1. Trang chủ
  2. » Luận Văn - Báo Cáo

Một số tính chất nghiệm của lớp phương trình có chứa toán tử elliptic

106 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 106
Dung lượng 559,28 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: MỘT SỐ TÍNH CHẤT NGHIỆM CỦA LỚP PHƯƠNG TRÌNH CĨ CHỨA TOÁN TỬ ELLIPTIC SUY BIẾN LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Ngày nay, nhu cầu phát triển không ngừng khoa học kỹ thuật, ngày xuất nhiều tốn với hàm mục tiêu f(x) khơng trơn (khơng có đạo hàm) Ví dụ phương pháp chỉnh hóa thưa, chỉnh hóa biến phân cho tốn ngược, dẫn đến tốn tối ưu khơng trơn Phương pháp chỉnh hóa thưa nghiên cứu 10 năm trở lại Phương pháp ứng dụng nhiều lĩnh vực khác xử lí ảnh, xác định tham số phương trình đạo hàm riêng, 920 2 So sánh không gian vector hữu hạn chiều không gian vector vô hạn chiều Chúng ta nhắc lại sơ qua điểm khác không gian vector hữu hạn chiều không gian vector vô hạn chiều từ cách nhìn đại số topo Định nghĩa (i) Cho E F hai không gian vector Ta nói E F đẳng cấu tuyến tính tồn ánh xạ T : E → F ánh xạ tuyến tính − từ E vào F (ii) Cho (E, ∥.∥E ) (F, ∥.∥F ) Ta nói (E, ∥.∥E ) (F, ∥.∥F ) đẳng cấu topo tồn ánh xạ liên tục T : E → F ánh xạ tuyến tính − với ánh xạ ngược liên tục T −1 : F → E (ii) Cho (E, ∥.∥E ) (F, ∥.∥F ) Ta nói (E, ∥.∥E ) (F, ∥.∥F ) đẳng cấu metric tồn ánh xạ T : E → F ánh xạ tuyến tính − từ E vào F với ∥T (x)∥F = ∥x∥E với x ∈ E Ta nhớ lại khái niệm không gian đối ngẫu không gian vector định chuẩn Định nghĩa Cho (E, ∥.∥) không gian vector định chuẩn Không gian đối ngẫu E ′ E khơng gian tuyến tính định nghĩa bởi: E ′ := {f : E → R : f tuyến tính liên tục} E ′ trang bị chuẩn ∥f ∥E ′ := |f (x)| < +∞ x∈E\{0} ∥x∥ sup Định lý (E ′ , ∥.∥E ′ ) không gian Banach Chứng minh Ta chứng minh dãy Cauchy E ′ hội tụ Giả sử {fn } dãy Cauchy E ′ , tức ∥fm − fn ∥E ′ → m, n → ∞, với x ∈ E ta có |fm (x) − fn (x)| = |(fm − fn )(x)| tính tuyến tính, hay |fm (x) − fn (x)| ≤ ∥fm − fn ∥E ′ ∥x∥E → m, n → ∞, {fn } dãy Cauchy E ′ Ta suy fn (x) dãy Cauchy R, fn (x) hội tụ, nghĩa tồn f (x) cho f (x) = lim fn (x) n→∞ Ta cần chứng minh f (x) tuyến tính liên tục Tính tuyến tính hiển nhiên, ta cần chứng minh tính liên tục, hay ta chứng minh f (x) bị chặn |f (x)| = lim |fn (x)| ≤ lim ∥fn ∥E ′ ∥x∥E , n→∞ n→∞ Vì fn ∈ E ′ nên fn tuyến tinh bị chặn, tức tồn M > cho ∥fn ∥ ≤ M , từ ta suy |f (x)| ≤ lim M ∥x∥E = M ∥x∥E n→∞ Ta có điều phải chứng minh Lưu ý: Nếu f ∈ E ′ x ∈ E ta viết ⟨f, x⟩E ′ ×E thay cho f (x) ta gọi ⟨., ⟩E ′ ×E tích vơ hướng khơng gian đối ngẫu E, E ′ Ký hiệu chung không gian đối ngẫu thực E không gian Hilbert Không gian hàm liên tục C0 (Ω) Định nghĩa (i) Cho tập A ⊂ Rn , C0 (A) := {f : A → R, f liên tục x ∈ A} (ii) Cho K ⊂ Rn tập compact cho f ∈ C0 (K) Ta ký hiệu ∥f ∥∞ số thực không âm xác định ∥f ∥∞ = ∥f ∥∞,K = sup |f (x)| x∈K ∥.