1. Trang chủ
  2. » Luận Văn - Báo Cáo

Luận văn thạc sỹ thuật toán đạo hàm tăng cường giải bài toán cân bằng

34 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC  - PHÙNG THỊ THU HUYỀN THUẬT TOÁN ĐẠO HÀM TĂNG CƯỜNG GIẢI BÀI TOÁN CÂN BẰNG Chuyên ngành: Toán ứng dụng Mã số : 46 01 12 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC TS Nguyễn Thị Thanh Huyền THÁI NGUYÊN - 2022 ▼ư❝ ❧ư❝ ▲í✐ ♥â✐ ✤➛✉ ✶ ✶ ▼ët sè ❦✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à ✹ ✶✳✶✳ ▼ët sè ❦✐➳♥ t❤ù❝ ❝ì t ỗ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹ ✶✳✷✳ ❚➼♥❤ ✤ì♥ ✤✐➺✉ ❝õ❛ s♦♥❣ ❤➔♠ ❝➙♥ ❜➡♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼ ✶✳✸✳ ❇➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈➔ ❝→❝ ❜➔✐ t♦→♥ ❧✐➯♥ q✉❛♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼ ✷ ❚❤✉➟t t♦→♥ ✤↕♦ ❤➔♠ t➠♥❣ ❝÷í♥❣ ❣✐↔✐ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✶✵ ✷✳✶✳ ❚❤✉➟t t♦→♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✵ ✷✳✷✳ ❙ü ❤ë✐ tö ❝õ❛ t❤✉➟t t♦→♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✸ ✷✳✸✳ ⑩♣ ❞ö♥❣ ❝❤♦ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ❤é♥ ❤ñ♣ ✤❛ trà ✳ ✷✺ ✷✳✹✳ ❱➼ ❞ö sè ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✼ ❑➳t ❧✉➟♥ ✸✵ ✐ õ t ỗ õ ré♥❣ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ n ❝❤✐➲✉ Rn ✈➔ f : K × K → Rn ∪ {+∞} ❧➔ ♠ët s♦♥❣ ❤➔♠ ❝➙♥ ❜➡♥❣✱ tù❝ ❧➔ t❤ä❛ ♠➣♥ f (x, x) = ✈ỵ✐ ♠å✐ x ∈ K ✳ ❳➨t ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ t❤❡♦ ♥❣❤➽❛ ▲✳ ❉✳ ▼✉✉ ✈➔ ❖❡tt❧✐ ❬✾❪ ❝â ❞↕♥❣✿ ❚➻♠ x∗ ∈ K s❛♦ ❝❤♦ f (x∗, y) ≥ ✈ỵ✐ ♠å✐ y ∈ K ✳ ❇➜t ✤➥♥❣ t❤ù❝ tr➯♥ ✤÷đ❝ ❍✳ ◆✐❦❛✐❞♦ ✈➔ ❑✳ ■s♦❞❛ ❬✶✵❪ sû ❞ö♥❣ ❧➛♥ ✤➛✉ t✐➯♥ ✈➔♦ ♥➠♠ ✶✾✺✺ tr♦♥❣ ❦❤✐ ♥❣❤✐➯♥ ❝ù✉ trá ❝❤ì✐ ❦❤ỉ♥❣ ❤đ♣ t→❝✳ ◆➠♠ ✶✾✼✷✱ ❑② ❋❛♥ ❬✼❪ ❣å✐ ❧➔ ❜➜t ✤➥♥❣ t❤ù❝ ♠✐♥✐♠❛① ✈➔ ổ ữ r t q sỹ tỗ t↕✐ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ♥➔②✳ ❚❤✉➟t ♥❣ú ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✤÷đ❝ sû ❞ư♥❣ ❧➛♥ ✤➛✉ t✐➯♥ ❜ð✐ ▲✳❉✳ ▼✉✉ ✈➔ ❲✳ ❖❡tt❧✐ ❬✾❪ ♥➠♠ ✶✾✾✷✳ ❇➔✐ t♦→♥ ❝➙♥ ợ t q trồ ữ ❜➔✐ t♦→♥ tè✐ ÷✉✱ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥✱ ❜➔✐ t♦→♥ ✤✐➸♠ ❜➜t ✤ë♥❣ ❑❛❦✉t❛♥✐✱ ❜➔✐ t♦→♥ ❝➙♥ s tr ỵ tt trỏ ỡ ổ ủ t ✳✳✳ ❇➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✤÷đ❝ ♥❣❤✐➯♥ ❝ù✉ ❜ð✐ ♥❤✐➲✉ tr ữợ sỹ tỗ t ữỡ r õ ữợ ♥❣❤✐➯♥ ❝ù✉ ✈➲ ♣❤÷ì♥❣ ♣❤→♣ ❣✐↔✐ ❝â t❤➸ ♥â✐ ❧➔ ✤÷đ❝ q✉❛♥ t➙♠ ♥❤✐➲✉ ❤ì♥✳ ▼ët sè ♣❤÷ì♥❣ ♣❤→♣ ❣✐↔✐ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ❝â t❤➸ ❦➸ ✤➳♥ ❧➔ ♣❤÷ì♥❣ ♣❤→♣ ✤✐➸♠ ❣➛♥ ❦➲✱ ♣❤÷ì♥❣ ♣❤→♣ ✤✐➸♠ ❜➜t ✤ë♥❣✱ ✳✳✳ ữỡ ỹ tr ỵ t ỵ t ữủ ợ t❤✐➺✉ ❧➛♥ ✤➛✉ t✐➯♥ ❝❤♦ ❜➔✐ t♦→♥ tè✐ ÷✉✱ s❛✉ ✤â ♠ð rë♥❣ ❝❤♦ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ str rở ỵ t♦→♥ ♣❤ư ❝❤♦ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈ỵ✐ s♦♥❣ ❤➔♠ ❝➙♥ ❜➡♥❣ ✤ì♥ ✤✐➺✉ ♠↕♥❤ t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ▲✐♣s❝❤✐t③✳ tt t ỹ tr ỵ t♦→♥ ♣❤ư✱ tr♦♥❣ tr÷í♥❣ ❤đ♣ tê♥❣ q✉→t ❦❤ỉ♥❣ ❤ë✐ tư ❝❤♦ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ✤ì♥ ✤✐➺✉ ❧➔ ♠ët tr÷í♥❣ ❤đ♣ ✤➦❝ ❜✐➺t ❝õ❛ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✤ì♥ ✤✐➺✉✳ ✣➸ ❦❤➢❝ ♣❤ư❝ ♥❤÷đ❝ K ✶ ✷ ✤✐➸♠ ♥➔②✱ ❝→❝ t→❝ ❣✐↔ tr♦♥❣ t➔✐ ❧✐➺✉ ❬✶✶❪ ✤➣ sỷ ỵ t rở ♣❤÷ì♥❣ ♣❤→♣ ✤↕♦ ❤➔♠ t➠♥❣ ❝÷í♥❣ ❣✐↔✐ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✤ì♥ ✤✐➺✉✳ ❚r♦♥❣ ✤â✱ ♣❤÷ì♥❣ ♣❤→♣ ✤↕♦ ❤➔♠ t➠♥❣ ữớ ữủ ợ t t r ✤➸ t➻♠ ✤✐➸♠ ②➯♥ ♥❣ü❛✱ ✤÷đ❝ sû ❞ư♥❣ ✤➸ ❣✐↔✐ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ✤ì♥ ✤✐➺✉✳ ▲✉➟♥ ✈➠♥ t➟♣ tr✉♥❣ tr➻♥❤ ❜➔② ♣❤÷ì♥❣ ♣❤→♣ ✤↕♦ ❤➔♠ t➠♥❣ ❝÷í♥❣ ❣✐↔✐ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✤ì♥ ✤✐➺✉ tr➯♥ ❝ì sð ✤å❝ ❤✐➸✉ ✈➔ tr➻♥❤ ❜➔② ❧↕✐ ♠ët ❝→❝❤ ❝❤✐ tt ỗ õ ữỡ ỗ ỳ s r ữỡ ✶✱ ❝❤ó♥❣ tỉ✐ tr➻♥❤ ❜➔② ♠ët sè ❦❤→✐ ♥✐➺♠ ✈➲ t ỗ ữ t ỗ ỗ ỗ ♠↕♥❤✳ ❚✐➳♣ t❤❡♦ ❝❤ó♥❣ tỉ✐ tr➻♥❤ ❜➔② t➼♥❤ ✤ì♥ ✤✐➺✉ ❝õ❛ s♦♥❣ ❤➔♠ ♥❤÷ ✤ì♥ ✤✐➺✉ ♠↕♥❤✱ ✤ì♥ ✤✐➺✉✱ ❣✐↔ ✤ì♥ ✤✐➺✉ ✈➔ ♠è✐ q✉❛♥ ❤➺ ❣✐ú❛ ❝❤ó♥❣✳ ❈❤ó♥❣ tỉ✐ ❝ô♥❣ tr➻♥❤ ❜➔② ✈➲ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈➔ ❝→❝ ❜➔✐ t♦→♥ ❧✐➯♥ q✉❛♥✳ ◆ë✐ ❞✉♥❣ ❝❤➼♥❤ ❝õ❛ ❝❤÷ì♥❣ ♥➔② ✤÷đ❝ ✈✐➳t ❞ü❛ tr➯♥ ❝→❝ t➔✐ ❧✐➺✉ ❬✷✱ ✹✱ ✺❪✳ ❚r♦♥❣ ❝❤÷ì♥❣ ✷ ❝õ❛ ❧✉➟♥ ✈➠♥✱ ❝❤ó♥❣ tỉ✐ tr➻♥❤ ❜➔② t❤✉➟t t♦→♥ ✤↕♦ ❤➔♠ t➠♥❣ ❝÷í♥❣ ❣✐↔✐ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣✳ ◆ë✐ ❞✉♥❣ ❝❤➼♥❤ ❝õ❛ ❝❤÷ì♥❣ ♥➔② ✤÷đ❝ t❤❛♠ ❦❤↔♦ ❝❤õ ②➳✉ tø t➔✐ ❧✐➺✉ ❬✶✶❪✳ ▲✉➟♥ ✈➠♥ ♥➔② ✤÷đ❝ t❤ü❝ ❤✐➺♥ t↕✐ tr÷í♥❣ ✣↕✐ ❤å❝ ❑❤♦❛ ❤å❝ ✲ ✣↕✐ t ữợ sỹ ữợ ❝õ❛ ❚❙✳ ◆❣✉②➵♥ ❚❤à ❚❤❛♥❤ ❍✉②➲♥✳ ❚ỉ✐ ①✐♥ ✤÷đ❝ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ ❝❤➙♥ t❤➔♥❤ ✈➔ s➙✉ s➢❝ tỵ✐ ổ ữớ tớ ữợ t t➻♥❤ ❝❤➾ ❜↔♦ ❝❤♦ tæ✐ tr♦♥❣ q✉→ tr➻♥❤ t❤ü❝ ❤✐➺♥ ✤➲ t➔✐ ♥➔②✳ ❚ỉ✐ ①✐♥ tr➙♥ trå♥❣ ❝↔♠ ì♥ ❇❛♥ ❣✐→♠ ❤✐➺✉ tr÷í♥❣ ✣↕✐ ❤å❝ ❑❤♦❛ ❤å❝ ✲ ✣↕✐ ❤å❝ ❚❤→✐ ◆❣✉②➯♥✱ ❇❛♥ ❝❤õ ♥❤✐➺♠ ❦❤♦❛ ❚♦→♥ ✲ ❚✐♥ ❝ò♥❣ ❝→❝ t❤➛② ❝æ ✤➣ t❤❛♠ ❣✐❛ ❣✐↔♥❣ ❞↕② ✈➔ t↕♦ ♠å✐ ✤✐➲✉ ❦✐➺♥ tèt ♥❤➜t ✤➸ tæ✐ ❤å❝ t➟♣ ✈➔ ự ỗ tớ tổ ỷ ỡ tỵ✐ ❣✐❛ ✤➻♥❤ t❤➙♥ ②➯✉✱ ❝↔♠ ì♥ ❝→❝ ❜↕♥ ✈➔ ỗ ổ tổ tr s✉èt q✉→ tr➻♥❤ t❤ü❝ ❤✐➺♥ ✤➲ t➔✐✳ ❙❛✉ ❝ị♥❣✱ tỉ✐ ①✐♥ ❦➼♥❤ ❝❤ó❝ t♦➔♥ t❤➸ t❤➛② ❝ỉ tr÷í♥❣ ✣↕✐ ❤å❝ tt ỗ ọ t tử qỵ tr sỹ trỗ ữớ ổ t ỡ ỵ Rn ổ tỡ tỹ ❊✉❝❧✐❞❡ n ❝❤✐➲✉ AT ♠❛ tr➟♥ ❝❤✉②➸♥ ✈à ❝õ❛ ♠❛ tr➟♥ A (P EP ) ❇➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ (DEP ) ❇➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✤è✐ ♥❣➝✉ K∗ ❚➟♣ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ Kd ❚➟♣ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✤è✐ ♥❣➝✉ ∇G(x) ❣r❛❞✐❡♥t ❝õ❛ ❤➔♠ G(x) f (x, y) ữợ t tự ✷ ❝õ❛ ❤➔♠ f (x, ) t↕✐ y NK (x) ◆â♥ ♣❤→♣ t✉②➳♥ ❝õ❛ t➟♣ ❑ t↕✐ x ∇2 L(x, x) ❣r❛❞✐❡♥t ❝õ❛ ❤➔♠ L(x, ) t↕✐ x ✸ ❈❤÷ì♥❣ ✶ ▼ët sè ❦✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à ❚r♦♥❣ ❝❤÷ì♥❣ ♥➔②✱ ❝❤ó♥❣ tỉ✐ tr➻♥❤ ❜➔② ♠ët sè ❦✐➳♥ t❤ù❝ ❝ì ❜↔♥ t ỗ ỗ ỗ t ❝❤ó♥❣ tỉ✐ tr➻♥❤ ❜➔② ✈➲ t➼♥❤ ✤ì♥ ✤✐➺✉ ❝õ❛ s♦♥❣ ❤➔♠❀ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈➔ ♠ët sè ❜➔✐ t♦→♥ ❧✐➯♥ q✉❛♥✳ ◆ë✐ ❞✉♥❣ ❝❤➼♥❤ ❝õ❛ ❝❤÷ì♥❣ ✤÷đ❝ t❤❛♠ ❦❤↔♦ tr♦♥❣ ❝→❝ t➔✐ ❧✐➺✉ ❬✶✱ ✷✱ ✹✱ ✺❪✳ ✶✳✶✳ ▼ët số tự ỡ t ỗ x ✈➔ y ❧➔ ❤❛✐ ♣❤➛♥ tû t❤✉ë❝ Rn ✱ ❦❤♦↔♥❣ ✤â♥❣ [x, y] ✤÷đ❝ ✤à♥❤ ♥❣❤➽❛ ♥❤÷ s❛✉✿ [x, y] := {λx + (1 − λ)y : λ ∈ [0, 1]} ✣à♥❤ ♥❣❤➽❛ ✶✳✶✳ ❬✷✱ ✹❪ ▼ët t➟♣ ❝♦♥ R ữủ t ỗ [x, y] ⊆ Ω ❦❤✐ ♠➔ x, y ∈ Ω✳ ◆â✐ t ữủ t ỗ λx+(1−λ)y ∈ Ω✱ ∀x, y ∈ Ω ✈➔ λ ∈ [0, 1]✳ ❱➼ ❞ö ✶✳✶✳ ✐✮ ❚➟♣ Ω1 = {x Rn : x 1} t ỗ ❚➟♣ Ω2 = {x ∈ Rn : ⟨v, x⟩ ≤ r} tr♦♥❣ ✤â v ∈ Rn ❧➔ ♠ët ♣❤➛♥ tû trữợ r R t x, y ∈ Ω1 ✱ λ ∈ [0, 1]✳ ❚❛ ❝â ∥λx + (1 − λ)y∥ ≤ |λ|∥x∥ + |1 − λ|∥y| ≤ λ.1 + (1 − λ).1 ≤ ❙✉② r❛ λx + (1 − λ)y ∈ Ω1 ✳ t ỗ x, y Ω1 ✱ λ ∈ [0, 1]✱ ⟨v, λx + (1 − λ)y⟩ = λ⟨v, x⟩ + (1 − λ)⟨v, y⟩ ≤ λ.r + (1 − λ)r = r ✹ ✺ t ỗ K Rn ởt t ỗ ởt x ∈ K ✳ ◆â♥ ♣❤→♣ t✉②➳♥ ✭♥❣♦➔✐✮ ❝õ❛ K t↕✐ x ①→❝ ✤à♥❤ ❜ð✐ NK (x) = {v ∈ Rn : ⟨v, x − x⟩ ≤ 0, ∀x ∈ K} ✣à♥❤ ♥❣❤➽❛ ✶✳✸✳ ❬✷❪ ❈❤♦ f : Ω → R = R ∪ {+∞} ❧➔ ♠ët ❤➔♠ ♥❤➟♥ ❣✐→ trà tr♦♥❣ t➟♣ sè t❤ü❝ ♠ð rë♥❣ ①→❝ ✤à♥❤ tr➯♥ t ỗ Rn f ữủ ỗ tr f (x + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y), ∀x, y ∈ Ω, λ ∈ (0, 1) ❱➼ ❞ư ✶✳✷✳ ❍➔♠ g(x) = ∥Ax + b∥ ✈ỵ✐ A Rpìn b Rp ỗ x, y ∈ Ω1 ✱ λ ∈ (0, 1)✱ t❛ ❝â g(λx + (1 − λ)y) = ∥A(λx + (1 − λ)y) + b∥ = ∥λ(Ax + b) + (1 − λ)(Ay + b)∥ ≤ λ∥A(x + b)∥ + (1 − λ)∥Ay + b∥ = λg(x) + (1 − λ)g(y) õ g(x) ỗ ởt tờ qt ỡ t ỗ ữủ tr s❛✉ ✤➙②✳ ✣à♥❤ ♥❣❤➽❛ ✶✳✹✳ ❬✺❪ ❈❤♦ Ω ❧➔ t➟♣ ỗ tr Rn ởt g : R ữủ ỗ ợ số tr➯♥ Ω✱ ♥➳✉ ✈ỵ✐ ♠é✐ τ > 0✱ x, y ∈ Ω ✈➔ λ ∈ [0, 