))k hội tụ R Tiếp tục trình ta Sử dụng giả thiết F liên tục đều, tức ∀ϵ > 0, ∃δ(ϵ) > : x, y ∈ K |x−y| < δ ⇒ |f (x)−f (y)| < ϵ, ∀f ∈ F (24) 56 Với ϵ > thay đổi tùy ý, δ thay đổi Bởi K bị chặn hồn tồn, σ > có họ hữu hạn hình cầu B(x1 , σ), , B(xN , σ) Rn thỏa mãn N = N (σ), xi ∈ K với i = 1, , N n [ K⊂ B(xi , σ) i=1 Do tính trù mật D K , tồn yi ∈ D ∩ B(xi , σ) với i = 1, , N Cụ thể n \ K⊂ B(yi , 2σ) i=1 Vì ta chọn σ = δ/2 Khi tồn N = N (σ) = N (δ) = N (ϵ) D′ := {y1 , , yn } ⊂ D thỏa mãn K⊂ N [ (25) B(yi , δ) i=1 Từ (??) dãy (gk (y1 ))k , , (gk (yN ))k , ¯ hội tụ, có số nguyên k¯ = k(ϵ) với |gk (yi ) − gr (yi )|, ϵ ¯ ∀i = 1, , N ∀k, r > k, Theo (??) (??) ∀x ∈ K, ∃yi ∈ D′ thỏa |x − yi | < δ ⇒ |gk (x) − gk (yi )| < ϵ, ∀k ∈ N Từ ta có |gk (x)−gr (x)| ≤ |gk (x)−gk (yi )|+|gk (yi )−gr (yi )|+|gr (yi )−gr (x)| ≤ ϵ+ϵ+ϵ = 3ϵ ∀x ∈ K ¯ với k, r ≥ k¯ Điều có nghĩa ϵ > tồn k¯ = k(ϵ) thỏa ∥gk − gr ∥∞ ≤ 3ϵ ¯ ∀k, r > k Nghĩa (gk )k dãy Cauchy (C0 (K), ∥.∥∞ ) Từ (C0 (K), ∥.∥∞ ) đầy đủ F đóng, suy tồn f ∈ F thỏa mãn lim ∥gk − f ∥∞ = k→∞ 57 Từ (gk )k dãy dãy (fh )h , phải F compact dãy Sự cần thiết: Cần rằng, F compact (C0 (K), ∥.∥∞ ) ta có (i), (ii) (iii) Giả sử F compact không gian metric (C0 (K), ∥.∥∞ ), đó, theo tính chất tập compact không gian metric, F đóng bị chặn hồn tồn bị chặn Chỉ F liên tục đều, nghĩa ta phải chứng minh (??) Theo phản chứng, giả sử ∃ϵ0 > : ∀ > 0, ∃fδ ∈ F, xδ , yδ ∈ K với |xδ −yδ | < δ |fδ (xδ )−fδ (yδ )| ≥ ϵ0 Chọn δ = 1/h ký hiệu fh := f1/h , xh := x1/h yh := y1/h Khi ta xây dựng ba dãy (fh )h ⊂ F, (xh )h , (yh )h ⊂ K |xh − yh | < 1/h, |fh (xh ) − f (yh )| ≥ ϵ > 0, ∀h (26) Từ F K compact, tồn ba dãy (fh )h ⊂ F, (xh )h , (yh )h ⊂ K thỏa mãn lim xh = lim yh = z ∈ K fh → f ∈ F K h→∞ h→∞ Khi tồn lim fh (xh lim fh (yh ) = f (z) h→∞ h→∞ Lấy qua giới hạn (??) ta có mâu thuẫn Do đó, ta có điều phải chứng minh 18 Các cận cho độ giao hoán tương đối nhóm Mệnh đề sau cho ta cận cận cho độ giao hốn tương đối nhóm nhóm Mệnh đề 51 Cho H nhóm G, p ước nguyên tố nhỏ |G| Khi |Z(G) ∩ H| p(|H| − |Z(G) ∩ H|) |Z(G) ∩ H| + |H| + ⩽ Pr(H, G) ⩽ |H| |H||G| 2|H| 58 Chứng minh Đặt K = Z(G) ∩ H Khi theo Mệnh đề ?? ta có X X X |H||G| Pr(H, G) = |CG (x)| = x∈H |CG (x)| + x∈K = |K||G| + X |CG (x)| x∈H\K |CG (x)| x∈H\K Rõ ràng x ∈ H \ K {1} ⊊ CG (x) ⊊ G p ⩽ |CG (x)| ⩽ Do p(|H| − |K|) ⩽ X |CG (x)| ⩽ (|H| − |K|) x∈H\K |G| |G| Cho nên |K||G| + p(|H| − |K|) ⩽ |H||G| X |CG (x)| ⩽ |K||G| + (|H| − |K|) x∈H\K |G| Từ suy |K| p(|H| − |K|) |K| |H| − |K| + ⩽ Pr(H, G) ⩽ + , |H| |H||G| |H| 2|H| ta có cơng thức cần chứng minh Rõ ràng độ giao hoán tương đối nhóm nhóm giao hốn Kết sau cho ta cận cho độ giao hốn tương đối nhóm một nhóm khơng giao hốn Mệnh đề 52 Cho G nhóm khơng giao hốn H nhóm G Khi (i) Nếu H ⊆ Z(G) Pr(H, G) = Hơn nữa, H nhóm khơng giao hốn Pr(H, G) ⩽ (ii) Nếu H ⊈ Z(G) Pr(H, G) ⩽ Chứng minh X (i) Vì H ⊆ Z(G) nên |CG (x)| = |H||G| Do x∈H Pr(H, G) = X |CG (x)| = |H||G| = |H||G| |H||G| x∈H 59 (ii) Giả sử H ⊈ Z(G) Khi dó Z(G) ∩ H ⊊ H , Cho nên |Z(G) ∩ H| ⩽ |H| Áp