∥∞ gọi chuẩn (hay chuẩn vô cùng) Định lý Cho Ω ⊂ Rn tập mở bị chặn Khi (C0 (Ω), ∥.∥∞ ) khơng gian Banach vơ hạn chiều Chứng minh Ta giới hạn n = Ω = (a, b) ta phải chứng minh (C0 (Ω), ∥.∥∞ ) không gian định chuẩn vô hạn chiều R Ta chứng minh khơng gian Banach Nghĩa phải dãy Cauchy (fh )h ⊂ (C0 (Ω), ∥.∥∞ ) hội tụ (tại phần tử thuộc không gian) Giả sử (fh )h dãy Cauchy, theo định nghĩa ta có, ∀ϵ > 0, ∃k ∈ N cho ∥fh − fk ∥∞ = sup |fh (x) − fk (x)| < ϵ ∀h, k ≥ k x∈Ω Điều có nghĩa ∀ϵ > 0, ∃k ∈ N cho |fh (x) − fk (x)| < ϵ ∀h, k ≥ k, ∀x ∈ Ω (1) Từ (37), (fh (x))h ⊂ R dãy Cauchy Do dó: ∃f (x) := lim fh (x), h→∞ ∀x ∈ Ω (2) Từ (38), lấy qua giới hạn (37), cho k → ∞ ta ∀ϵ > 0, ∃k ∈ N cho |fh (x) − f (x)| ≤ ϵ ∀h ≥ k, x ∈ Ω, theo định nghĩa fh → f Ω Do dó f ∈ C0 (Ω) Tính compact (C0 (Ω), ∥.∥∞ ) Bây tìm hiểu đặc trưng tập compact (C0 (Ω), ∥.∥∞ ) Đầu tiên ta nhớ lại số khái niệm kết quan trọng liên quan đến chủ đề compact không gian metric Định nghĩa Cho (X, d) không gian metric ký hiệu B(x, r) hình cầu mở X , tâm x bán kính r > với x ∈ X (i) Điểm x0 ∈ X gọi điểm giới hạn tập A ⊂ X A ∩ (B(x0 , r)\{x0 }) ̸= ∅, ∀r > (ii) Tập A ⊂ X gọi bị chặn tồn R0 > cho d(x, y) ≤ R0 với x, y ∈ A (iii) Tập A ∩ X gọi bị chặn hoàn toàn với ϵ > 0, A phủ họ hữu hạn hình cầu B(x1 , ϵ), B(x2 , ϵ), , B(xN , ϵ), nghĩa A ⊂ ∪N i=1 B(xi , ϵ) (iv) Họ A ⊂ X gọi compact dãy dãy A có dãy hội tụ điểm thuộc A (v) Tập A ⊂ X gọi có tính chất Bolzano-Weierstrass (BW) tập vô hạn A có điểm giới hạn thuộc A Nhận xét Dễ thấy tập bị chặn hoàn toàn tập bị chặn, điều ngược lại không không gian topo (X, τ ) tập hợp compact tập hợp compact dãy có tính chất (BW) Các tính chất khơng cịn giữ trường hợp tổng quát Định lý (Các tiên đề chuẩn tập compact không gian metric) Nếu A tập không gian metric (X, d), ta có điều sau tương đương: (i) A compact; (ii) A compact dãy; (iii) (A, d) đầy đủ bị chặn hồn tồn; (iv) A có tính chất BW Nhận xét Nếu (X, d) đầy đủ, A ⊆ X đóng (A, d) đầy đủ Hệ Cho A ⊂ Rn Khi đó: A compact ⇔ A đóng bị chặn Định lý (Riesz) Cho (E, ∥.∥) không gian định chuẩn ta ký hiệu BE := {x ∈ E : ∥x∥ ≤ 1} Khi BE compact dimR E < ∞ Nhận xét Định lý 37 cho tập A bị chặn không gian định chuẩn vô hạn chiều (E, ∥.∥) khơng thiết phải bị chặn hồn tồn Ví dụ A = BE Định nghĩa Cho A ⊂ Rn Một họ tập F ⊂ C0 (A) gọi tựa liên tục với ϵ > 0, ∃δ(ϵ) > cho f ∈ F, |f (x) − f (y)| < ϵ với x, y ∈ A thỏa |x − y| < δ Ta thêm tiên đề chuẩn tập compact (C0 (K), ∥.∥∞ ) K ⊂ Rn compact Định lý (Arzelà - Ascoli) Cho K ⊂ Rn compact giả sử F ⊂ C0 (K) Khi F compact (C0 (K), ∥.∥∞ ) F là: (i) đóng (C0 (K), ∥.∥∞ ); (ii) bị chặn (C0 (K), ∥.∥∞ ); (iii) liên tục Hệ Cho K ⊂ Rn compact cho F ⊂ C0 (K) Giả sử F bị chặn liên tục Khi F compact (C0 (K), ∥.