1] t❤ä❛ ♠➣♥ τ g(λx + (1 − λ)y) ≤ λg(x) + (1 − λ)g(y) − λ(1 − λ)∥x − y∥2 ◆➳✉ g ỗ t s r g ỗ g(x) = 2x2 tr ổ R ỗ ợ số ❧➔ 4✳ ✣à♥❤ ♥❣❤➽❛ ✶✳✺✳ ❬✶❪ ❈❤♦ f : Rn (, +) ởt ỗ x domf ✭tù❝ ❧➔ f (x) < +∞)✮✳ ▼ët ♣❤➛♥ tû v Rn ữủ ởt ữợ ❝õ❛ ❤➔♠ f t↕✐ x ♥➳✉ ⟨v, x − x⟩ ≤ f (x) − f (x), ∀x ∈ Rn tt ữợ f t x ữủ ữợ f t↕✐ x ✈➔ ❦➼ ❤✐➺✉ ❧➔ ∂f (x)✳ ❍➔♠ f ữủ ữợ t x ♥➳✉ ∂f (x) ̸= ∅✳ ❙❛✉ ✤➙② ❧➔ ✤à♥❤ ♥❣❤➽❛ ỷ tử ữợ ỷ tử tr ✣à♥❤ ♥❣❤➽❛ ✶✳✻✳ ❬✶✱ ✷❪ ❈❤♦ Ω ❧➔ t➟♣ ❝♦♥ ỗ tr Rn = ởt f : R ữủ ỷ tử ữợ t↕✐ ✤✐➸♠ x ∈ Ω ♥➳✉ ✈ỵ✐ ♠é✐ ε > tỗ t số > s f (x) − ε ≤ f (x) ✈ỵ✐ ♠å✐ x ∈ Ω✱ ∥x − x∥ < δ ✳ ❍➔♠ f ✤÷đ❝ ỷ tử ữợ tr f ỷ tử ữợ t x ❍➔♠ f : Ω → R ✤÷đ❝ ❣å✐ ❧➔ ♥û❛ ❧✐➯♥ tư❝ tr➯♥ t↕✐ ✤✐➸♠ x ∈ Ω ♥➳✉ ✈ỵ✐ ộ > tỗ t số > s❛♦ ❝❤♦ f (x) ≤ f (x) + ε ✈ỵ✐ ♠å✐ x ∈ Ω✱ ∥x − x∥ < δ ✳ ❍➔♠ f ✤÷đ❝ ❣å✐ ❧➔ ♥û❛ ❧✐➯♥ tư❝ tr➯♥ tr➯♥ Ω ♥➳✉ f ♥û❛ ❧✐➯♥ tö❝ tr➯♥ t↕✐ ♠å✐ ✤✐➸♠ x ∈ Ω✳ ❍➔♠ f ♥û❛ ❧✐➯♥ tö❝ tr➯♥ ❦❤✐ f ỷ tử ữợ f tử õ ứ ỷ tử ữợ ứ ♥û❛ ❧✐➯♥ tö❝ tr➯♥✳ ❱➼ ❞ö ✶✳✹✳ ❍➔♠    2x2 ♥➳✉ x ̸= f (x) =   −2 ♥➳✉ x = ❧➔ ❤➔♠ ♥û❛ ❧✐➯♥ tử ữợ tr R 2ex x ̸= f (x) =   ♥➳✉ x = ❧➔ ❤➔♠ ♥û❛ ❧✐➯♥ tö❝ tr➯♥ tr➯♥ R✳ ✣à♥❤ ♥❣❤➽❛ ✶✳✼✳ ❬✷❪ ❈❤♦ Ω ❧➔ ♠ët t➟♣ ❝♦♥ ❝õ❛ Rn✳ ❍➔♠ ❦❤♦↔♥❣ ❝→❝❤ ❧✐➯♥ ❦➳t ✈ỵ✐ t➟♣ Ω ①→❝ ✤à♥❤ ❜ð✐ d(x; Ω) := inf{∥x − ω∥ : ω ∈ Ω} ❱ỵ✐ ♠é✐ x ∈ Rn ✱ tứ x tợ t ữủ ✤à♥❤ ❜ð✐ PΩ (x) := {ω ∈ Ω : ∥x − ω∥ = d(x; Ω)} ✼ ✶✳✷✳ ❚➼♥❤ ✤ì♥ ✤✐➺✉ ❝õ❛ s♦♥❣ ❤➔♠ ❝➙♥ ❜➡♥❣ ❈❤♦ s♦♥❣ ❤➔♠ f : K × K → R ∪ {+∞}✳ ❙♦♥❣ ❤➔♠ f t❤ä❛ ♠➣♥ f (x, x) = ✈ỵ✐ ♠å✐ x ∈ K ❣å✐ ❧➔ s♦♥❣ ❤➔♠ ❝➙♥ ❜➡♥❣✳ ❚➼♥❤ ✤ì♥ ✤✐➺✉ ❝õ❛ s♦♥❣ ❤➔♠ ❝➙♥ ❜➡♥❣ ✤÷đ❝ ❝❤♦ ❜ð✐ ✤à♥❤ ♥❣❤➽❛ s❛✉✳ ✣à♥❤ ♥❣❤➽❛ ✶✳✽✳ ❬✷❪ ❈❤♦ U ✈➔ V t ỗ rộ tr ổ Rn ✱ U ⊆ K ✈➔ f : K × K → R ∪ {+∞}✳ ❙♦♥❣ ❤➔♠ f ✤÷đ❝ ❣å✐ ❧➔ ✐✮ ✤ì♥ ✤✐➺✉ ♠↕♥❤ tr➯♥ U ✈ỵ✐ ❤➡♥❣ sè β > ♥➳✉ ✈ỵ✐ ♠é✐ ❝➦♣ u, v ∈ U ✱ t❛ ❝â f (u, v) + f (v, u) ≤ −β∥u − v∥2 ; ✐✐✮ ✤ì♥ ✤✐➺✉ tr➯♥ U ♥➳✉ ✈ỵ✐ ♠é✐ ❝➦♣ u, v ∈ U ✱ t❛ ❝â f (u, v) + f (v, u) ≤ 0; ✐✐✐✮ ❣✐↔ ✤ì♥ ✤✐➺✉ tr➯♥ U ♥➳✉ ✈ỵ✐ ♠é✐ ❝➦♣ u, v ∈ U t❛ ❝â f (u, v) ≥ → f (v, u) ≤ 0; ❚ø ✤à♥❤ ♥❣❤➽❛ tr➯♥ t❛ s✉② r❛✿ i) → ii) → iii)✳ ❱➼ ❞ư ✶✳✺✳ ❍➔♠ f : K × K → R ∪ {+∞} f (u, v) = ⟨P u + Qv + q, v u, ợ P, Q ữủ ❝❤å♥ s❛♦ ❝❤♦ Q ✤è✐ ①ù♥❣✱ ♥û❛ ①→❝ ✤à♥❤ ❞÷ì♥❣ ✈➔ Q − P ❧➔ ♥û❛ ①→❝ ✤à♥❤ ➙♠✱ q ∈ Rn ✳ ❑❤✐ ✤â✱ f ❧➔ s♦♥❣ ❤➔♠ ✤ì♥ ✤✐➺✉✳ ❚❤➟t ✈➟②✱ ✈ỵ✐ ♠é✐ u, v ∈ K ✱ ❞♦ Q − P ❧➔ ♥û❛ ①→❝ ✤à♥❤ ➙♠ ♥➯♥ f (u, v) + f (v, u) = ⟨(Q − P )(v − u), v − u⟩ ≤ ✶✳✸✳ ❇➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈➔ ❝→❝ ❜➔✐ t♦→♥ ❧✐➯♥ q✉❛♥ K t ỗ ✤â♥❣ ❦❤→❝ ré♥❣ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ❊✉❝❧✐❞❡ n ❝❤✐➲✉ ✈➔ f : K × K → R ∪ {+∞}✳ ❇➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✤÷đ❝ ♣❤→t ❜✐➸✉ ♥❤÷ s❛✉✿ ❚➻♠ x∗ ∈ K s❛♦ ❝❤♦ f (x∗ , y) ≥ 0✱ ∀y ∈ K ✳ ✭P❊P✮ ✽ ❳➨t ❜➔✐ t♦→♥ ✤é✐ ♥❣➝✉ ✈ỵ✐ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✭P❊P✮✱ ❦➼ ❤✐➺✉ ❧➔ ❜➔✐ t♦→♥ ✭❉❊P✮ ♥❤÷ s❛✉✿ ❚➻♠ x∗ ∈ K s❛♦ ❝❤♦ f (y, x∗ ) ≤ 0✱ ∀y ∈ K ✳ ✭❉❊P✮ ❱ỵ✐ ♠é✐ x ∈ K ✱ ✤➦t Lf (x) := {y ∈ K : f (x, y) ≤ 0} ❑❤✐ ✤â✱ x∗ ❧➔ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ✭❉❊P✮ ♥➳✉ ✈➔ ❝❤➾ ♥➳✉ x∗ ∈ ∩x∈K Lf (x)✳ ❑➼ ❤✐➺✉ K ∗ ✈➔ K d ❧➛♥ ❧÷đt ❧➔ ❝→❝ t t PP P ỹ tỗ t↕✐ ♥❣❤✐➺♠ ❝õ❛ ❤❛✐ ❜➔✐ t♦→♥ ♥➔② ✤➣ ✤÷đ❝ ♥❤✐➲✉ t→❝ ❣✐↔ q✉❛♥ t➙♠ ♥❣❤✐➯♥ ❝ù✉✳ ❱➻ K d = ∩x∈K Lf (x) ♥➯♥ t➟♣ ♥❣❤✐➺♠ K d ❧➔ t➟♣ ỗ õ f (x, ) t ỗ õ tr➯♥ K ✳ ❚r♦♥❣ tr÷í♥❣ ❤đ♣ tê♥❣ q✉→t✱ K ∗ õ t ổ ỗ f ỗ õ tr➯♥ K ✤è✐ ✈ỵ✐ ❜✐➳♥ t❤ù ❤❛✐ ✈➔ ❤❡♠✐✲❧✐➯♥ tư❝ ✤è✐ ✈ỵ✐ ❜✐➳♥ t❤ù ♥❤➜t✱ t❤➻ K ∗ ❧➔ t➟♣ ỗ K d K ỡ ỳ ♥➳✉ f ❣✐↔ ✤ì♥ ✤✐➺✉ tr➯♥ K ✱ t❤➻ K ∗ = K d ✳ ❚r♦♥❣ ❝❤÷ì♥❣ s❛✉✱ t❛ ❣✐↔ sû K d ̸= ∅✳ ❇➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ❜❛♦ ỗ ợ t q tở ữ t tè✐ ÷✉✱ ❜➔✐ t♦→♥ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥✱ ❜➔✐ t♦→♥ ✤✐➸♠ ❜➜t ✤ë♥❣✱ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ◆❛s❤✳ ❙❛✉ ✤➙② ❧➔ ♠ët sè ❜➔✐ t♦→♥ ❧✐➯♥ q✉❛♥ ✤➳♥ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣✳ ❇➔✐ t♦→♥ tè✐ ÷✉ ❈❤♦ g : K → R ✈ỵ✐ K ❧➔ t➟♣ ❝♦♥ ỗ õ tr ổ Rn t tố ÷✉ ❧➔ ❜➔✐ t♦→♥✿ ❚➻♠ x∗ ∈ K s❛♦ ❝❤♦ g(x∗ ) ≤ g(y)✱ ∀y ∈ K ✳ ❇➡♥❣ ❝→❝❤ ✤➦t f (x, y) = g(y) − g(x) t❛ t❤➜② t tố ữ tữỡ ữỡ ợ t ❜➡♥❣ t❤❡♦ ♥❣❤➽❛ t➟♣ ♥❣❤✐➺♠ ❝õ❛ ❤❛✐ ❜➔✐ t♦→♥ trò♥❣ ♥❤❛✉✳ ❇➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ❈❤♦ K Rn t ỗ õ G : Rn → Rn ✱ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ❝â ❞↕♥❣✿ ❚➻♠ x∗ ∈ K s❛♦ ❝❤♦ ⟨G(x∗ ), y − x∗ ⟩ ≥ 0, ∀y ∈ K ✳ ✶✽ t❤✉ ✤÷đ❝ ♥❣❤✐➺♠ ❞✉② ♥❤➜t y k ✳ ◆➳✉ y k = xk ✱ t❤✉➟t t♦→♥ ❞ø♥❣✿ xk ❧➔ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ✭P❊P✮✳ ◆❣÷đ❝ ❧↕✐✱ t tử ữợ ữợ số ữỡ ♥❤ä ♥❤➜t m s❛♦ ❝❤♦    uk,m = (1 − η m )xk + η m y k ,   f (uk,m , y k ) + α [G(y k ) − G(xk ) − ⟨∇G(xk ), y k xk ] ữợ ữợ t k = m uk = uk,m ✳ ◆➳✉ ∈ ∂2 f (uk , uk )✱ ❞ø♥❣✿ uk ❧➔ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ✭P❊P✮✳ ◆❣÷đ❝ t tử ữợ ữợ g k ∈ ∂2 f (uk , uk ) ✈➔ t➼♥❤ −ηk f (uk , y k ) µk = , (1 − ηk )∥g k ∥ xk+1 = Pk (xk − γk µk g k ), ✭✷✳✷✵✮ tr♦♥❣ ✤â Pk F(K) ữợ t k := k + q ữợ s r r t t ứ t ữợ ữợ t t PP õ ✤➲ ✷✳✹✳ ✭❤♦➦❝ uk ✮ ❬✶✶❪ ◆➳✉ ❚❤✉➟t t♦→♥ ✷ ứ t ữợ ữợ t xk ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ✭P❊P✮✳ ❈❤ù♥❣ ♠✐♥❤✳ ◆➳✉ t❤✉➟t t♦→♥ ứ t ữợ t xk = y k ❱➻ y k ❧➔ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ tè✐ ÷✉ ỗ t õ i 1h k k k k f (x , y) + G(y) − G(x ) − ⟨∇G(x ), y − x ⟩ ρ i 1h ≥ f (xk , y k ) + G(y k ) − G(xk ) − ⟨∇G(xk ), y k − xk ⟩ , ρ ∀y ∈ K ❇➡♥❣ ❝→❝❤ ❝❤ù♥❣ ♠✐♥❤ t÷ì♥❣ tü ♥❤÷ tr♦♥❣ ❇ê ✤➲ ✷✳✷✱ t❛ ❝â xk ❧➔ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ✭P❊P✮✳ ◆➳✉ t❤✉➟t t♦→♥ ứ t ữợ t f (uk , uk )✳ ❱➻ f (uk , ) ❧➔ ❤➔♠ ỗ s r f (uk , uk ) f (uk , y) ✈ỵ✐ ♠å✐ y ∈ K ✳ ❱➻ f (uk , uk ) = ♥➯♥ s✉② r❛ uk ❧➔ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ✭P❊P✮✳ ✶✾ ❇ê t t r r ổ tỗ t số ữỡ m s tr ữợ ❧✉æ♥ t❤ä❛ ♠➣♥✳ ❇ê ✤➲ ✷✳✺✳ ❬✶✶❪ ●✐↔ sû f ♥û❛ ❧✐➯♥ tư❝ tr➯♥ tr➯♥ K ✤è✐ ✈ỵ✐ ❜✐➳♥ t❤ù ♥❤➜t✱ ✈➔ y k ̸= xk ✳ ❑❤✐ ✤â ✐✮ tỗ t số m > s t tự tr ữợ ú f (uk , y k ) < 0✳ ❈❤ù♥❣ ♠✐♥❤✳ ✐✮ ●✐↔ sû ữủ ợ số m s uk,m = (1 − η m )xk + η m y k t❛ ❝â f (uk,m , y k ) + α [G(y k ) − G(xk ) − ⟨∇G(xk ), y k − xk ⟩] > ρ ❱➻ f (., y k ) ♥û❛ ❧✐➯♥ tö❝ tr➯♥ ♥➯♥ ❝❤♦ q✉❛ ❣✐ỵ✐ ❤↕♥ m → ∞ t❛ ❝â f (xk , y k ) + α [G(y k ) − G(xk ) − ⟨∇G(xk ), y k − xk ⟩] ≥ ρ ✭✷✳✷✶✮ ▼➦t ❦❤→❝✱ ✈➻ y k ❧➔ t tố ữ ỗ f (xk , y k ) + [G(y k ) − G(xk ) − −⟨∇G(xk ), y k − xk ⟩] ρ ≤ f (xk , y) + [G(y) − G(xk ) − −⟨∇G(xk ), y − xk ⟩], ρ ∀y ∈ K ❈❤♦ y = xk t❤➻ ❜➜t ✤➥♥❣ t❤ù❝ ❜➯♥ tr➯♥ trð t❤➔♥❤ f (xk , y k ) + [G(y k ) − G(xk ) − ⟨∇G(xk ), y k − xk ⟩] ≤ ρ ✭✷✳✷✷✮ ❚ø ❝æ♥❣ t❤ù❝ ✭✷✳✷✶✮ ✈➔ ✭✷✳✷✷✮ t❛ t❤✉ ✤÷đ❝ [G(y k ) − G(xk ) − ⟨∇G(xk ), y k − xk ⟩] ρ α ≤ [G(y k ) − G(xk ) − ⟨∇G(xk ), y k − xk ⟩] ρ ❱➻ [G(y k ) − G(xk ) − ⟨∇G(xk ), y k − xk ⟩] ≥ 0, ♥➯♥ ❤♦➦❝ [G(y k ) − G(xk ) − ⟨∇G(xk ), y k − xk ⟩] = ❤♦➦❝ α ≥ 1✳ ❚r÷í♥❣ ❤đ♣ ✤➛✉ t✐➯♥ s✉② r❛ xk = y k G ỗ ❙✉② r❛ ❝↔ ❤❛✐ tr÷í♥❣ ❤đ♣ ✤➲✉ ♠➙✉ ✷✵ t❤✉➝♥ ✈ỵ✐ ❣✐↔ t❤✐➳t✳ ❱➟② ✐✮ ✤ó♥❣✳ ❑❤➥♥❣ ✤à♥❤ ✐✐✮ s✉② r❛ tø ✈✐➺❝ ①→❝ ✤à♥❤ uk ❦❤✐ f (xk , y k ) + α [G(y k ) − G(xk ) − ⟨∇G(xk ), y k − xk ⟩] ≤ ρ ✈➔ G(y k ) − G(xk ) − ⟨∇G(xk ), y k − xk ⟩ ≤ ❞♦ G ỗ xk = yk k x − y k ∥2 > 0, ✣➸ ❝❤ù♥❣ ♠✐♥❤ sü ❤ë✐ tö ❝õ❛ ❚❤✉➟t t♦→♥ ✷✱ ❜ê ✤➲ s❛✉ ✤â♥❣ ✈❛✐ trá t❤❡♥ ❝❤èt✳ ❇ê ✤➲ ✷✳✻✳ ❬✶✶❪ ◆➳✉ f (x, ) ỗ ữợ ♣❤➙♥ tr➯♥ K t❤➻ ❝→❝ ♣❤→t ❜✐➸✉ s❛✉ ✤ó♥❣✿ ✐✮ ❱ỵ✐ ♠å✐ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ✭❉❊P✮ t❛ ❝â ✐✐✮ ∞ P k=0 ∥xk+1 − x∗ ∥2 ≤ ∥xk − x∗ ∥2 − γk (2 − γk )(δk ∥g k ∥)2 ✭✷✳✷✸✮ γk (2 − γk )(δk ∥g k ∥)2 < ∞✳ ✐✐✐✮ ●✐↔ sû t❤✉➟t t♦→♥ ❦❤æ♥❣ ❞ø♥❣✳ ❑❤✐ ✤â ♥➳✉ t❤➯♠ ✤✐➲✉ ❦✐➺♥ f ❧✐➯♥ tö❝ ✤è✐ ✈ỵ✐ ❜✐➳♥ t❤ù ❤❛✐ ✈➔ ❤ú✉ ❤↕♥ tr➯♥ ♠ët t➟♣ ♠ð ❝❤ù❛ K t❤➻ ❞➣② {g k } ❜à ❝❤➦♥✳ ✐✮ ❚❤❡♦ t➼♥❤ ❝❤➜t ✭✷✳✶✼✮ ❝õ❛ Pk ✈➔ ❝æ♥❣ t❤ù❝ ✭✷✳✷✵✮✱ ✤➦t wk = uk − γk δk g k ✱ ✈➻ xk+1 = Pk (wk ) t❛ ❝â ❈❤ù♥❣ ♠✐♥❤✳ ∥xk+1 − x∗ ∥2 = ∥Pk (wk ) − x∗ ∥2 ≤ ∥wk − x∗ ∥2 = ∥xk − γk δk g k − x∗ ∥2 = ∥xk − x∗ ∥2 − 2γk δk ⟨g k , xk − x∗ ⟩ + (γk δk ∥g k ∥)2 ✭✷✳✷✹✮ ❱➻ gk ∈ ∂2f (uk , uk ) ✈➔ f (uk , ) ỗ tr K t ❝â ⟨g k , xk − x∗ ⟩ = ⟨g k , xk − uk + uk − x∗ ⟩ ≥ ⟨g k , xk − uk ⟩ + f (uk , uk ) − f (uk , x∗ ), tr♦♥❣ ✤â f (uk , x∗) ≤ ✈➻ x∗ ∈ K d✳ ❉♦ ✤â✱ tø ❜➜t ✤➥♥❣ t❤ù❝ ❝✉è✐ ❜➯♥ tr➯♥ t❛ ❝â ⟨g k , xk − x∗ ⟩ ≥ ⟨g k , xk − uk ⟩ ✭✷✳✷✺✮ ỷ ổ tự tr ữợ t t♦→♥ ✷ t❛ t❤✉ ✤÷đ❝ x k − uk = ❉♦ ✤â✱ ηk (uk − y k ) − ηk ηk ⟨g k , uk − y k ⟩ − ηk ηk [f (uk , uk ) − f (uk , y k )] ≥ − ηk −ηk = f (uk , y k ) − ηk ⟨g k , xk − uk ⟩ = ❚ø ✐✐✮ ❝õ❛ ❇ê ✤➲ ✷✳✺ ✈➔ ✭✷✳✷✵✮ s✉② r❛ −ηk f (uk , y k ) = δk ∥g k ∥2 > − ηk ✭✷✳✷✻✮ ❑➳t ❤ñ♣ ✤➥♥❣ t❤ù❝ tr➯♥ ✈ỵ✐ ✭✷✳✷✹✮ ✈➔ ✭✷✳✷✺✮✱ s✉② r❛ ∥xk+1 − x∗ ∥2 ≤ ∥xk − x∗ ∥2 − γk (2 − γk )(δk ∥g k ∥)2 , ∀x∗ ∈ K d ✣➸ ❝❤ù♥❣ ♠✐♥❤ ✐✐✮✱ t❛ →♣ ❞ö♥❣ ❜➜t ✤➥♥❣ t❤ù❝ ❝✉è✐ ✈ỵ✐ ♠é✐ k tø tỵ✐ m t❛ t❤✉ ✤÷đ❝ m X ❱➻ ❞➣② {∥x γk (2 − γk )(δk ∥g k ∥)2 ≤ ∥x0 − x∗ ∥2 − ∥xm+1 − x∗ ∥2 k=0 m ∗ − x ∥}m≥0 ❤ë✐ tö ♥➯♥ ❝❤♦ m → ∞ t❛ ♥❤➟♥ ✤÷đ❝ m X k=0 γk (2 − γk )(δk ∥g k ∥)2 < ∞ ❈✉è✐ ❝ò♥❣✱ t❛ ❝❤ù♥❣ ♠✐♥❤ ✐✐✐✮✳ ✣➸ ❝❤ù♥❣ ♠✐♥❤ ❞➣② {gk } ❜à ❝❤➦♥✱ t ú ỵ r {yk } t ✈➟②✱ ✈➻ yk ❧➔ ♥❣❤✐➺♠ ❞✉② ♥❤➜t ❝õ❛ ❜➔✐ t♦→♥ ✭✷✳✶✾✮ ❝â ❤➔♠ ♠ö❝ t✐➯✉ ❧✐➯♥ tö❝ ✈➔ t➟♣ ❝❤➜♣ ữủ t ỵ ỹ →♥❤ ①↕ xk → s(xk ) = yk ❧➔ ❧✐➯♥ tö❝✳ ❱➻ ❞➣② {xk } ❜à ❝❤➦♥✱ ❞➣② {yk } ❜à ❝❤➦♥ ♥➯♥ ❞➣② {uk } ❝ô♥❣ ❜à ❝❤➦♥ ❞♦ uk tờ ủ ỗ xk yk ❱➟② ❦❤æ♥❣ ♠➜t t➼♥❤ tê♥❣ q✉→t✱ ❣✐↔ sû uk → u∗ ❦❤✐ k → +∞✳ ❉♦ t➼♥❤ ❧✐➯♥ tö❝ ❝õ❛ ❤➔♠ f (uk , )✱ ❞➣② {f (uk , )} ❤ë✐ tư tỵ✐ f (u∗ , )✳ ❱➻ g k ∈ ∂2 f (uk , uk ) ♥➯♥ ❞➣② {g k } t ỵ tö ❝❤♦ ❚❤✉➟t t♦→♥ ✷✳ ❚r♦♥❣ ❇ê ✤➲ ✷✳✹✱ ♥➳✉ ❚❤✉➟t t♦→♥ ✷ ❞ø♥❣ t❤➻ ❜➔✐ t♦→♥ ✭P❊P✮ ❝â ♥❣❤✐➺♠✳ ◆❣÷đ❝ ❧↕✐✱ ♥➳✉ t❤✉➟t t♦→♥ ❦❤ỉ♥❣ ❞ø♥❣ s❛✉ ❤ú✉ ❤↕♥ ữợ t t õ t q tử s ỵ tt ố tr ✷✳✺ ✈➔ ❇ê ✤➲ ✷✳✻✱ ❣✐↔ t❤✐➳t t❤➯♠ f ❧✐➯♥ tư❝ tr➯♥ K × K ✳ ❑❤✐ ✤â ✐✮ ❉➣② {xk } ❜à ❝❤➦♥✱ ✈➔ ♠é✐ ✤✐➸♠ tö ❝õ❛ ❞➣② {xk } ❧➔ ♠ët ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ✭P❊P✮✳ ✐✐✮ ◆➳✉ K ∗ = K d ✭tr♦♥❣ tr÷í♥❣ ❤đ♣ ✤➦❝ ❜✐➺t✱ ❦❤✐ f ❣✐↔ ✤ì♥ ✤✐➺✉ tr➯♥ K ✮✱ t❤➻ t♦➔♥ ❜ë ❞➣② {xk } ❤ë✐ tư tỵ✐ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ✭P❊P✮✳ ❍ì♥ ♥ú❛✱ ♥➳✉ γk = γ ∈ (0, 2) ✈ỵ✐ ♠å✐ k ≥ t❤➻ √ lim inf (δk ∥g k ∥ k + 1) = k→∞ ✭✷✳✷✼✮ ❈❤ù♥❣ ♠✐♥❤✳ ❚➼♥❤ ❜à ❝❤➦♥ ❝õ❛ ❞➣② {xk } s✉② r❛ tø ✐✮ ✈➔ ✐✐✮ ❝õ❛ ❇ê ✤➲ ✷✳✻✳ ▲↕✐ ❞♦ ✐✐✮ ❝õ❛ ❇ê ✤➲ ✷✳✻ t❛ ❝â γk (2 − γk )(δk ∥g k ∥2 ) → ❦❤✐ k → ∞ ❚❤❡♦ ✭✷✳✶✽✮✱ lim inf γk (2 − γk ) > 0✳ ❉♦ ✤â δk ∥g k ∥2 → ❦❤✐ k → ∞✳ ❙✉② r❛ k→∞ δk ∥g k ∥ = −ηk f (uk , y k ) → k (1 − ηk )∥g ∥ ❱➻ ❞➣② {g k } ❜à ❝❤➦♥ ♥➯♥ t❤❡♦ ✐✐✐✮ ❝õ❛ ❇ê ✤➲ ✷✳✻✱ t❛ t❤✉ ✤÷đ❝ −ηk f (uk , y k ) → ❦❤✐ k → ∞ − ηk ✭✷✳✷✽✮ ▼➦t ❦❤→❝✱ ✈➻ G ❧➔ ỗ t q t tr ữợ ✷✳✶ ❚❤✉➟t t♦→♥ ✷ t❛ ❝â α αβ k ∥x − y k ∥2 ≤ [G(y k ) − G(xk ) − ⟨∇G(xk ), y k − xk ⟩] ρ ρ ≤ −f (uk , y k ) ✭✷✳✷✾✮ ❳➨t ❤❛✐ tr÷í♥❣ ❤đ♣✿ ❚r÷í♥❣ ❤đ♣ ✶ lim sup ηk > õ tỗ t > ởt ❞➣② ❝♦♥ N ∗ ⊆ N k→∞ s❛♦ ❝❤♦ ηk > η ✈ỵ✐ ♠é✐ k ∈ N ∗ ✳ ❚ø ✭✷✳✷✽✮ ✈➔ ✭✷✳✷✾✮✱ t❛ ♥❤➟♥ ✤÷đ❝ lim k→∞,k∈N ∗ ∥y k − xk ∥ = ✭✷✳✸✵✮ ●å✐ x∗ ❧➔ ✤✐➸♠ tö ❜➜t ❦➻ ❝õ❛ ❞➣② {xk }✳ ●✐↔ sû ❞➣② {xk : k ∈ N ∗ } ❤ë✐ tö tỵ✐ x∗ ✳ ❙û ❞ư♥❣ ✭✷✳✸✵✮✱ t❛ t❤➜② ❞➣② ❝♦♥ t÷ì♥❣ ù♥❣ {y k : k ∈ N ∗ } ❝ơ♥❣ ❤ë✐ tư tỵ✐ y ∗ = x∗ ✳ ✷✸ r tứ ữợ t t yk ❧➔ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ✭✷✳✶✽✮ ♥➯♥ t❛ ❝â ρf (xk , y k ) + [G(y k ) − G(xk ) − ⟨∇G(xk ), y k − xk ⟩] ≤ ρf (xk , y) + [G(y) − G(xk ) − ⟨∇G(xk ), y − xk ⟩], ∀y ∈ K ❈❤♦ k → +∞✱ k ∈ N ∗✱ ❞♦ t➼♥❤ ❧✐➯♥ tö❝ ❝õ❛ ❤➔♠ f ✈➔ x∗ = y∗✱ t❛ t❤✉ ✤÷đ❝ =ρf (x∗ , y ∗ ) + [G(y ∗ ) − G(x∗ ) − ⟨∇G(x∗ ), y ∗ − x∗ ⟩] ≤ ρf (x∗ , y) + [G(y) − G(x∗ ) − ⟨∇G(x∗ ), y − x∗ ⟩], ∀y ∈ K ❉♦ ✤â✱ t❤❡♦ ❇ê ✤➲ ✷✳✷✱ x∗ ❧➔ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ✭P❊P✮✳ ❚r÷í♥❣ ❤đ♣ ✷ lim ηk = 0✳ ❚❤❡♦ t❤✉➟t t♦→♥ t❛ ❝â k→∞ uk = (1 − ηk )xk + ηk y k ❚÷ì♥❣ tü ❜➯♥ tr➯♥✱ t❛ ❣✐↔ sû ❞➣② ❝♦♥ {xk : k ∈ N ∗ ⊆ N} ❤ë✐ tư tỵ✐ ♠ët ✤✐➸♠ x∗ ✳ ❱➻ y k ❧➔ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ✭✷✳✶✾✮✱ ♥➯♥ s✉② tø t➼♥❤ ♥û❛ tử ữợ t f (xk , ) + G(.) − G(xk ) − ⟨∇G(xk ), xk ỵ ỹ t õ ❞➣② {yk } ❜à ❝❤➦♥✳ ❱➻ ✈➟②✱ ❜ð✐ ❝→❝❤ ❧➜② ❞➣② ❝♦♥ ♥➳✉ ❝➛♥✱ t❛ ❣✐↔ sû ❞➣② ❝♦♥ {yk : k ∈ N ∗} ❤ë✐ tư tỵ✐ y∗✳ ❚❤❡♦ ✤à♥❤ ♥❣❤➽❛ ❝õ❛ yk t❛ ❝â ρf (xk , y k ) + [G(y k ) − G(xk ) − ⟨∇G(xk ), y k − xk ⟩] ≤ ρf (xk , y) + [G(y) − G(xk ) − ⟨∇G(xk ), y − xk ⟩], ∀y ∈ K ▲➜② ❣✐ỵ✐ ❤↕♥ ❦❤✐ k → ∞✱ k ∈ N ∗✱ ✈➻ f ỷ tử ữợ tr K ì K f (., y) ❧➔ ❤➔♠ ♥û❛ ❧✐➯♥ tö❝ tr➯♥ tr➯♥ K ♥➯♥ t❛ ❝â ρf (x∗ , y ∗ ) + [G(y ∗ ) − G(x∗ ) − ⟨∇G(x∗ ), y ∗ − x∗ ⟩] ≤ ρf (x∗ , y) + [G(y) − G(x∗ ) − ⟨∇G(x∗ ), y − x∗ ], y K t t ữợ ❝õ❛ ❚❤✉➟t t♦→♥ ✷✱ m ❧➔ sè ♥❣✉②➯♥ ❦❤æ♥❣ ➙♠ ọ t tọ ữợ t õ ρf (uk,m−1 , y k ) + α[G(y k ) − G(xk ) − ⟨∇G(xk ), y k − xk ⟩] > ✷✹ ❇➡♥❣ ❝→❝❤ ❧➜② ❞➣② ❝♦♥ ♥➳✉ ❝➛♥✱ t❛ ❝â t❤➸ ❣✐↔ sû ηk → 0✳ ❑❤✐ ✤â uk,m−1 → x∗ ✳ ▼➦t ❦❤→❝✱ ❞♦ f ❧✐➯♥ tö❝ t↕✐ (x∗ , y ∗ ) ✈➔ ❝❤♦ k → ∞ t❛ ❝â ρf (x∗ , y ∗ ) + α[G(y ∗ ) − G(x∗ ) − ⟨∇G(x∗ ), y ∗ − x∗ ⟩] ≥ ✭✷✳✸✷✮ ❈❤å♥ y = x∗ tr♦♥❣ ✭✷✳✸✶✮ t❛ ❝â ρf (x∗ , y ∗ ) + α[G(y ∗ ) − G(x∗ ) − ⟨∇G(x∗ ), y ∗ − x∗ ⟩] ≤ ỡ ỳ G ỗ ợ ❤➡♥❣ sè β ♥➯♥ G(y ∗ ) − G(x∗ ) − ⟨∇G(x∗ ), y ∗ − x∗ ⟩ ≥ β ∗ ∥x − y ∗ ∥2 ❑➳t ❤ñ♣ ợ t t ữủ (1 α)∥y ∗ − x∗ ∥2 ≤ 0, s✉② r❛ x∗ = y ∗ ✈➻ α ∈ (0, 1)✳ ❉♦ ✤â✱ tø ✭✷✳✸✶✮ s✉② r❛ x∗ ❧➔ ♥❣❤✐➺♠ tè✐ ÷✉ ❝õ❛ ❜➔✐ t♦→♥ min{ρf (x∗ , y) + [G(y) − G(x∗ ) − ⟨∇G(x∗ ), y − x∗ ⟩]} y∈K ❱➟②✱ x∗ ❧➔ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ✭P❊P✮✳ ❇➙② ❣✐í t❛ ❣✐↔ sû K d = K ∗ ✳ ❚ø tr➯♥✱ t❛ ❜✐➳t ❞➣② {xk } ❝â ♠ët ✤✐➸♠ tö x∗ ∈ K ∗ ✳ ❱➻ K d ≡ K ∗ ✱ x∗ ∈ K d ✳ ⑩♣ ❞ö♥❣ ✐✮ ❝õ❛ ❇ê ✤➲ ✷✳✻ t❛ t❤➜② ❞➣② {xk − x∗ } ❤ë✐ tư✳ ❙✉② r❛✱ ❞➣② {xk } ❤ë✐ tư tỵ✐ x∗ ❜ð✐ ✈➻ ♥â ❝â ♠ët ❞➣② ❝♦♥ ❤ë✐ tö tỵ✐ x∗ ✳ ❈✉è✐ ❝ị♥❣✱ ❣✐↔ sû ✭✷✳✷✼✮ ❦❤ỉ♥❣ ✤ó♥❣✳ õ tỗ t ởt số > s ❝❤♦ √ δk ∥g k ∥ ≥ τ / k + ✈ỵ✐ ♠å✐ k ✳ ❚ø ✐✐✮ ❝õ❛ ❇ê ✤➲ ✷✳✻ t❛ ❝â τ ∞ X k=0 < ∞, k+1 ✤✐➲✉ ♥➔② ❧➔ ♠➙✉ t❤✉➝♥✳ ❱➟②✱ ✤à♥❤ ỵ ữủ ự t r tỹ t➳✱ ✤➸ t❤ü❝ ❤✐➺♥ t❤✉➟t t♦→♥✱ ❧➜② ♠ët s❛✐ sè ε > ✈➔ ❞ø♥❣ t❤✉➟t t♦→♥ ❦❤✐ ❤♦➦❝ ∥xk − y k ∥ ≤ ε ❤♦➦❝ ∥g k ∥ t f ỗ ố ✈ỵ✐ ❜✐➳♥ t❤ù ♥❤➜t x tr➯♥ K ✱ t❤➻ tr♦♥❣ ữợ uk tỹ ú ợ ♠å✐ ηk t❤ä❛ ♠➣♥ < ηk ≤ − α ✈ỵ✐ ♠å✐ k✳ ✷✺ ❚❤➟t ✈➟②✱ ✈➻ f (y k , y k ) = t ỗ ❝õ❛ f ✤è✐ ✈ỵ✐ ❜✐➳♥ t❤ù ♥❤➜t✱ t❛ ❝â t❤➸ ✈✐➳t α [G(y k ) − G(x∗ ) − ⟨∇G(x∗ ), y k − x∗ ⟩] ρ α = f ((1 − ηk )xk + ηk y k , y k ) + [G(y k ) − G(x∗ ) − ⟨∇G(x∗ ), y k − x∗ ⟩] ρ α ≤ (1 − ηk )f (xk , y k ) + [G(y k ) − G(x∗ ) − ⟨∇G(x∗ ), y k − x∗ ⟩] ρ f (uk , y k ) + ▼➦t ❦❤→❝✱ ✈➻ y k ❧➔ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ✭✷✳✶✾✮ ♥➯♥ t❛ ❝â f (xk , y k ) + [G(y k ) − G(x∗ ) − ⟨∇G(x∗ ), y k − x∗ ⟩] ≤ ρ ❙✉② r❛ (1 − ηk )f (xk , y k ) + ≤ α [G(y k ) − G(x∗ ) − ⟨∇G(x∗ ), y k − x∗ ⟩] ρ (αk − + ηk ) [G(y k ) − G(x∗ ) − ⟨∇G(x∗ ), y k − x∗ ⟩] ρ ≤ 0, ✤✐➲✉ ♥➔② s✉② r❛ ✤✐➲✉ ❦✐➺♥ tr♦♥❣ ữợ t t tọ ợ < ηk ≤ − α✳ ✷✳✸✳ ⑩♣ ❞ö♥❣ ❝❤♦ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ❤é♥ ❤ñ♣ ✤❛ trà ❚r♦♥❣ ♣❤➛♥ ♥➔②✱ ❝❤ó♥❣ tỉ✐ tr➻♥❤ ❜➔② ù♥❣ ❞ư♥❣ ❝õ❛ t❤✉➟t t♦→♥ ❝❤♦ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ❚➻♠ x∗ ∈ K, p∗ ∈ F (x∗ ) s❛♦ ❝❤♦ ⟨p∗ , x − x∗ ⟩ + ϕ(x) − ϕ(x∗ ) ≥ 0, tr♦♥❣ ✤â F : Rn ⇒ Rn ✈➔ ϕ : Rn → R ∪ {+∞} ỗ tữớ õ sỷ F (x) ❧➔ t➟♣ ❝♦♠♣❛❝t ❦❤→❝ ré♥❣ ✈ỵ✐ ♠é✐ x ∈ K ✱ ✈➔ K ⊆ domϕ✱ tr♦♥❣ ✤â domϕ ❧➔ ♠✐➲♥ ❤ú✉ ❤✐➺✉ ❝õ❛ →♥❤ ①↕ ϕ✳ ❱ỵ✐ ♠é✐ ❝➦♣ x, y ∈ K ✤➦t f (x, y) := max {⟨u, y − x⟩ + ϕ(y) − ϕ(x)} u∈F (x) ✭✷✳✸✹✮ ✷✻ ❑❤✐ ✤â✱ x∗ ❧➔ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ✭▼❱■P✮ ♥➳✉ ✈➔ ❝❤➾ ♥➳✉ ♥â ❧➔ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ✭P❊P✮✳ ✣à♥❤ ♥❣❤➽❛ ✷✳✷✳ ❬✶✶❪ ✐✮ ⑩♥❤ ①↕ F ữủ ỡ tr K ợ ♠å✐ x, y ∈ K ✈➔ ✈ỵ✐ ♠å✐ u ∈ F (x)✱ v ∈ F (y)✱ ❜➜t ✤➥♥❣ t❤ù❝ ⟨u, y − x⟩ + ϕ(y) − ϕ(x) ≥ s✉② r❛ ✐✐✮ ⟨v, y − x⟩ + ϕ(y) − ϕ(x) ≥ ✤÷đ❝ ❣å✐ ❧➔ ❧✐➯♥ tư❝ ▲✐♣s❝❤✐t③ tr➯♥ K ✤è✐ ✈ỵ✐ ❤➡♥❣ sè L ♥➳✉ ✈ỵ✐ ♠å✐ x, y ∈ K t❛ ❝â F inf ∥u − v∥ ≤ L∥x − y∥ sup u∈F (x) v∈F (y) ❚ø ♣❤➛♥ trữợ t t ổ s r t ❧✐➯♥ tö❝ ❝õ❛ ❤➔♠ f ✳ ❚✉② ♥❤✐➯♥✱ ♥➳✉ f ✤÷đ❝ ❝❤♦ ❜ð✐ ✭✷✳✸✹✮✱ F ❧✐➯♥ tư❝ ▲✐♣s❝❤✐t③ ✈➔ ϕ ❧✐➯♥ tö❝ tr➯♥ K t❤➻ f t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ✭✷✳✹✮ ♥❤÷ ♣❤→t ❜✐➸✉ tr♦♥❣ ❜ê ✤➲ s❛✉ ✤➙②✳ ✣✐➲✉ ♥➔② ❣✐↔✐ t❤➼❝❤ t↕✐ s❛♦ ❝ỉ♥❣ t❤ù❝ ✭✷✳✹✮ ✤÷đ❝ ❣å✐ ❧➔ ✤✐➲✉ ❦✐➺♥ ❦✐➸✉ ▲✐♣s❝❤✐t③✳ ❇ê ✤➲ ✷✳✼✳ ❬✶✶❪ ❈❤♦ f ✤à♥❤ ♥❣❤➽❛ ❜ð✐ ✭✷✳✸✹✮✳ ❈→❝ ♣❤→t ❜✐➸✉ s❛✉ ❧➔ ✤ó♥❣✿ ✐✮ ◆➳✉ F, ϕ ❧✐➯♥ tư❝ tr➯♥ K ✈➔ F (x) ❝♦♠♣❛❝t ✈ỵ✐ ♠é✐ x ∈ K t❤➻ f ❧✐➯♥ tư❝ tr➯♥ K × K✳ ✐✐✮ ◆➳✉ F ❧➔ ϕ−❣✐↔ ✤ì♥ ✤✐➺✉ tr➯♥ K t❤➻ f ❣✐↔ ✤ì♥ ✤✐➺✉ tr➯♥ K ✳ ✐✐✐✮ ◆➳✉ F ❧➔ L−❧✐➯♥ tö❝ ▲✐♣s❝❤✐t③ tr➯♥ K t❤➻ ✈ỵ✐ ♠é✐ ν > 0✱ t❛ ❝â f (x, y) + f (y, z) ≥ f (x, z) − Lν L ∥x − y∥2 − ∥y − z∥2 , ∀x, y, z ∈ K 2ν ✭✷✳✸✺✮ Pt t ữủ s r tứ ỵ ❝ü❝ ✤↕✐✳ P❤→t ❜✐➸✉ t❤ù ❤❛✐ ✤÷đ❝ s✉② r❛ tø ✤à♥❤ ♥❣❤➽❛✳ ✣➸ ❝❤ù♥❣ ♠✐♥❤ ✐✐✐✮✱ ❣✐↔ sû F ❧➔ L−▲✐♣s❝❤✐t③ ❧✐➯♥ tö❝ tr➯♥ K ✳ ▲➜② x, y, z ∈ K ✳ ❱ỵ✐ ♠é✐ u ∈ F (x) ✈➔ ε > 0✱ ✈➻ F ❧✐➯♥ tö❝ ▲✐♣s❝❤✐t③ ♥➯♥ t❤❡♦ tỗ t v F (y) s ∥u − v∥ ≤ L∥x − y∥ + ε✳ ❙✉② r❛ ❈❤ù♥❣ ♠✐♥❤✳ ⟨u, z − x⟩ − sup ⟨v, z − y⟩ − sup ⟨w, y − x⟩ v∈F (y) w∈F (x) ≤ ⟨u, z − x⟩ − ⟨v, z − y⟩ − ⟨u, y − x⟩ ✷✼ = ⟨u, z − x⟩ − ⟨v, z − y⟩ = ⟨u − z, z − y⟩ ≤ ∥u − v∥∥z − y∥ ≤ (L∥x − y∥ + ε)∥z − y∥ ❱➻ ε > ✈➔ u ∈ F (x) tò② þ ♥➯♥ t❛ ♥❤➟♥ ✤÷đ❝ f (x, z) − f (y, z) − f (x, y) ≤ L∥x − y∥∥z − y∥ ❙û ❞ö♥❣ ❜➜t ✤➥♥❣ t❤ù❝ 2ab ≤ (a2 /ν) + νb2 ✤ó♥❣ ✈ỵ✐ ♠å✐ a, b ∈ R > t t ữủ ú ỵ r➡♥❣ ❦❤✐ F ❧✐➯♥ tư❝ ▲✐♣s❝❤✐t③ ✈➔ ✤ì♥ trà tr➯♥ K ✱ ❚❤✉➟t t♦→♥ ✶ ✈ỵ✐ f (x, y) = ⟨F (x), y − x⟩✱ ϕ ≡ trð t❤➔♥❤ t❤✉➟t t♦→♥ ✤↕♦ ❤➔♠ t➠♥❣ ❝÷í♥❣ ❣✐↔✐ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥✳ ❑❤✐ F ❧✐➯♥ tư❝ ♥❤÷♥❣ ❦❤ỉ♥❣ ▲✐♣s❝❤✐t③✱ ❚❤✉➟t t♦→♥ ✷ trị♥❣ ✈ỵ✐ t❤✉➟t t♦→♥ ✤↕♦ ❤➔♠ t➠♥❣ ❝÷í♥❣ t❤❡♦ t✐❛✳ ❑❤✐ F ❧➔ →♥❤ ①↕ ✤❛ tr t t ởt ỵ tt ❚❤✉➟t t♦→♥ ✶ ❝ơ♥❣ ♥❤÷ ❚❤✉➟t t♦→♥ ✷ ❝â t❤➸ ✤÷đ❝ →♣ ❞ư♥❣✳ ✷✳✹✳ ❱➼ ❞ư sè ❚r♦♥❣ ♠ư❝ ♥➔②✱ ❝❤ó♥❣ tỉ✐ →♣ ❞ư♥❣ t❤✉➟t t♦→♥ ❝❤♦ ❧ỵ♣ ❜➔✐ t♦→♥ ợ K ỗ õ K := {x ∈ Rn |Ax ≤ b|}, ✭✷✳✸✻✮ ✈➔ s♦♥❣ ❤➔♠ ❝➙♥ ❜➡♥❣ f : K × K → R ∪ {+∞} ❝❤♦ ❜ð✐ f (x, y) = ⟨F (x) + Qy + q, y − x⟩, ✭✷✳✸✼✮ ✈ỵ✐ F : K → Rn ✱ Q ∈ Rn×n ❧➔ ♠❛ tr➟♥ ✤è✐ ①ù♥❣ ♥û❛ ①→❝ ✤à♥❤ ❞÷ì♥❣ ✈➔ q ∈ Rn ✳ ❱➻ Q ❧➔ ♠❛ tr➟♥ ✤è✐ ①ù♥❣✱ ♥û❛ ①→❝ ✤à♥❤ ❞÷ì♥❣ ♥➯♥ f (x, ) ❧➔ ❤➔♠ ỗ ợ ộ x K ố ợ t♦→♥ ❝➙♥ ❜➡♥❣ ♥➔② ❝â ❝→❝ t➼♥❤ ❝❤➜t s❛✉✳ ❇ê ✤➲ ✷✳✽✳ ❬✶✶❪ ❈❤♦ F : K → Rn ✐✮ f ✤ì♥ ✤✐➺✉ tr➯♥ K ❦❤✐ ζ = ∥Q∥✳ ❧➔ ζ− ✤ì♥ ✤✐➺✉ ♠↕♥❤ tr➯♥ K ✳ ❑❤✐ ✤â✱ ✐✐✮ f ❧➔ ζ − ∥Q∥ ✤ì♥ ✤✐➺✉ ♠↕♥❤ tr➯♥ K ❦❤✐ ζ > ∥Q∥✳ ❇ê ✤➲ ✷✳✾✳ ❬✶✶❪ ❈❤♦ F : K → Rn ✷✽ ❧➔ L− ▲✐♣s❝❤✐t③ ❧✐➯♥ tö❝ tr➯♥ K ✱ tù❝ ❧➔ ∥F (y) − F (x)∥ ≤ L∥y − x∥, ∀x, y ∈ K ❑❤✐ ✤â✱ f t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ❦✐➸✉ ▲✐♣s❝❤✐t③ ✭✷✳✹✮✳ ❚ù❝ ❧➔ f (x, y) + f (y, z) ≥ f (x, z) − a1 ∥y − x∥2 − a2 ∥z − y∥2 , ∀x, y, z ∈ K, ✈ỵ✐ ♠å✐ a1 > 0, a2 > t❤ä❛ ♠➣♥ √ a1 a2 ≥ L + ∥Q∥ ❚r♦♥❣ tr÷í♥❣ ❤đ♣ ✤➦❝ ❜✐➺t ❦❤✐ F ❧➔ →♥❤ ①↕ t✉②➳♥ t➼♥❤ ❝â ❞↕♥❣ F (x) = P x ợ P Rnìn f ①→❝ ✤à♥❤ ❜ð✐ ✭✷✳✸✼✮ ❝â ❞↕♥❣ ✭✷✳✸✽✮ f (x, y) = ⟨P x + Qy + q, y − x⟩ ●✐↔ sû ❝→❝ ♠❛ tr➟♥ P, Q ✤÷đ❝ ❝❤å♥ s❛♦ ❝❤♦ Q ❧➔ ♠❛ tr➟♥ ♥û❛ ①→❝ ✤à♥❤ ❞÷ì♥❣ ✈➔ Q − P ❧➔ ♥û❛ ①→❝ ✤à♥❤ ➙♠✳ ❑❤✐ ✤â f ❝â ❝→❝ t➼♥❤ ❝❤➜t s❛✉ ✭①❡♠ ❬✶✶❪✮✿ ✐✮ f ✤ì♥ ✤✐➺✉✱ f (., y) ❧✐➯♥ tư❝ ✈➔ f (x, ) ỗ tr K ✐✐✮ ❱ỵ✐ ♠é✐ x, y, z ∈ K t❛ ❝â f (x, y) + f (y, z) ≥ f (x, z) − a1 ∥y − x∥2 − a2 ∥z − y∥2 , ∀x, y, z ∈ K, tr♦♥❣ ✤â a1 = a2 = 21 ∥P − Q∥✳ ⑩♣ ❞ö♥❣ ❚❤✉➟t t♦→♥ ✶ ✈ỵ✐ ❤➔♠ G = 21 ∥x∥2 ✤➸ ❣✐↔✐ t PP ợ f (x, y) ữủ ✭✷✳✸✽✮✱ K ✤÷đ❝ ①→❝ ✤à♥❤ ❜ð✐ ✭✷✳✸✻✮✳ ❚r♦♥❣ tr÷í♥❣ ❤đ♣ t ữợ ❜➔✐ t♦→♥ min{ρf (x, y) + ∥y − x∥2 } y∈K ❚❤✉➟t t♦→♥ ✤÷đ❝ ❣✐↔✐ ❜➡♥❣ ❝ỉ♥❣ ❝ư ▼❆❚▲❆❇ ❖♣✐t✐♠✐③❛t✐♦♥ ❚♦♦❧❜♦①✳ ❚❤❡♦ ✭✷✳✸✽✮✱ f (x, ) ❧➔ ❤➔♠ t ữỡ ỗ t õ t ✤÷đ❝✳ ❳➨t ♠❛ tr➟♥   1.6 0    1.6  0      Q= 0 1.5 0 ;   0  1.5   0 0   3.1 0    3.6  0      P = 0 3.5 0     0 3.3   0 0 ✷✾ ❱ỵ✐ q = (1, −2, −1, 2, −1)T ✱ K = {x ∈ R | a1 = a2 = ∥P X i=1 xi ≥ −1, −5 ≤ xi ≤ 5, i = 1, , 5}, − Q∥ = 1.4525, ρ = a1 = 0.7262✱ x0 = (1, 3, 1, 1, 2)T ✈➔ ε = 10−3 t❛ t❤✉ ✤÷đ❝ ❜↔♥❣ ữợ s t t xk2 xk3 xk4 xk5 ✶ ✸ ✶ ✶ ✶ ✶ ✲✵✳✸✹✹✶✺ ✶✳✺✾✷✸✻ ✵✳✻✽✼✹✷ ✲✵✳✶✺✹✷✼ ✵✳✻✸✹✺✽ ✷ ✲✵✳✻✼✶✾✺ ✶✳✶✵✸✾✸ ✵✳✻✺✵✶✻ ✲✵✳✺✼✽✼✷ ✵✳✸✵✺✻✷ ✸ ✲✵✳✼✸✼✼✺ ✵✳✾✷✸✺✶ ✵✳✻✻✼✹✷ ✲✵✳✼✹✹✺✾ ✵✳✷✷✺✻✼ ✹ ✲✵✳✼✹✷✸✻ ✵✳✽✺✸✹✶ ✵✳✻✽✼✽✺ ✲✵✳✽✶✷✻✶ ✵✳✷✵✻✷✹ ✺ ✲✵✳✼✸✻✻✽ ✵✳✽✷✹✽✻ ✵✳✼✵✶✾✺ ✲✵✳✽✹✶✽✹ ✵✳✷✵✶✺✷ ❦ x ✵ k ◆❣❤✐➺♠ ①➜♣ ①➾ t❤✉ ✤÷đ❝ s❛✉ ✶✵ ữợ x10 = (0.72567, 0.80354, 0.71931, 0.86598, 0.20000)T ❑➳t ❧✉➟♥ ▲✉➟♥ ✈➠♥ ✤➣ t❤✉ ✤÷đ❝ ❝→❝ ❦➳t q✉↔ s❛✉✿ ✶✮ ❚r➻♥❤ ❜➔② ❧↕✐ ♠ët sè ❦➳t q✉↔ ỡ t ỗ ữ t ỗ ỗ ỗ r t ỡ ❝õ❛ s♦♥❣ ❤➔♠ ❝➙♥ ❜➡♥❣✳ ✸✮ ❚r➻♥❤ ❜➔② ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈➔ ❝→❝ ❜➔✐ t♦→♥ ❧✐➯♥ q✉❛♥✳ ✹✮ ❚r➻♥❤ ❜➔② ❧↕✐ ♠ët ❝→❝❤ ❝❤✐ t✐➳t ❤❛✐ t❤✉➟t t♦→♥ ✤↕♦ ❤➔♠ t➠♥❣ ❝÷í♥❣ ❣✐↔✐ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣✳ ✺✮ ❚r➻♥❤ ❜➔② sü ❤ë✐ tö ❝õ❛ ❤❛✐ t❤✉➟t t♦→♥ ♥➔② ✈➔ ♠ët ✈➼ ❞ö sè ♠✐♥❤ ❤å❛ ❝❤♦ t❤✉➟t t♦→♥✳ ✸✵ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ❚✐➳♥❣ ❱✐➺t ❬✶❪ ❚r➛♥ ❱ô ❚❤✐➺✉✱ ◆❣✉②➵♥ ❚❤à ❚❤✉ ❚❤õ② ●✐→♦ tr➻♥❤ tè✐ ÷✉ ♣❤✐ t✉②➳♥✱ ◆❤➔ ①✉➜t ❜↔♥ ✣↕✐ ❤å❝ ◗✉è❝ ●✐❛ ❍➔ ◆ë✐✱ ✷✵✶✶✳ ❚✐➳♥❣ ❆♥❤ ❬✷❪ ❇✐❣✐ ●✳✱ ❈❛st❡❧❧❛♥✐ ▼✳✱ P❛♣♣❛❧❛r❞♦ ▼✳✱ P❛ss❛❝❛♥t❛♥❞♦ ▼✳ ✭✷✵✶✾✮✱ ◆♦♥❧✐♥✲ ❡❛r Pr♦❣r❛♠♠✐♥❣ ❚❡❝❤♥✐q✉❡s ❢♦r ❊q✉✐❧✐❜r✐❛✱ ❙♣r✐♥❣❡r✱ ◆❛t✉r❡ ❙✇✐t③❡r❧❛♥❞✳ ❬✸❪ ❈♦❤❡♥ ●✳ ✭✶✾✽✵✮✱ ✏❆✉①✐❧✐❛r② ♣r♦❜❧❡♠ ♣r✐♥❝✐♣❧❡ ❛♥❞ ❞❡❝♦♠♣♦s✐t✐♦♥ ♦❢ ♦♣✲ t✐♠✐③❛t✐♦♥ ♣r♦❜❧❡♠s✑✱ ❏✳ ❖♣t✐♠✳ ❚❤❡♦r② ❆♣♣❧✳✱ ✸✷✱ ✷✼✼✲✸✵✺✳ ❬✹❪ ❋❛❝❝❤✐♥❡✐ ❋✳✱ P❛♥❣ ❏✳❙✳ ✭✷✵✵✸✮✱ ❋✐♥✐t❡ ❉✐♠❡♥s✐♦♥❛❧ ❱❛r✐❛t✐♦♥❛❧ ■♥❡q✉❛❧✐t✐❡s ❛♥❞ ❈♦♠♣❧❡♠❡♥t❛r✐t② Pr♦❜❧❡♠s✱ ❙♣r✐♥❣❡r✱ ◆❡✇ ❨♦r❦✳ ❬✺❪ ❑♦♥♥♦✈ ■✳❱✳ ✭✷✵✵✵✮✱ ❈♦♠❜✐♥❡❞ ❘❡❧❛①❛t✐♦♥ ▼❡t❤♦❞s ❢♦r ❱❛r✐❛t✐♦♥❛❧ ■♥✲ ❡q✉❛❧✐t✐❡s✱ ❙♣r✐♥❣❡r✱ ❇❡r❧✐♥✳ ❬✻❪ ❑♦r♣❡❧❡✈✐❝❤ ●✳ ▼ ✭✶✾✼✻✮✱ ❊①tr❛❣r❛❞✐❡♥t ♠❡t❤♦❞ ❢♦r ❢✐♥❞✐♥❣ s❛❞❞❧❡ ♣♦✐♥ts ❛♥❞ ♦t❤❡r ♣r♦❜❧❡♠s✱ ▼❛t❡❝♦♥✱ ✶✷✱ ✼✹✼✕✼✺✻✳ ❬✼❪ ❋❛♥ ❑✳ ✭✶✾✼✷✮✱ ✏❆ ♠✐♥✐♠❛① ✐♥❡q✉❛❧✐t② ❛♥❞ ❛♣♣❧✐❝❛t✐♦♥s✑✱ ❙❤✐s❤❛✱ ❖✳ ✭❡❞✳✮ ■♥❡q✉❛❧✐t② ■■■✱ ❆❝❛❞❡♠✐❝ Pr❡ss✱ ◆❡✇ ❨♦r❦✱✱ ✶✵✸✲✶✶✸✳ ❬✽❪ ▼❛str♦❡♥✐ ●✳ ✭✷✵✵✸✮✱ ✏❖♥ ❛✉①✐❧✐❛r② ♣r✐♥❝✐♣❧❡ ❢♦r ❡q✉✐❧✐❜r✐✉♠ ♣r♦❜❧❡♠s✑✱ ✐♥✿ P✳ ❉❛♥✐❡❧❡✱ ❋✳ ●✐❛♥♥❡ss✐✱ ❛♥❞ ❆✳▼❛✉❣❡r✐✱ ✭❡❞s✳✮✱ ❊q✉✐❧✐❜r✐✉♠ Pr♦❜❧❡♠s ❛♥❞ ❱❛r✐❛t✐♦♥❛❧ ▼♦❞❡❧s✱ ❑❧✉✇❡r ❆❝❛❞❡♠✐❝ P✉❜❧✐s❤❡rs✱ ❉♦r❞r❡❝❤t✳ ✸✶ ✸✷ ❬✾❪ ▼✉✉ ▲✳❉✳✱ ❖❡t❧❧✐ ❲✳ ✭✶✾✾✷✮✱ ✏❈♦♥✈❡r❣❡♥❝❡ ♦❢ ❛♥ ❛❞❛♣t✐✈❡ ♣❡♥❛t② s❝❤❡♠❡ ❢♦r ❢✐♥❞✐♥❣ ❝♦♥str❛✐♥t ❡q✉✐❧✐❜r✐❛✑✱ ◆♦♥❧✐♥❡❛r ❆♥❛❧✳✿ ❚❤❡♦r② ▼❡t❤♦❞s ❆♣♣❧✳✱ ✶✽✱ ✶✶✺✾✲✶✶✻✻✳ ❬✶✵❪ ◆✐❦❛✐❞♦ ❍✳✱ ■s♦❞❛ ❑✳ ✭✶✾✺✺✮✱ ✏◆♦t❡ ♦♥ ♥♦♥❝♦♦♣❡r❛t✐✈❡ ❝♦♥✈❡① ❣❛♠❡s✑✱ P❛❝ ❏✳ ▼❛t❤✳✱ ✺✱ ✽✵✼✲✽✶✺✳ ❬✶✶❪ ❚✳ ❉✳ ◗✉♦❝✱ ▲✳ ❉ ▼✉✉ ❛♥❞ ◆❣✉②❡♥ ❱❛♥ ❍✐❡♥ ✭✷✵✵✽✮✱ ✏❊①tr❛❣r❛❞✐❡♥t ❛❧✲ ❣♦r✐t❤♠s ❡①t❡♥❞❡❞ t♦ ❡q✉✐❧✐❜r✐✉♠ ♣r♦❜❧❡♠s✑✱ ❖♣t✐♠✐③❛t✐♦♥✱ ✼✼✻✳ ✺✼✱ ♣♣✳ ✼✹✾ ✕

Ngày đăng: 29/06/2023, 22:31

Xem thêm:

w