1 LỜI CAM ĐOAN Tôi xin cam đoan Luận án này do chính tác giả thực hiện tại Khoa Toán Trường Đại học Sư phạm Hà Nội dưới sự hướng dẫn của GS TSKH Lê Mậu Hải Các kết quả của Luận án là mới, đề tài của L[.]
1 LỜI CAM ĐOAN Tôi xin cam đoan Luận án tác giả thực Khoa Tốn Trường Đại học Sư phạm Hà Nội hướng dẫn GS TSKH Lê Mậu Hải Các kết Luận án mới, đề tài Luận án không trùng lặp chưa công bố cơng trình khác Tác giả Triệu Văn Dũng LỜI CẢM ƠN Trước tiên, tất kính trọng mình, tơi xin bày tỏ lịng biết ơn sâu sắc tới GS TSKH Lê Mậu Hải, người thầy trực tiếp giảng dạy hướng dẫn khoa học giúp tơi hồn thành Luận án Khoa Toán Trường Đại học Sư phạm Hà Nội Tôi thường xuyên nhận dẫn khoa học với chia sẻ, động viên khích lệ để có tự tin lịng đam mê từ chặng đường nghiệp nghiên cứu khoa học Được sinh hoạt làm việc tập thể khoa học nghiêm túc, cảm ơn thầy cô, bạn đồng nghiệp toàn thể thành viên tổ Lý thuyết hàm Trường Đại học Sư phạm Hà Nội Chính đây, ngồi dẫn, góp ý trực tiếp thành viên seminar môn Lý thuyết hàm đề tài nghiên cứu, tơi cịn có hội trang bị cho phương pháp nghiên cứu hiểu biết sâu sắc nhiều vấn đề Tốn học Nhân dịp này, tơi xin bày tỏ lịng kính trọng biết ơn tới thầy tổ Lý thuyết hàm cho tơi góp ý có ý nghĩa q trình làm Luận án Tơi xin cảm ơn Lãnh đạo trường THPT Chuyên Hùng Vương, Sở giáo dục đào tạo Phú Thọ, Trường Đại học Sư Phạm Hà Nội đơn vị chức tạo cho điều kiện thuận lợi mặt quản lý nhà nước suốt trình học tập nghiên cứu Cuối cùng, tơi xin tỏ lịng tri ân đồng nghiệp, gia đình bạn bè điểm tựa tinh thần vững chắc, giúp đỡ, động viên, chia sẻ khó khăn ln đồng hành tơi q trình học tập nghiên cứu Tác giả Mục lục Lời cam đoan Lời cảm ơn Kí hiệu Mở đầu Tổng quan thác triển hàm đa điều hòa phương trình kiểu Monge–Ampère 12 Dưới thác triển hàm đa điều hòa với giá trị biên lớp lượng phức có trọng 24 1.1 Một số khái niệm kết bổ trợ 24 1.2 Dưới thác triển hàm đa điều hòa lớp Eχ (Ω, f ) 30 Dưới thác triển hàm đa điều hồ miền siêu lồi khơng bị chặn ứng dụng 40 2.1 Một số khái niệm kết bổ trợ 41 2.2 Dưới thác triển miền siêu lồi không bị chặn 45 2.3 Ứng dụng 56 Dưới thác triển hàm m-điều hòa 61 3.1 Một số khái niệm kết bổ trợ 61 3.2 Dưới thác triển lớp Fm (Ω) 66 Phương trình kiểu Monge–Ampère cho độ đo 80 4.1 Giới thiệu 80 4.2 Phương trình kiểu Monge–Ampère cho độ đo 82 Kết luận kiến nghị 91 Danh mục cơng trình công bố liên quan đến luận án 93 Tài liệu tham khảo 95 KÍ HIỆU • P SH(Ω) - Tập hàm đa điều hịa Ω • P SH − (Ω) - Tập hàm đa điều hịa âm Ω • PSHs (Ω) - Tập hàm đa điều hịa chặt Ω • SH(Ω) - Tập hàm điều hòa Ω • SH − (Ω) - Tập hàm điều hòa âm Ω • SHm (Ω) - Tập hàm m-điều hịa Ω − • SHm (Ω) - Tập hàm m-điều hòa âm Ω • M P SH(Ω) - Tập hàm đa điều hịa cực đại Ω • M P SH − (Ω) - Tập hàm đa điều hòa cực đại âm Ω • L∞ loc (Ω) - Không gian hàm bị chặn địa phương Ω • L∞ (Ω) - Không gian hàm bị chặn Ω • d = ∂ + ∂ dc = 4i (∂ − ∂), ddc = 2i ∂∂ tốn tử vi phân phức • (ddc u)n = ddc u ∧ · · · ∧ ddc u - tốn tử Monge-Ampère phức u • Hm (u) = (ddc u)m ∧ β n−m - toán tử Hessian phức u n P i c • β = dd kzk = dzj ∧ dz j β n = ( 2i )n dz1 ∧ dz ∧ · · · ∧ dzn ∧ dz n = dV2n j=1 dạng thể tích Cn ∼ = R2n • C(Ω)- Tập hàm liên tục Ω • C ∞ (Ω)- Tập hàm trơn vô hạn Ω • uj % u - Kí hiệu dãy {uj } hội tụ tăng tới u • uj & u - Kí hiệu dãy {uj } hội tụ giảm tới u • 1A = χA - Kí hiệu hàm đặc trưng tập A MỞ ĐẦU Lý chọn đề tài Việc thác triển đối tượng giải tích phức thác triển hàm chỉnh hình, hàm phân hình, bó giải tích coherent, dịng, v.v ln quan tâm nhiều giải tích phức lý thuyết đa vị phức Một đối tượng quan tâm nghiên cứu coi đối tượng trung tâm lý thuyết đa vị hàm đa điều hòa Do đối tượng nói trên, việc xét toán thác triển hàm đa điều hòa việc cần lưu tâm tới nghiên cứu toán lý thuyết đa vị Nhưng hàm đa điều hòa dưới, từ định nghĩa nó, lại xác định nhờ bất đẳng thức tích phân, nên xét vấn đề này, người ta quan tâm tới toán thác triển Trong luận án này, dành phần lớn nội dung trình bày vấn đề thác triển cho lớp hàm đa điều hịa khơng bị chặn hàm m-điều hịa khơng bị chặn Các vấn đề đề cập quan tâm nghiên cứu khoảng 10 năm trở lại Từ năm 1998 đến 2004, Cegrell, chuyên gia hàng đầu giới lý thuyết đa vị, xây dựng toán tử Monge-Ampère cho số lớp hàm đa điều hịa khơng bị chặn địa phương Ơng đưa lớp Ep (Ω), Fp (Ω), F(Ω), N (Ω) E(Ω) Đó lớp hàm đa điều hịa không bị chặn khác miền siêu lồi Ω ⊂ Cn mà tốn tử (ddc )n xác định liên tục dãy giảm Trong lớp E(Ω) lớp lớn tốn tử Monge–Ampère xác định độ đo Radon Kể từ đó, người ta bắt đầu hướng quan tâm toán thác triển tới lớp Năm 2003, Cegrell Zeriahi [27] nghiên cứu toán thác triển cho lớp F(Ω) lớp lớp E(Ω) Các tác giả chứng minh e miền siêu lồi bị chặn Cn u ∈ F(Ω), rằng: Nếu Ω b Ω tồn u e ∈ F(Ω) cho u e ≤ u Ω, u e sau gọi thác e Điều đáng quan tâm tác giả cho triển u từ Ω lên Ω đánh giá mass toàn thể độ đo (ddc u e)n (ddc u)n qua bất đẳng thức R R (ddc u e)n ≤ (ddc u)n Kết xem kết cho e Ω Ω việc nghiên cứu vấn đề thác triển hàm đa điều hịa khơng bị chặn Sau P H Hiệp [46], Benelkourchi [10] tiếp tục nghiên cứu vấn đề cho lớp hàm khác Ep (Ω), Eχ (Ω) Việc xét toán thác triển lớp Cegrell có giá trị biên Czy˙z, Hed năm 2008 [34] Chúng tơi trình bày kỹ kết Czy˙z Hed đầu phần tổng quan luận án Điều đáng nói chủ đề xuyên suốt luận án quan hệ độ đo (ddc u e)n 1Ω (ddc u)n với u e thác triển u Phần lớn kết tác Cegrell - Zeriahi, P.H.Hiep, Benelkourchi hay Czy˙z Hed dừng lại đánh giá quan hệ mass toàn thể (ddc u e)n mass (ddc u)n Do