∥∞ ) Cụ thể hệ cho ta kết đặc biệt sau Hệ Cho fh : [a, b] → R, (h = 1, 2, ) dãy hàm liên tục Giả sử rằng: (i) ∃M > cho |f (x) ≤ M, ∀x ∈ [a, b], ∀h (ii) (fh )h liên tục đều, nghĩa là, ∀ϵ > 0, ∃δ(ϵ) > cho |fh (x) − fh (y)| < ϵ, ∀x, y ∈ [a, b] với |x − y| < δ, ∀h Khi ta có dãy (fhk )k hàm f ∈ C0 ([a, b]) thỏa mãn fhk → f [a, b] Định lý Giả sử M > số cho trước F = {f ∈ C1 ([a, b]) : ∥.∥C1 ≤ M } Khi F tập compact tương đối (C0 ([a, b]), ∥.∥∞ ); Chứng minh định lý 38 Tính đầy đủ: Giả sử có (i), (ii) (iii) ta F compact Theo tính chất tập compact định lý 36 ta F compact dãy Vì dãy (fh )h ∈ F có dãy (fhk )k hội tụ hàm f ∈ F , nghĩa là, ∥fhk − f ∥∞ → k → ∞ Nhớ K compact tách Giả sử D := {xi : i ∈ N} đếm trù mật K F bị chặn nghĩa tồn M1 > thỏa mãn ∥f − g∥∞ ≤ M1 , ∀f, g ∈ F Cụ thể ta thay f0 ∈ F , đó: ∥f0 − fh ∥∞ ≤ M1 , ∀h ∈ N Hơn ∥fh ∥∞ = ∥(fh − f0 ) + f0 ∥∞ ≤ ∥fh − f0 ∥∞ + ∥f0 ∥∞ ≤ M1 + ∥f0 ∥∞ := M2 Do ta có số M2 > thỏa mãn |fh (x)| ≤ M2 , ∀x ∈ K, ∀h Bây ta xây dựng dãy hội tụ theo trình chéo Cantor Bước 1: (fh (x1 ))h dãy số thực [−M2 , M2 ] Suy dãy có dãy (fh(1) (x1 ))h hội tụ R; Bước 2: Xét dãy (fh(1) (x2 ))h ⊂ [−M2 , M2 ] Do dãy (fh(2) (x2 ))h hội tụ Chú ý dãy (fh(2) (x1 ))h hội tụ có dãy (fh(1) (x1 ))h hội tụ Tiếp tục trình ta Bước k: Một dãy (fh(k) )h (fh(k−1) )h thỏa mãn (fhk (xj ))h hội tụ với j = 1, k Ta có tình sau đây: Định nghĩa: gk := fkk : K → R Lưu ý rằng, i = 1, 2, , dãy (gk )k≥i dãy (fki )k≥i Cụ thể, dãy (gk )k dãy (fh )h theo cách xây dựng ∀x ∈ D (3) (gk )k hội tụ (C0 (K), ∥.∥∞ ) (4) (gk (x))k hội tụ R Tiếp tục trình ta Sử dụng giả thiết F liên tục đều, tức ∀ϵ > 0, ∃δ(ϵ) > : x, y ∈ K |x − y| < δ ⇒ |f (x) − f (y)| < ϵ, ∀f ∈ F (5) Với ϵ > thay đổi tùy ý, δ thay đổi Bởi K bị chặn hồn tồn, σ > có họ hữu hạn hình cầu B(x1 , σ), , B(xN , σ) Rn thỏa mãn N = N (σ), xi ∈ K với i = 1, , N n [ K⊂ B(xi , σ) i=1 Do tính trù mật D K , tồn yi ∈ D ∩ B(xi , σ) với i = 1, , N Cụ thể n \ K⊂ B(yi , 2σ) i=1 Vì ta chọn σ = δ/2 Khi tồn N = N (σ) = N (δ) = N (ϵ) D′ := {y1 , , yn } ⊂ D thỏa mãn K⊂ N [ B(yi , δ) (6) i=1 Từ (39) dãy (gk (y1 ))k , , (gk (yN ))k , ¯ hội tụ, có số nguyên k¯ = k(ϵ) với |gk (yi ) − gr (yi )|, ϵ ¯ ∀i = 1, , N ∀k, r > k, Theo (42) (41) ∀x ∈ K, ∃yi ∈ D′ thỏa |x − yi | < δ ⇒ |gk (x) − gk (yi )| < ϵ, ∀k ∈ N Từ ta có |gk (x)−gr (x)| ≤ |gk (x)−gk (yi )|+|gk (yi )−gr (yi )|+|gr (yi )−gr (x)| ≤ ϵ+ϵ+ϵ = 3ϵ ∀x ∈ K ¯ với k, r ≥ k¯ Điều có nghĩa ϵ > tồn k¯ = k(ϵ) thỏa ∥gk − gr ∥∞ ≤ 3ϵ ¯ ∀k, r > k 60 16 Các vành nhóm Ánh xạ ε : RG → R cho ε( X g rg g) = X rg ánh xạ mở rộng g Iđêan ∇(RG) = ker(ε) gọi iđêan mở rộng Định lý 23 Cho G nhóm hữu hạn với cấp + 2n R ∆U -vành Khi RG ∆U -vành iđêan mở rộng ∇(RG) ∆U -vành Chứng minh Đặt ∇ = ∇(RG) Giả sử G nhóm hữu hạn có cấp 1+2n R ∆U -vành Theo Mệnh đề ??, ta có ∈ ∆(R), 1+2n ∈ U (R) Khi RG có biểu diễn RG = ∇⊕H với H ∼ = R theo [4] Đặt ∇ = eRG H = (1 − e)RG Rõ ràng e phần tử tâm RG Nếu RG ∆U -vành, ∇ = eRG ∆U -vành theo Mệnh đề ?? Ngược lại, giả sử ∇ = eRG ∆U -vành Vì H ∼ = R nên H ∆U -vành Theo Bổ đề 3, RG ∆U -vành Một