1. Trang chủ
  2. » Giáo án - Bài giảng

giải tích 12 phần 4 đồ thị của hàm số và phép tịnh tiến hệ tọa độ

10 1,2K 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 1,43 MB

Nội dung

Giải tích 12 September 14,2009 http://my.opera.com/vinhbinhpro Nhấn space bar hay click chuột để xem các dòng trang kế tiếp Biên tập PPS : vinhbinhpro Phần IV : Đồ thị của hàm số - phép tịnh tiến hệ tọa độ TÓM TẮT LÝ THUYẾT  http://my.opera.com/vinhbinhpro 1. Định nghĩa : (Đồ thị của hàm số) * Đồ thị của hàm số y = f(x) xác định trên tập D là tập hợp các điểm có tọa độ (x , f(x) ) của mặt phẳng tọa độ. * Đồ thị của hàm số y = f(x) là đường cong có phương trình y = f(x) ( gọi tắt là đường cong y = f(x)) 2.Công thức chuyển hệ tọa độ ( bằng phép tịnh tiến ) 0 x y 0 0 ( ; )I x y Y X ( ; )M X Y X Y x y ( ; )M x y Cho hệ tọa độ Oxy với véc tơ đơn vị ;i j r r Thực hiện phép tịnh tiến theo ( ) 0 0 ( ; / )OI I x y mpOxy uuur ( ; )M x y ( ; )M X Y ( ) mp Oxy ( ) mp IXY Công thức chuyển hệ tọa độ : 0 0 x X x y Y y = +   = +  TÓM TẮT LÝ THUYẾT  Biên tập pps: vinhbinhpro 3. Phương trình của đường cong đ/v hệ tọa độ mới : Cho hàm số y = f(x) có đồ thị là đường cong (C) đối với hệ tọa độ Oxy. Viết phương trình của đường cong (C) đối với hệ tọa độ mới IXY . ( ; )M x y ( ; )M X Y ( ) mp Oxy ( ) mp IXY ( , ) ( ) ( )M x y C y f x ∈ ⇔ = Áp dụng công thức chuyển hệ tọa độ 0 0 x X x y Y y = +   = +  Ta có : 0 0 0 0 ( , ) ( ) ( ) ( )M X Y C Y y f X x Y f X x y ∈ ⇔ + = + ⇔ = + − 0 0 ( )Y f X x y = + − Vậy phương trình của đường cong (C) đối với hệ tọa độ mới IXY là : TÓM TẮT LÝ THUYẾT 4. Giải bài toán tìm tâm đối xứng, trục đối xứng của đồ thị hàm số : Cho hàm số y = f(x) có đồ thị là đường cong (C) đối với hệ tọa độ Oxy. Phương trình của đường cong (C) đối với hệ tọa độ mới IXY là : 0 0 ( )Y f X x y = + − a) Ta đi chứng minh hàm số (*) là hàm số chẳn : : ( ) ( )X D F X F X∀ ∈ − = (*) : ( )Y F X = Lúc này đường cong (C) của hàm số nhận trục Y’IY làm trục đối xứng của đồ thị b) Ta đi chứng minh hàm số (*) là hàm số lẻ : : ( ) ( )X D F X F X ∀ ∈ − =− Lúc này đường cong (C) của hàm số nhận 0 0 ( ; )I x y làm tâm đối xứng của đồ thị Tâm đối xứng của đồ thị Trục đối xứng của đồ thị Bài tập Phần IV : Đồ thị của hàm số - phép tịnh tiến hệ tọa độ Bài tập 1  Biên tập pps : vinhbinhpro a) Xác định điểm I thuộc đồ thị (C) của hàm số : 3 2 3 2 1y x x x = − + − có hoành độ là nghiệm của phương trình y’’ = 0. b) Chứng minh I là tâm đối xứng của đồ thị (C) Hướng dẫn 2 ) ' 3 6 2 '' 6 6 '' 0 6 6 0 1a y x x y x y x x = − + ⇒ = − ∗ = ⇔ − = ⇔ = ( ) 3 2 1 ; 3 2 1 1( ) 1; 1 I I I I I x y xI C x Ix ⇒ = ⇒ = − + − = ∗ ⇒∈ −− b) Thực hiện chuyển hệ tọa độ trong phép tịnh tiến theo vectơ OI uur ta có hệ tọa độ mới IXY. Áp dung công thức chuyển hệ tọa độ 0 0 x X x y Y y = +   = +  ( ) ( ) ( ) 3 2 ( , ) ( ) 3 2 1 I I I I M X Y C Y y X x X x X x ∗ ∈ ⇔ + = + − + + + − ( ) ( ) ( ) 3 2 1 1 3 1 2 1 1Y X X X ⇔ − = + − + + + − Thu gọn ta được: 3 Y X X = − 3 ( )Y X X X = − Đặt ( ) ( ) ( ) 3 3 3 ( )( ) X X X X X XY X Y X ∗ = − − − = + = − − = −−− Vậy Y(X) là hàm số lẻ Kết Luận : Đồ thị (C) nhận I (1 ; -1 ) làm tâm đối xứng Bài tập 2  http://my.opera.com/vinhbinhpro Xác định tâm đối xứng của hàm số sau : 3 2 1 x y x − = + Hướng dẫn : Gọi ( , ) I I I x y là tâm đối xứng của đồ thị hàm số Áp dụng công thức chuyển hệ tọa độ theo OI uur về hệ tọa độ mới IXY I I x X x y Y y = +   = +  3 2 5 3 1 1 x y x x − = = − + + Dạng khác của hàm số ( ) 5 5 * ; ( ) 3 3 ( ) 1 1 I I I I M X Y C Y y Y y Y X X x X x ∈ ⇔ + = − ⇔ = − − = + + + + ( , ) I I I x y là tâm đối xứng của đồ thị hàm số ( )Y X ⇒ là hàm số lẻ 5 5 3 3( ) ( ; , 1 1 ) I I I I y y X Y X Y X X x X x X   − − = − −⇒  ÷ + + + +   ⇔− −=− − ∀ ∀ Thu gọn phương trình ,ta có ( ) ( ) ( ) ( ) 2 2 3 3 1 5 1 0 ; I I I I y X y x Xx − − − + + = ∀+ 1 3 I I x y ⇒ = −   =  có vô số nghiệm ( ) ( ) ( ) 2 3 0 3 1 5 1 0 I I I I y y x x − =    − − + + + = ⇒   Bài tập 3  http://my.opera.com/vinhbinhpro Xác định trục đối xứng của hàm số sau : 2 7 2 3 8 y x x = + − Hướng dẫn : Chuyển hệ tọa độ Oxy về hệ tọa độ IXY bằng phép tịnh tiến theo OI uur với ( , ). I I I x y Áp dụng công thức chuyển hệ tọa độ : I I x X x y Y y = +   = +  ( ) ( ) ( ) ( ) 2 2 (* ( )) 7 7 2 3 2 3 8 8 I I I I I I Y y X x X x Y X Y Xx X x y + = + + + − ⇔ = + + + − − Đồ thị hàm số có 1 trục đối xứng nên *Y(X) phải là hàm số chẳn .Ta có ( ) ( ) ( ) ( ) 2 2 7 7 2 3 2 3 ; 8 8 I I I I I I X x X x y X x X x y X ⇔ + + + − − = + + + − −− ∀− * ( ) ( ) ,Y X Y X X − = ∀ Thu gọn phương trình trên ta có ( ) 8 6 0 0 (*), I I x X y X + + = ∀ (* có vô số nghiệm) 3 8 6 0 , 4 I I I x x y = −⇔ + = ⇔ ∀ Vậy trục đối xứng của đồ thị là đường thẳng có pt : 3 4 x = − (song song trục Oy) Bài tập 4 Chứng minh rằng đồ thị (C) của hàm số : 2 2 3 1 x x y x + + = − nhận điểm I (1,4) làm tâm đối xứng Hướng dẫn : Chọn hệ tọa độ mới IXY với gốc I (1;4) bằng phép tịnh tiến theo OI uur Áp dụng công thức chuyển hệ tọa độ 1 4 x X y Y = +   = +  Phương trình của (C) trong hệ tọa độ IXY là : ( ) ( ) ( ) 2 2 1 2 1 3 6 4 ( )* 1 1 X X X Y Y F X X X + + + + + + = ⇔ = = + − ( ) ( ) 2 2 2 6 6 ( ) ( 6 ) X X X X X X F X F X − +   + + • = = = − =  ÷ − −   − − ( )F X ⇒ là hàm số lẻ nên đồ thị (C) nhận I(1,4) là tâm đối xứng Đón xem phần V: Đường tiệm cận của đồ thị hàm số Biên tâp tập PPS này với hy vọng các bạn học sinh phần nào rèn luyện được khả năng tự học tự mở rộng vấn đề . Chúc các bạn thành công. Phần góp ý chỉnh sửa xin các bạn comment bên dưới chiếu hình trực tuyến. vinhbinhpro . của đồ thị Trục đối xứng của đồ thị Bài tập Phần IV : Đồ thị của hàm số - phép tịnh tiến hệ tọa độ Bài tập 1  Biên tập pps : vinhbinhpro a) Xác định điểm I thuộc đồ thị (C) của hàm số : 3. phép tịnh tiến hệ tọa độ TÓM TẮT LÝ THUYẾT  http://my.opera.com/vinhbinhpro 1. Định nghĩa : (Đồ thị của hàm số) * Đồ thị của hàm số y = f(x) xác định trên tập D là tập hợp các điểm có tọa độ (x. tọa độ mới IXY là : TÓM TẮT LÝ THUYẾT 4. Giải bài toán tìm tâm đối xứng, trục đối xứng của đồ thị hàm số : Cho hàm số y = f(x) có đồ thị là đường cong (C) đối với hệ tọa độ Oxy. Phương trình của

Ngày đăng: 28/05/2014, 13:05

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN