1. Trang chủ
  2. » Luận Văn - Báo Cáo

Một số tính chất của đa thức đối xứng và ứng dụng trong đại số

105 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: MỘT SỐ TÍNH CHẤT CỦA ĐA THỨC ĐỐI XỨNG VÀ ỨNG DỤNG TRONG ĐẠI SỐ LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Giải tích lồi mơn giải tích đại, nghiên cứu tập lồi hàm lồi vấn đề liên quan Bộ mơn có vai trò quan trọng nhiều lĩnh vực khác toán học ứng dụng, đặc biệt tối ưu hoá, bất đẳng thức biến phân, toán cân Một vấn đề quan trọng giải tích lồi phép chiếu Đây công cụ sắc bén đơn giản để chứng minh nhiều định lý quan trọng Định lý tách, Định lý xấp xỉ tập lồi, Định lý tồn nghiệm Bất đẳng thức biến phân Hơn phép chiếu dùng để xây dựng phương pháp giải nhiều lớp toán quan trọng toán quy hoạch lồi, toán tối ưu, toán bất đẳng thức biến phân 329 2 ĐỊNH LÍ FUBINI Định lý (G.Fubini - L.Tonelli) Cho F : R2n → [0, ∞] hàm đo (đối với M2n ) Khi (i) Hàm Rn ∋ y 7→ F (x, y) đo (đối với Mn ) với Ln hầu khắp nơi x ∈ Rn (ii) Hàm Z n R ∋ x 7→ F (x, y)dy Rn đo (đối với Mn ) (ii) F (x, y)dy dx F (x, y)dxdy = R2n Rn  Z Z Z Rn Z Z F (x, y)dx dy = Rn  Rn Bổ đề Cho f ∈ C0 (Rn ) Khi ϱ ∗ f → f tập compact Rn Chứng minh Cho K ⊂ Rn tập compact cho K ′ := K + B(0, 1) Theo tính liên tục f tập compact K ′ , ∀ϵ > tồn < δ = δ(ϵ, K ′ ) < thỏa mãn |f (x − y) − f (x)| ≤ ϵ, ∀x ∈ K, ∀y ∈ B(0, δ) (1) Mặt khác, h ∈ N thỏa 1/h < δ x ∈ K , theo (??), Z |(f ∗ ϱh )(x) − f (x)| = 15 Trong ví dụ sau ta tính lại độ giao hốn tương đối nhóm nhóm nhị diện D3 D4 cách áp dụng Mệnh đề 46 Ví dụ (i) Với n = 3, xét nhóm nhị diện D3 (cho Ví dụ 6) Các nhóm D3 R1 = ⟨r⟩, R3 = {1}; T0 = ⟨s⟩, T1 = ⟨rs⟩, T2 = ⟨r2 s⟩; D3 Khi 3+3 3+1 = , Pr(R3 , D3 ) = = 1; 2·3 2·3 3+1 Pr(T0 , D3 ) = Pr(T1 , D3 ) = Pr(T2 , D3 ) = = ; 2·3 Pr(D3 , D3 ) = Pr(D3 ) = (ii) Với n = 4, xét nhóm nhị diện D4 (cho Ví dụ 7) Các nhóm D4 Pr(R1 , D3 ) = R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R4 = {1}; T0 = ⟨s⟩, T1 = ⟨rs⟩, T2 = ⟨r2 s⟩, T3 = ⟨r3 s⟩; U2,0 = ⟨r2 , s⟩, U2,1 = ⟨r2 , rs⟩; D4 Khi 4+2·1 4+2·2 4+4 = , Pr(R2 , D4 ) = = 1, Pr(R4 , D4 ) = = 1; 2·4 2·4 2·4 4+2 = ; Pr(T0 , D4 ) = Pr(T1 , D4 ) = Pr(T2 , D4 ) = Pr(T3 , D4 ) = 2·4 4+2·2+4 Pr(U2,0 , D4 ) = Pr(U2,1 , D4 ) = = ; Pr(D4 , D4 ) = Pr(D4 ) = 4·4 Pr(R1 , D4 ) = KHƠNG GIAN CÁC HÀM KHẢ TÍCH Định lý Cho Ω ⊂ Rn tập mở Khi (Lp (Ω), ∥.