nhóm gọi hữu hạn địa phương nhóm sinh hữu hạn phần tử hữu hạn Bổ đề Nếu G 2-nhóm hữu hạn địa phương R ∆U -vành với ∆(R) lũy linh, ∇(RG) ⊆ ∆(RG) Chứng minh Giả sử G 2-nhóm hữu hạn địa phương R ∆U -vành ¯ Suy Khi R¯ := R/J(R) ∆U -vành Từ ∆(R) lũy linh, ∈ N (R) ¯ ⊆ N (RG) ¯ ¯ ∇(RG) theo [4, Hệ quả, trang 682] Do đó, ∇(RG) iđêan lũy ¯ linh chứa J(RG) Ta kiểm tra J(R)G ⊆ J(RG), J((R/J(R))G) ∼ = J(RG/J(R)G) = J(RG)/J(R)G Do ∇(RG) ⊆ J(RG) ⊆ ∆(RG) Định lý 24 Cho R ∆U -vành G 2-nhóm hữu hạn địa phương Nếu ∆(R) lũy linh, RG ∆U -vành Chứng minh Lấy u ∈ U (RG) Khi ε(u) = + ε(u − 1) ∈ U (R) theo Bổ đề (1) áp dụng cho ánh xạ mở rộng ε i Vì R ∆U -vành nên tồn j ∈ ∆(R) thỏa mãn ε(u) = + j Theo Bổ đề (1) ta có ε(u − + j) = hay u − + j ∈ ∇(RG) ⊆ ∆(RG) Do u ∈ − j + ∆(RG) suy u ∈ + ∆(RG) 61 Hệ 18 Cho R vành hồn chỉnh phải trái G 2-nhóm hữu hạn địa phương Khi đó, R ∆U -vành RG ∆U -vành 17 Không gian hữu hạn chiều Định nghĩa 10 (i) Một không gian vector E trường số thực gọi hữu hạn chiều bao gồm hữu hạn vector độc lập tuyến tính (ii) Số lớn vector độc lập tuyến tính khơng gian vector hữu hạn chiều E gọi chiều ký hiệu dimR E Hệ B ⊂ E sinh dimR E vector độc lập tuyến tính gọi sở Định lý 25 Giả sử E không gian vector hữu hạn chiều dimR E = n (i) Nếu B ⊂ E sở, B sinh E , cụ thể spanR B = E (ii) E Rn đẳng cấu tuyến tính (iii) Giả sử ∥.∥1 ∥.∥2 hai chuẩn E Khi (E, ∥.∥1 ) (E, ∥.∥2 ) đẳng cấu topo (iv) Giả sử ∥.∥ chuẩn E Khi (E, ∥.∥) (E ′ , ∥.∥E ′ ) đẳng cấu topo Theo tập trước, không gian định chuẩn hữu hạn chiều (E, ∥.∥) đẳng cấu topo với không gian Hilbert Rn Đây đặc trưng mạnh, khơng cịn cho không gian định chuẩn vô hạn chiều 18 Vô hạn chiều Định nghĩa 11 (i) Không gian vector thực E gọi vơ hạn chiều khơng hữu hạn chiều ta viết dimR E = ∞ (ii) Nếu dimR E = ∞, hệ B ⊂ E gọi sở (đại số Hamel) E hệ vector độc lập tuyến tính (nghĩa 62 tập hữu hạn độc lập tuyến tính) B tập lớn tất tập chứa vector độc lập tuyến tính E Điều chứng minh theo nguyên lý cực đại Hausdorff, với không gian vector vô hạn chiều E có sở B phần tử thuộc E biểu diễn (hữu hạn) theo tổ hợp tuyến tính phần tử thuộc B Khi dimR E = ∞, (E, ∥.∥E ) (E ′ , ∥.∥E ′ ) không thiết đẳng cấu topo Tuy nhiên, ta chứng minh vài tính chất topo (E ′ , ∥.∥E ′ ) tính tách cịn giữ (E, ∥.∥E ) Định lý 26 (E, ∥.∥E ) tách (E ′ , ∥.∥E ′ ) tách Trước chứng minh định lý ta cần sử dụng điều kiện trù mật cho không gian định chuẩn, hệ định lý Hahn-Banach thứ hai hình học Mệnh đề 31 (Điều kiện trù mật không gian con) Cho (E, ∥.∥E ) không gian định chuẩn Giả sử M ⊂ E không gian không trù mật (E, ∥.∥E ) lấy x0 ∈ E \ M Khi tồn f ∈ E ′ cho ⟨f, x⟩E ′ ×E = 0, ∀x ∈ M ⟨f, x0 ⟩E ′ ×E = Chứng minh Từ định lý Hahn-Banach thứ hai hình học, tồn g ∈ E ′ cho siêu phẳng H := {x ∈ E : ⟨g, x⟩E ′ ×E = α}, tách tập M {x0 } cách nghiêm ngặt, tức ⟨g, x⟩E ′ ×E < α < ⟨g, x0 ⟩E ′ ×E ∀x ∈ M (26) Từ M không gian con, theo (12), suy λ ⟨g, x⟩E ′ ×E < α, ∀λ ∈ R, ⟨g, x⟩E ′ ×E = 0, ∀x ∈ M (27) 63 Do đó, ta xác định hàm f ∈ E ′ f := g, ⟨g, x0 ⟩E ′ ×E ta có điều phải chứng minh Chứng minh Định lý 22 Cho D := {fh : h ∈ N} ⊂ (E ′ , ∥.