dụng Định lý ?? ta |H| + |H| |Z(G) ∩ H| + |H| Pr(H, G) ⩽ ⩽ = |H| |H| Giả sử H khơng nhóm giao hốn Khi theo Mệnh đề 19 ta có Pr(H) ⩽ Do đó, theo Định lý ?? ta có Pr(H, G) ⩽ Pr(H) ⩽ Vậy ta có điều phải chứng minh Kết sau mô tả cấu trúc nhóm trường hợp đạt đươc cận Mệnh đề ?? Mệnh đề 53 Cho H nhóm nhóm G Khi đó: H/(Z(G) ∩ H) ∼ = Z2 ; (ii) Nếu Pr(H, G) = H khơng giao hốn H/(Z(G)∩H) ∼ = Z2 × Z2 (i) Nếu Pr(H, G) = Chứng minh (i) Giả sử Pr(H, G) = Khi đó, theo Định Lý ?? ta có |Z(G) ∩ H| + |H| |Z(G) ∩ H| = Pr(H, G) ⩽ = + 2|H| 2|H| Từ suy |H| ⩽ |Z(G) ∩ H| |H| = |H| = |Z(G) ∩ H|, từ suy H ⊆ Z(G) Khi |Z(G) ∩ H| theo Mệnh đề ?? (i) ta có Pr(H, G) = Điều mâu thuẫn với giả |H| thiết Do = 2, H/(Z(G) ∩ H) ∼ = Z2 , ta có điều |Z(G) ∩ H| Nếu phải chứng minh 60 (ii) Giả sử Pr(H, G) = Bằng cách lập luận tượng tự ta suy |H| ⩽ |Z(G) ∩ H| Vì Z(G) ∩ H ⩽ Z(H) nên H/Z(H) ⩽ H/(Z(G) ∩ H) Vì H khơng giao hốn nên H/Z(H) khơng nhóm xiclíc Do H/(Z(G) ∩ H) khơng nhóm xiclíc Từ suy |H| ⩾ |Z(G) ∩ H| Điều chứng tỏ |H| = 4, |Z(G) ∩ H| H/(Z(G) ∩ H) ∼ = Z2 × Z2 19 Nhóm đối xứng Trong mục chúng tơi tính tốn độ giao hốn tương đối nhóm thay phiên An nhóm đối xứng Sn Định nghĩa 18 Cho n số nguyên dương Một phân hoạch n dãy không tăng số nguyên dương (k1 , k2 , , ks ) cho k1 + k2 + · · · + ks = n Từ Mệnh đề ?? ta có kết sau Mệnh đề 54 Với n ⩾ Pr(An , Sn ) = 2c(n) n! c(n) số lớp liên hợp Sn nằm An Để tính c(n) ta cần kết sau 61 Mệnh đề 55 Cho n số nguyên, n ⩾ 2, (k1 , k2 , , ks ) phân hoạch n Giả sử π ∈ Sn có kiểu (k1 , k2 , , ks ) Khi π ∈ An s + k X ki số chẵn i=1 Chứng minh Vì phép π có kiểu (k1 , k2 , , ks ) cho nên, theo Mệnh đề 18, ta có s P (ki +1) sign(π) = (−1)i=1 s+ = (−1) s P i=1 ki Từ suy điều phải chứng minh Trong ví dụ sau chúng tơi tính tốn giá trị Pr(An , Sn ) với ⩽ n ⩽ cách áp dụng Mệnh đề ?? Với n ⩾ 2, ta liệt kê tất phân hoạch n ứng với kiểu phép An Từ ta đếm c(n) tính Pr(An , Sn ) Ví dụ (i) Với n = ta có phân hoạch (1, 1) Do c(2) = Cho nên Pr(A2 , S2 ) = 2c(2) = 2! (ii) Với n = ta có phân hoạch (3), (1, 1, 1) Do c(3) = Cho nên Pr(A3 , S3 ) = 2c(3) = 3! (iii) Với n = ta có phân hoạch (3, 1), (2, 2), (1, 1, 1, 1) Do c(4) = Cho nên Pr(A4 , S4 ) = 2c(4) = 4! (iv) Với n = ta có phân hoạch (5), (3, 1, 1), (2, 2, 1), (1, 1, 1, 1, 1) 62 Do c(5) = Cho nên 2c(5) = 5! 15 Pr(A5 , S5 ) = (v) Với n = ta có phân hoạch (5, 1), (4, 2), (3, 3), (3, 1, 1, 1), (2, 2, 1, 1), (1, 1, 1, 1, 1, 1) Do c(6) = Cho nên 2c(6) = 6! 60 Pr(A6 , S6 ) = (vi) Với n = ta có phân hoạch (7), (5, 1, 1), (4, 2, 1), (3, 3, 1), (3, 2, 2), (3, 1, 1, 1, 1), (2, 2, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1) Do c(7) = Cho nên Pr(A7 , S7 ) = 20 2c(7) = 7! 315 ĐỊNH LÝ LAGRANGE Định lý 21 (Định lý Lagrange) Giả sử hàm số f liên tục đoạn [a, b], khả vi khoảng (a, b) Khi tồn c ∈ (a, b) cho: f ′ (c) = f (b) − f (a) b−a Chứng minh Xét hàm số f (b) − f (a) g(x) = f (x) − (x − a) + f (a) b−a Do hàm số f (x) x − a liên tục đoạn [a, b], khả vi khoảng (a, b) nên hàm số g(x) liên tục đoạn [a, b] khả vi khoảng