∥Lp ) tách ≤ p < ∞ không tách p = ∞ Ta cần hai kết để chứng minh định lý ??: trước kết topo (Urysohn’s Lemma) sau quan hệ xấp xỉ không gian hàm liên tục Lp 16 Định nghĩa Cho (X, τ ) không gian topo Khi C0c (X) := {f : X → R liên tục spt(f ) compact (X, d)} spt(f ) := Bao đóng{x ∈ X : f (x) ̸= 0} Bổ đề (Bổ đề Urysohn) Cho X compact địa phương không gian metric, cho K ⊂ X V ⊂ X , K compact V mở thỏa mãn K ⊂ V Khi đó, tồn hàm φ ∈ C0c (X) thỏa mãn ≤ φ ≤ 1, φ ≡ K spt(φ) ⊂ V Định lý (Xấp xỉ Lp hàm liên tục) Cho Ω ⊂ Rn tập mở Khi C0c (Ω) trù mật (Lp (Ω), ∥.∥Lp ), biết ≤ p < ∞ Chứng minh định lý ?? dựa hai kết tảng xấp xỉ hàm đo được, ta cần nhớ lại Định lý (Xấp xỉ hàm đơn giản) Cho (X, M) không gian đo cho f : X → [0, +∞] hàm đo Khi tồn dãy hàm đơn giản đo sh : X → [0, +∞], (h = 1, 2, ) thỏa mãn tính chất (i) ≤ s1 ≤ s2 ≤ ≤ sh ≤ ≤ f ; (ii) lim sh (x) = f (x), ∀x ∈ X h→∞ Z Đặc biệt, f ∈ L (X, µ), nghĩa f dµ < ∞, sh → f X L1 (X, µ), nghĩa Z ∥f − sh ∥L1 (X,µ) := |f − sh |dµ → X Định lý (Lusin - Dạng không gian metric compact địa phương) Cho µ độ đo Radon compact địa phương, không gian metric tách X Cho f : X → R hàm đo cho tồn tập Borel A ⊂ X với µ(A) < ∞, f (x) = ∀x ∈ X \A |f (x)| < ∞ µ− hầu khắp nơi x ∈ X Khi đó, với ϵ > 0, tồn g ∈ C0c (X) cho µ({x ∈ X : f (x) ̸= g(x)}) < ϵ 17 Hơn nữa, g chọn cho supx∈X |g(x)| ≤ sup |f (x)| x∈X Chứng minh cho định lý Ta chia chứng minh định lý thành hai bước Bước 1: Ta chứng minh răng, ∀ϵ > 0, ∀f ∈ Lp (Ω) tồn hàm đơn giản đo s : Ω → R cho |{x ∈ Ω : s(x) ̸= 0} < ∞| (đặc biệt s ∈ Lp (Ω), ∀p ∈ [1, ∞]); ∥f − s∥Lp < ϵ (15) (16) Đầu tiên, giả sử f ≥ Ω Theo xấp xỉ hàm không âm đo phương pháp hàm đơn giản (Định lý ??), tồn dãy hàm đơn giản đo sh : Ω → [0, +∞], (h = 1, 2, ) cho ≤ s1 ≤ s2 ≤ ≤ sk ≤ ≤ f ; lim sh (x) = f (x) h→∞ (17) ∀x ∈ Ω (18) Từ (??) ta sh ∈ Lp (Ω) |s ∈ Ω : sh (x) ̸= 0| < ∞ ∀h, (19) ∥sh − f ∥ ≤ 2f Ω, ∀h (20) Theo (??) (??), ta cso thể áp dụng định lý hội theo Lebesgue, ≤ p < ∞, ta lim ∥sh − f ∥Lp = h→∞ (21) Cho ϵ > 0, từ (??), tồn h = h(ϵ) ∈ N cho ∥sh − f ∥Lp < ϵ Nếu ta định nghĩa s := sh , theo (??) (??) Trường hợp tổng quát f : Ω → R chứng minh tách f = + f − f − áp dụng (??) (??), tách thành f + f − Bước 2: Ta ∀ϵ > 0, ∀f ∈ Lp (Ω), ∃g ∈ C0c (Ω) cho ∥f −g∥Lp < ϵ ϵ Cho f hàm đơn giản đo thỏa mãn (??) (??) với ϵ ≡ ký hiệu A := {x ∈ Ω : s(x) ̸= 0} Giả sử ∥s∥∞ > 0, khơng 18 s ≡ ∈ C0c (Ω) kết thúc chứng minh Áp dụng định lý Lusin cho hàm s, tồn hàm g ∈ C0c (Ω) thỏa mãn |Ac | = |{x ∈ Ω : s(x) ̸= g(x)}| < ϵp , 4p ∥s∥p∞ (22) với |g(x)| ≤ ∥x∥∞ x ∈ Ω (23) Chú ý ∥f − g∥Lp ≤ ∥f − s∥Lp + ∥s − g∥Lp < Bây ta đánh giá ∥s − g∥Lp Z Z ∥s − g∥pLp = |s − g|p dx = Ω ϵ + ∥s − g∥Lp |s − g|p dx ≤ 2p ∥s∥p∞ |Aϵ | < Aϵ (24) ϵp 2p (25) Vì (??) (??) kết thúc chứng minh Chứng minh định lý ?? Ta cần chứng minh (C0c (Ω), ∥.