∥E ′ ), trù mật Với h có phần tử xh ∈ E với ∥xh ∥ = 1 |fh (x)| ≥ ∥fh ∥E ′ Cho e := spanQ {xh : h ∈ N} D := spanR {xh : h ∈ N}, D tức là, tập tất tổ hợp tuyến tính phần tử {xh : e đếm được, D không gian h ∈ N} với hệ số thực Khi D E theo cách xây dựng ˜ ⊂ (D, ∥.∥) trù mật D Để đưa kết luận chứng minh, ta cần phải D ⊂ (D, ∥.∥) trù mật Theo phản chứng, D không trù mật, lấy x0 ∈ E \ D Khi từ mệnh đề 29, tồn f ∈ E ′ cho ⟨f, x⟩E ′ ×E = 0, ∀x ∈ D ⟨f, x0 ⟩E ′ ×E = Từ D trù mật, có dãy (fhk )k mà lim ∥fhk − f ∥E ′ = k→∞ Tuy nhiên, từ ∥xhk ∥ = 1, ∥fhk − f ∥E ′ ≥ |fhk (xhk ) − f (xhk )| = |f (xhk )| ≥ ∥fhk ∥E ′ Do dó ∥fhk ∥E ′ → k → ∞, ∀k ∈ N 64 nghĩa f ≡ 0, mâu thuẫn với f (x0 ) = Vì D = E 19 Một số kiến thức nhóm Một nhóm (G, ·) tập hợp G ̸= ∅ trang bị phép tốn hai ngơi · thỏa mãn điều kiện sau đây: (i) a · (b · c) = (a · b) · c với a, b, c ∈ G, (ii) Tồn phần tử e ∈ G cho a · e = a = e · a với a ∈ G, (iii) Với a ∈ G tồn phần tử a′ ∈ G cho a · a′ = a′ · a = e Để đơn giản, ta ký hiệu ab thay cho a · b Phần tử e xác định (ii) nhất, gọi phần tử đơn vị nhóm G, thường ký hiệu Với a ∈ G, phần tử a′ xác định (iii) nhất, gọi phần tử nghịch đảo a, ký hiệu a−1 Một nhóm G gọi giao hoán (hay abel ) ab = ba với a, b ∈ G Nếu nhóm G có hữu hạn phần tử ta gọi G nhóm hữu hạn, gọi số phần tử G cấp nhóm G, ký hiệu |G| Cho G nhóm, H tập G Ta gọi H nhóm G, ký hiệu H ⩽ G, điều kiện sau thỏa mãn: (i) Phép toán G hạn chế lên H cảm sinh phép toán H , (ii) H nhóm với phép tốn cảm sinh Cho G nhóm, H tập G ta ký hiệu ⟨S⟩ nhóm bé G chứa S , gọi S tập sinh ⟨S⟩ Đặc biệt, nhóm có tập sinh gồm phần tử gọi nhóm xiclíc Mệnh đề 32 (Định lý Lagrange) Cho G nhóm hữu hạn, H nhóm G Khi |H| ước |G| Với G nhóm hữu hạn, H ⩽ G, ta ký hiệu |G : H| = |G| : |H|, gọi số nhóm H G 65 Mệnh đề 33 Cho G nhóm, A, B hai nhóm hữu hạn G Ký hiệu AB = {ab | a ∈ A, b ∈ B} Khi |AB| = |A||B| |A ∩ B| Cho G nhóm, a phần tử G Với u phần tử G, liên hợp u a, ký hiệu ua , định nghĩa ua = a−1 ua Với H nhóm G, ta gọi H nhóm chuẩn tắc G, ký hiệu H ◁ G, ∈ H với a ∈ G, h ∈ H Cho N nhóm chuẩn tắc G Ký hiệu G/N = {aN | a ∈ G} Khi G/N nhóm với phép tốn xác định sau Với a, b ∈ G (aN )(bN ) = abN Nhóm G/N gọi nhóm thương G N Với S tập G, tâm hóa S G, ký hiệu CG (S), định nghĩa CG (S) = {a ∈ G | ua = u với u ∈ S} Trong trường hợp S = {x}, ta dùng ký hiệu CG (x) thay cho CG (S) Tâm nhóm G, ký hiệu Z(G), định nghĩa Z(G) = CG (G) Mệnh đề 34 Cho G nhóm khơng giao hốn Khi đó, nhóm thương G/Z(G) khơng nhóm xiclíc Cho G nhóm Với x y hai phần tử G, giao hoán tử x y , ký hiệu [x, y], định nghĩa [x, y] = x−1 y −1 xy Nhóm giao hốn tử G, ký hiệu G′ , định nghĩa nhóm sinh tập tất giao hốn tử {[x, y] | x, y ∈ G} 66 Cho hai nhóm G H Một ánh xạ f : G → H gọi đồng cấu nhóm với a, b ∈ G f (ab) = f (a)f (b) Nếu đồng cấu f đơn ánh (tương ứng, tốn ánh, song ánh) ta gọi f đơn cấu (tương ứng, toàn cấu, đẳng cấu) Ta ký hiệu Aut(G) nhóm tất tự đẳng cấu G Cho N H hai nhóm bất kỳ, cho θ : H → Aut(N ) đồng cấu nhóm Khi đó, tập hợp G = {(x, h) | x ∈ N, h ∈ H} nhóm với phép tốn xác định sau Với (x1 , h1 ), (x2 , h2 ) ∈ G, (x1 , h1 )(x2 , h2 ) = (x1 θ(h1 )(x2 ), h1 h2 ) Nhóm G xác định gọi tích nửa trực tiếp N H ứng với tác động θ, ký hiệu G = N ×θ H Trong trường hợp đặc biệt θ đồng cấu tầm thường tích nửa trực tiếp tích trực tiếp Sau số kiến thức p-nhóm nhóm abel hữu hạn Cho p số nguyên tố Một nhóm G gọi p-nhóm |G| mơt lũy thừa p Ta thấy nhóm con, nhóm thương p-nhóm p-nhóm Mệnh đề 35 Cho p số nguyên tố Khi (i) Mọi nhóm có cấp p nhóm xiclíc (ii) Mọi nhóm có cấp p2 nhóm abel Mệnh đề 36 Mọi nhóm abel hữu hạn G biểu diễn cách thành tích trực tiếp nhóm xiclíc G∼ = Cn1 × Cn2 × · · · × Cnk ni ⩾ 2, i = 1, 2, k , n1 | n2 | · · · | nk 67 Sau số kiến thức nhóm đối xứng nhóm thay phiên Cho X tập hợp Một song ánh từ tập X đến gọi phép tập X Ký hiệu S(X) tập tất phép tập X Khi S(X) nhóm với phép tốn hợp thành ánh xạ Ta gọi S(X) nhóm đối xứng tập X Ta dùng ký hiệu Sn để nhóm đối xứng tập X = {1, 2, , n} gọi Sn nhóm đối xứng bậc n Định lý 27 Mọi phép π ∈ Sn với n ⩾ phân tích thành tích xích rời Phân tích không kể đến thứ tự nhân tử Cho π ∈ Sn với n ⩾ Khi đó, theo Định lý ??, ta có phân tích π thành tích xích rời π = (a11 a12 · · · a1k1 )(a21 a22 · · · a2k2 ) · · · (as1 as2 · · · asks ) ta giả thiết k1 ⩾ k2 ⩾ · · · ⩾ ks Ta gọi (k1 , k2 , , ks ) kiểu phép π Mệnh đề 37 Hai phép nhóm đối xứng Sn với n ⩾ liên hợp với chúng có kiểu Cho σ ∈ Sn với n ⩾ Ta nói cặp (σ(i), σ(j)) nghịch σ i < j σ(i) > σ(j) Dấu phép σ, ký hiệu sign(σ), xác định công thức sign(σ) = (−1)t t số nghịch σ Nếu sign(σ) = ta gọi σ phép chẵn, sign(σ) = −1 ta gọi σ phép lẻ Mệnh đề 38 Cho σ, τ ∈ Sn với n ⩾ Khi (i) sign(στ ) = sign(σ)sign(τ ) (ii) Nếu σ xích độ dài k sign(σ) = (−1)k+1 Với n ⩾ ta ký hiệu An tập phép chẵn bậc n Khi An nhóm chuẩn tắc số Sn Ta gọi An nhóm thay phiên bậc n Cuối mục kết độ giao hốn nhóm 68 Định nghĩa 12 Cho G nhóm Ký hiệu C = {(x, y) ∈ G × G | xy = yx} Độ giao hoán G, ký hiệu Pr(G), định nghĩa sau Pr(G) = |C| |G|2 Mệnh đề 39 Nếu G nhóm khơng giao hốn Pr(G) ⩽ 20 Xấp xỉ tích chập Lp Ta thấy rằng, cho f ∈ Lp (Ω) với ≤ p < ∞, tồn (fh )h ⊂ C0c (Ω) cho fh → f Lp (Ω) Ta chứng minh tính xấp xỉ này, tìm kiếm xấp xỉ theo hàm quy Chính xác Câu hỏi: (i) Có tồn (fh )h ⊂ C1c cho fh → f Lp (Ω)? (ii) Có thể xây dựng cách rõ ràng xấp xỉ thứ h hàm fh cho f ∈ Lp (Ω)? Câu trả lời cho câu hỏi thứ hai có ý nghĩa xấp xỉ số Định nghĩa 13 (Friedrichs’ mollifiers) Một dãy mollifiers dãy hàm ϱh : Rn → R, (h = 1, 2, ) cho, với h, ϱ ∈ C∞ (Rn ); (M o1) spt(ϱh ) ⊂ B(0, 1/h); Z ϱh dx = 1; (M o2) (M o3) Rn ϱh (x) ≥ 0, ∀x ∈ Rn (M o4) Ví dụ mollifiers: Khá đơn giản để xây dựng dãy mollifiers, hàm không biến ϱ : Rn → R thỏa mãn n ϱ ∈ C∞ c (R ), spt(ϱ) ⊂ B(0, 1), ϱ ≥ 69 Ví dụ, cho ϱ(x) :=   exp |x| −  |x| < |x| ≥  n Khi dễ thấy ϱ ∈ C∞ c (R ) Hơn nữa, ta có dãy mollifiers định nghĩa ϱh (x) := c hn ϱ(hx), x ∈ Rn , h ∈ N −1 Z c := ϱdx Rn Chú ý: Nếu A, B ⊂ Rn , A ± B ký hiệu tập A ± B := {a ± b : a ∈ A, b ∈ B} Bài tập Chứng minh (i) Nếu A compact B đóng, A + B đóng; (ii) A B compact A + B Mệnh đề 40 (Định nghĩa tính chất mollifiers đầu tiên) Cho f ∈ L1loc (Rn ) (ϱh )h dãy mollifiers Định nghĩa, cho h ∈ N x ∈ Rn , Z fh (x) := (ϱ ∗ f )(x) := ϱh (x − y)f (y)dy, ∀x ∈ Rn Rn Khi (i) Hàm fh : Rn → R is well defined; (ii) fh (x) = (ϱh ∗ f )(x) = (f ∗ ϱh )(x) với x ∈ Rn h ∈ N; (iii) fh (x) ∈ C0 (Rn ) với h Hàm fh gọi mollifiers thứ h f Chứng minh Để đơn giản, ta ký hiệu ϱh ≡ ϱ (i) Theo (Mo2) (Mo4), spt(ϱ) ⊂ B(0, 1/h) 70 Khi Z Z |f (y)ϱ(x − y)|dy = Rn |f (y)ϱ(x − y)|dy B(x,1/h) Z ≤ sup ϱ Rn |f (y)|dy < ∞ B(x,1/h) Do đó, ta thay đổi x ∈ Rn , hàm gx (y) := ϱ(x − y)f (y), y ∈ Rn khả tích Rn , xác định tích phân Z Z ϱ(x − y)f (y)dy = (ϱ ∗ f )f (x), ∀x ∈ Rn gx (y)dy = R∋ Rn Rn (ii) cách thay đổi biến Z f (x − y)ϱ(y)dy (f ∗ ϱ)(x) = (z=x=y) Z f (z)ϱ(x − z)dz = (ϱ ∗ f )(x) = Rn Rn (iii) Cho x ∈ Rn xr → x, ta chứng minh (ϱ ∗ f )(xr ) → (ϱ ∗ f )(x) (28) Chú ý Z (ϱ ∗ f )(xr ) − (ϱ ∗ f )(x) = (ϱ(xr − y) − ϱ(x − y))f (y)dy, ∀r ∈ N (29) Rn Từ dãy (xr )r bị chặn Rn , tồn tập compact K ⊂ Rn thỏa mãn B(xr , 1/h) = xr − B(0, 1/h) ⊂ K, B(x, 1/h) ∈ K, ∀r ∈ N Đặc biệt ϱ(xr − y) − ϱ(x − y) = 0, ∀y ∈ / K, ∀r ∈ N (30) Bởi vì, ϱ ∈ Lip(Rn ), theo (??), tồn L > thỏa |ϱ(xr − y) − ϱ(x − y)| ≤ LχK (y)|xr − x|, ∀y ∈ Rn , ∀r ∈ N Vì ta |ϱ(xr − y)ϱ(x − y)||f (y)| ≤ LχK (y)|f (y)||xr − x|, ∀y ∈ Rn , ∀r ∈ N Từ (??), (??) định lý tính hội tụ bị trội, theo (??) (31) 71 Nhận xét Ký hiệu ∗ tích chập hai hàm không gian Rn Lưu ý, kết mệnh đề ?? giữ f ∈ L1loc (Rn ) ϱ ≡ ϱh ∈ C0 (Rn ) thỏa (Mo2) Trên thực tế, xác định tích chập hai hàm g ∈ Lp (Rn ) với ≤ p ≤ ∞ f ∈ L1 (Rn ) Z (g ∗ f )(x) := g(x − y)f (y)dy Rn giữ (g ∗ f ) ∈ Lp (Rn ) ∥g ∗ f ∥Lp (Rn ) ≤ ∥g∥Lp (Rn ) ∥f ∥L1 (Rn ) Định lý 28 (Friedrichs - Sobolev, Xấp xỉ theo tích chập Lp ) Cho f ∈ L1loc (Rn ) (ϱh )h dãy mollifiers Khi (i) f ∗ ϱh ∈ C ∞ (Rn ) với h ∈ N (ii) ∥f ∗ϱ∥Lp (Rn ) ≤ ∥f ∥Lp (Rn ) với h ∈ N, f ∈ Lp (Rn ) với p ∈ [1, ∞] (iii) spt(f ∗ ϱ) ⊂ spte (f ) + B(0, 1/h) với h ∈ N (iv) Nếu f ∈ Lp (Rn ) với ≤ p ≤ ∞, f ∗ ϱh ∈ C ∞ (Rn ) ∩ Lp (Rn ) với h ∈ N, f ∗ ϱh → f h → ∞, Lp (Rn ), biết ≤ p < ∞ Kết cho ta hai kết quan trọng Định lý 29 (Bổ đề tính tốn biến) Cho Ω ⊂ Rn tập mở cho f ∈ L1loc (Ω) Giả sử Z f φdx = 0, ∀φ ∈ Cc∞ (Ω) (∗) Ω Khi f = hầu khắp nơi Ω Chứng minh Chứng minh điều kiện đủ Z |f |dx = với tập compact K ∈ Ω K Thật vậy, theo (??), suy f = hầu khắp nơi K, với tập compact K ∈ Ω Ta có kết luận Ta chứng minh (??) (32) 72 Cho tập compact K ∈ Ω, định nghĩa g : Rn → R   f (x) x ∈ K, f (x) ̸= g(x) := |f (x)|  ngược lại Khi g ∈ L1 (Rn ) spte (g) ⊆ K ⊂ Ω Cho gh := g ∗ ϱh Theo định lý ?? (iii), tồn h = h(K) ∈ N cho spt(g ∗ ϱh ) ⊆ spte (g) + B(0, 1/h) ⊆ K + B(0, 1/h) ⊂ Ω với h > h Do đó, theo định lý 22 (i), (ii), gh ∈ C∞ h > h |gh (x)| ≤ ∥g∥L∞ (Rn ) = 1, ∀x ∈ Rn , ∀h ∈ N (33) c Từ (∗) ta Z f gh dx = 0, ∀h ≤ h Ω Mặt khác, từ định lý ?? (iv) (??), ta giả sử, dãy tăng, gh → g hầu khắp nơi Rn Do đó, Z Z Z f gh dx → = 0= Ω |f |dx f g dx = Ω K Định lý 30 (Xấp xỉ theo hàm C∞ Lp ) Cho Ω ⊂ Rn tập p mở Khi C∞ c (Ω) trù mật L (Ω), ∥.∥Lp , biết ≤ p < ∞ Chứng minh Cho f ∈ Lp (Ω), định nghĩa fe : Rn → R ( f (x) x ∈ Ω fe(x) := x ∈ Rn \ Ω Chú ý fe ∈ Lp (Rn ) Cho (Ωh )h dãy tăng tập mở bị chặn cho Ω = ∪∞ h=1 Ωh , Ωh ⊂ Ωh ⊂ Ωh+1 , ∀h, 73 định nghĩa gh (x) := χΩh (x)fe(x) fh,r (x) := (ϱr ∗ gh )(x) x ∈ Rn , h, r ∈ N Theo định lý ?? (iii) suy spt(fh,r ) ⊂ B(0, 1/r) + Ωh ⊂ Ω (34) Hơn nữa, cho h ∈ N, tồn rh = r(h) ∈ N cho rh ≥ h B(0, 1/rh ) + Ωh ⊂ Ω (35) Định nghĩa fh (x) := (ϱrh ∗ gh )(x), x ∈ Rn , h ∈ N, để đơn giản, giả sử rh = h Khi đó, theo định lý ?? (i), (ii) (??), (??), fh ∈ C∞ c (Ω) ∥fh − f ∥Lp (Ω) = ∥fh − fe∥Lp (Rn ) ≤ ∥ϱh ∗ gh − ϱh ∗ fe∥Lp (Rn ) + ∥ϱh ∗ fe − fe∥Lp Rn = ∥ϱh ∗ (gh − fe)∥Lp (Rn ) + ∥ϱh ∗ fe − fe∥Lp (Rn ) (36) ≤ ∥gh − fe∥Lp (Rn ) + ∥ϱh ∗ fe − fe∥Lp (Rn ) , ∀h Từ định lý ?? (iv), ϱh ∗ fe → fe Lp (Rn ), theo định lý hội tụ miền gh → fe Lp (Rn ) Khi theo (??), ta có điều phải chứng minh 21 KHƠNG GIAN CÁC HÀM LIÊN TỤC Nhận xét Định lý Arzelà - Ascoli khơng cịn C0 (A) A ⊂ Rn khơng compact Ví dụ lấy C0b (R) khơng gian hàm liên tục bị chặn R, nghĩa   0 Cb (R) := f ∈ C (R) : sup |f | < ∞ R 74 Khi dễ thấy (C0b (R), ∥.∥∞ ) không gian Banach Giả sử f : R → R hàm định nghĩa ( − |x| x ≤ f (x) = x > Giả sử h : R → R, (h = 1, 2, ) định nghĩa fh (x) := f (x + h) giả sử F := {fh : h ∈ N} Khi dễ thấy họ hàm F ⊂ C0b (R) bị chặn liên tục Tuy nhiên F không compact (C0b (R), ∥.∥∞ ) Thật vậy, ý ∃f (x) := lim fh (x) = 0, ∀x ∈ R ∥fh − f ∥∞ = 1, ∀h h→∞ Điều có nghĩa dãy hội tụ (fh )h (C0b (R), ∥.∥∞ ) không chấp nhận Tính tách (C0b (R), ∥.∥∞ ) Định nghĩa 14 Giả sử (X, τ ) khơng gian topo Khi (X, τ ) gọi thỏa mãn tiên đề hai tính đếm có sở đếm cho topo τ Định lý 31 Giả sử (X, d) không gian metric Khi (i) (X, d) tách thỏa tiên đề thứ hai tính đếm (ii) Mỗi khơng gian (X, d) tách (X, d) tách (iii) Giả sử (Y, ϱ) không gian metric khác T : (X, d) → (Y, ϱ) đồng cấu Khi (X, d) tách (Y, ϱ) tách Nhận xét Phải nhấn mạnh mục quan trọng giải tích cho mục xấp xỉ Nghĩ số hợp lý chứng minh định lý Ascoli Cuối phải nhớ lại tiêu chuẩn để kiểm tra không gian topo không gian tách

Ngày đăng: 03/07/2023, 08:49

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w