∥∞ ) tách (26) Thật vậy, ta giả sử rằng, từ (??), ta (Lp (Ω), ∥.∥∞ ) tách được, biết ≤ p < ∞ Đầu tiên, giả sử Ω bị chặn Cho D ⊂ (C0c (Ω), ∥.∥∞ ) trù mật đếm được, ta chứng minh D trù mật (Lp (Ω), ∥.∥Lp ) với ≤ p < ∞ (27) Từ định lý ??, ∀f ∈ Lp (Ω), ∀ϵ > 0, ∃g ∈ C0c (Ω) cho ϵ ∥f − g∥Lp < D trù mật, tồn e g ∈ D cho ∥g − e g ∥∞ < ϵ 2|Ω|1/p Nhớ lại Bài tập ∥f ∥Lp ≤ |Ω|1/p ∥f ∥∞ , ∀f ∈ L∞ (Ω), biết |Ω| < ∞ (28) 19 Điều nghĩa ϵ ∥g − g∥Lp ≤ |Ω1/p |∥g − g∥∞ < (29) Do gợi ý (??) (??) ám (??) Bây giả sử Ω không bị chặn Theo kết biết topo, tồn dãy (Ωh )h tập mở bị chặn cho Ωh ⊂ Ωh ⊂ Ωh+1 Ω= ∪∞ h=1 Ωh Hơn nữa, ý C0c (Ω) = ∪∞ h=1 Cc (Ωh ) (30) Theo (??) tồn tập Dh ⊂ (C0c (Ω), ∥.∥∞ ) trù mật đếm Cho D := ∪∞ h=1 Dh (??) giữ Từ định lý ??, ∀f ∈ Lp (Ω), ∀ϵ > 0, ∃g ∈ C0c (Ω) cho (??) Từ K := spt(g) tập compact chứa Ω, tồn h = h(g) = ϵ ∈ N cho K ⊂ Ωh Điều có nghĩa g ∈ C0c (Ωh ) ta có kết luận bước trước Bây ta chứng minh (??) Nhớ lại (C0 (K), ∥.∥∞ ) tách được, biết K ⊂ Rn tập compact (định lý 29) Cho (Ωh ) dãy tập mở bị chặn Rn Theo định nghĩa, C0c (Ωh ) ⊂ (C0 (Ω), ∥.∥∞ ) Vì (C0 (Ω), ∥.∥∞ ) tách nên với h, tồn tập D ⊂ (C0 (Ωh ), ∥.∥∞ ) trù mật đếm (31) Bây giờ, theo bổ đề Urysohn, ta sửa tập hợp hàm D eh ⊂ C0c (Ω) đẻ họ cho tập hợp hàm đếm D e D := ∪∞ h=1 Dh ⊂ (Cc (Ω), ∥.∥inf ty ) đếm trù mật (32) Áp dụng bổ đề Urysohn với K := Ωh−1 , V = Ωh cho φh ∈ C0 (Ω) cho ≤ φh (x) ≤ 1, ∀x ∈ Ω, φh (x) = 1, ∀x ∈ Ωh−1 spt(φh ) ⊂ Ωh 20 xác định g ∈ Dh , g : Ωh → R, định nghĩa e g : Ω → R hàm ( g(x) x ∈ Ωh , e g (x) := nếux ∈ Ω \ Ωh cho e := {φhe D g : g ∈ D} e (h ∈ N) D := ∪∞ h=1 D Ta chứng minh (??) Theo cách xây dựng, D đếm Vì ta cần chứng minh trù mật (C0c , ∥.∥∞ ) Sửa ϵ > 0, f ∈ C0c (Ω) cho K := spt(f ) ⊂ Ω compact Tồn h0 ∈ N cho K ⊂ Ωh0 ⊂ Ωh0 +1 Điều có nghĩa f ∈ C0c (Ωh0 ) ⊂ C0 (Ωh0 ) ⊂ C0 (Ωh0 +1 ) Theo (??), tồn f1 ∈ Dh0 +1 cho ∥f − f1 ∥∞,Ω := sup |f (x) − f1 (x)| < ϵ (33) x∈Ω Từ f ≡ Ωh0 +1 \ Ωh0 từ (??), suy |f1 (x)| < ϵ sup (34) x∈Ωh0 +1 \Ωh0 eh0 +1 , theo (??) (??) ta Bây ta định nghĩa f2 := φh0 +1 fe1 ∈ D ∥f − f2 ∥∞,Ω = sup |f (x) − f2 (x)| = x∈Ω sup |f (x) − φh0 +1 f (x)| ≤ x∈Ωh0 +1 ( max ) sup |f (x) − f1 (x)|, sup |f1 (x)| < ϵ x∈Ωh0 +1 \Ωh0 x∈Ωh0 Như (??) Cuối ta chứng minh (L∞ (Ω), ∥.∥L∞ ) không tách Ta tìm họ rời khơng đếm Ui : i ∈ I tập mở L∞ (Ω) Cho a ∈ Ω cho ωa := B(a, ) > với B(a, ) ⊂ Ω Định nghĩa n o Ua := f ∈ L∞ (Ω) : ∥f − χωa ∥L∞ < Chú ý a ∈ I := Ω 21 • Ua mở (L∞ (Ω), ∥.∥L∞ ), ∀a ∈ Ω: hiển nhiên • Ua ∩ Ub = ∅ a ̸= b, thật vậy, theo phản chứng, f ∈ Ua ∩ Ub , điều nghĩa ∥χωa − χωb ∥L∞ ≤ ∥χωa − f ∥L∞ + ∥f − χωb ∥L∞ < 1 + = 2 Mặt khác ∥χωa − χωb ∥L∞ = a ̸= b, mâu thuẫn • I = Ω khơng đếm Độ giao hốn tương đối mở rộng nhóm Trong mục ta nghiên cứu độ giao hoán tương đối mở rộng nhóm Mệnh đề Cho H1 H2 hai nhóm G cho H1 ⩽ H2 Khi Pr(H1 , H2 ) ⩾ Pr(H1 , G) ⩾ Pr(H2 , G) Chứng minh Theo Bổ đề 9, với x ∈ G ta có |H1 : CH1 (x)| ⩽ |H2 : CH2 (x)| ⩽ |G : CG (x)| Từ suy |C (x)| |C (x)| |CH1 (x)| ⩾ H2 ⩾ G với x ∈ G |H1 | |H2 | |G| Theo Mệnh đề 31 ta có Pr(H1 , H2 ) = X 1 X |CH2 (x)| |CH2 (x)| = |H1 ||H2 | |H1 | |H2 | x∈H1 ⩾ x∈H1 X X |CG (x)| = |CG (x)| = Pr(H1 , G) |H1 | |G| |H1 ||G| x∈H1 x∈H1 22 Theo Mệnh đề 31 ta có X Pr(H1 , G) = ⩾ |H1 ||G| |CH1 (y)| = y∈G X |CH2 (y)| |G| y∈G |H2 | X |CH1 (y)| |G| |H1 | y∈G = X |CH2 (y)| = Pr(H2 , G) |H2 ||G| y∈H2 Vậy ta có điều phải chứng minh Mệnh đề Cho H N nhóm nhóm G cho N ⩽ H N ◁ G Khi Pr(H, G) ⩽ Pr(H/N, G/N ) Pr(N ) Hơn nữa, dấu đẳng thức xảy N ∩ [H, G] = Để chứng minh Mệnh đề ?? ta cần bổ đề sau Bổ đề Cho H N nhóm nhóm G cho N ⩽ H N ◁ G Khi CH (x)N ⩽ CH/N (xN ) N với x ∈ G Hơn nữa, đẳng thức xảy N ∩ [H, G] = Chứng minh Lấy x ∈ G Giả sử y ∈ CH (x) Khi yN ∈ CH (x)N , N ta có xN yN = (xy)N = (yx)N = yN xN C (x)N Do yN ∈ CH/N (xN ) Từ suy H ⩽ CH/N (xN ) N Giả sử N ∩ [H, G] = Ta chứng minh xảy dấu đẳng thức Thật vậy, lấy x ∈ G Giả sử yN ∈ CH/N (xN ) với y ∈ H Khi xN yN = yN xN , (xy)N = (yx)N Từ suy y −1 x−1 yx = (xy)−1 (yx) ∈ N Điều chứng tỏ y −1 x−1 yx ∈ N ∩[H, G] Do theo giả thiết, ta có y −1 x−1 yx = hay xy = yx Từ suy y ∈ CH (x) Do yN ∈ Điều chứng tỏ CH/N (xN ) ⩽ CH (x)N N CH (x)N N 23 Vậy ta có điều phải chứng minh Bây ta chứng minh Mệnh đề ?? Chứng minh Từ Mệnh đề 31 ta có X X X |CH (y)| |H||G| Pr(H, G) = |CH (y)| = y∈G = S∈G/N y∈S X X S∈G/N y∈S = |CN (y)| |CN (y)| X X |CH (y)N | |CH (y)| |CN (y)| = |CN (y)| |N ∩ CH (y)| |N | S∈G/N y∈S X X CH (y)N

Ngày đăng: 04/07/2023, 15:53

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w