vậy, việc nghiên cứu vấn đề thác triển hàm đa điều hòa mà kiểm sốt độ đo Monge-Ampère hàm thác triển hàm cho câu hỏi mở Năm 2014, [41] hai tác giả L M Hải, N X Hồng nghiên cứu toán thác triển cho lớp F(Ω, f ) Điều đáng nói họ chứng minh đẳng thức độ đo Monge-Ampère hàm thác triển hàm cho Do vấn đề cần nghiên cứu liệu mở rộng kết [41] cho lớp hàm rộng hơn, lớp Eχ (Ω, f )? Vấn đề quan tâm nghiên cứu luận án thiết lập thác triển hàm đa điều hòa miền khơng bị chặn Chúng ta biết để xác định thác triển u e u nói chung ta phải giải phương trình Monge-Ampère Tuy nhiên việc giải phương trình Monge-Ampère miền không bị chặn Cn việc đơn giản Năm 2014, kết quan trọng giải phương trình Monge-Ampère cho miền siêu lồi khơng bị chặn Cn ba tác giả L M Hải, N V Trào, N X Hồng đề xuất [44] Từ đưa phương hướng cho chúng tơi xét tốn thác triển hàm đa điều hịa lớp F(Ω, f ) với Ω miền siêu lồi không bị chặn Từ kết ứng dụng, chúng tơi nghiên cứu tốn xấp xỉ hàm đa điều hòa dãy tăng hàm đa điều hòa miền rộng Tiếp theo đó, chương luận án xem xét thác triển cho lớp hàm m-điều hòa Như biết, việc mở rộng lớp hàm đa điều hòa thời gian gần số tác giả nghiên cứu Z Blocki, S Dinew, S Kolodziej, A S Sadullaev, B I Abullaev, L H Chinh, Năm 2005 [15] Z Blocki đưa khái niệm hàm m-điều hòa (SHm (Ω)) nghiên cứu lời giải cho nghiệm phương trình Hessian lớp Theo đó, năm 2012 cơng trình [31], L H Chinh dựa theo ý tưởng Cegrell đưa lớp hàm Em (Ω), Fm (Ω), Em (Ω) lớp SHm (Ω) Đó lớp hàm m-điều hịa khơng bị chặn xác định tốn tử Hessian phức, tương tự lớp E (Ω), F(Ω), E(Ω) Cegrell đưa Qua tác giả chứng minh tồn toán tử m-Hessian phức Hm (u) = (ddc u)m ∧ β n−m lớp hàm Em (Ω) Hơn toán tử xác định Hm (u) độ đo Radon Ω Một câu hỏi đặt liệu toán thác triển cho lớp hàm nào? Việc kiểm soát độ đo m-Hessian phức hàm thác triển hàm cho sao? Việc nghiên cứu câu hỏi lớp hàm vấn đề cần tiếp tục quan tâm nghiên cứu Vấn đề cuối đề cập luận án giải phương trình kiểu Monge-Ampère cho lớp Cegrell N (Ω, f ) Đó phương trình dạng (ddc u)n = F (u, )dµ, chi tiết xem định nghĩa (4.1.1) Như ta biết, việc chứng minh tồn nghiệm yếu phương trình kiểu Monge-Ampère phức thu hút quan tâm nhiều tác [6], [7], [12], [29], [35], [52], [62] Phần lớn kết tác giả nói đề cập tới trường hợp độ đo µ triệt tiêu tất tập đa cực Ω Vấn đề mà quan tâm nghiên cứu nghiệm yếu phương trình kiểu Monge-Ampère nói cho độ đo tùy ý, đặc biệt độ đo mang tập đa cực Vì lý trên, lựa chọn đề tài "Dưới thác triển hàm đa điều hòa ứng dụng" Tính cấp thiết đề tài Như đề cập đến trên, toán thác triển cho lớp hàm đa điều hịa khơng bị chặn với giá trị biên toán xuất gần Hơn việc thiết lập mối quan hệ độ đo Monge-Ampère hàm thác triển hàm cho gần chưa xem xét đến trừ trường hợp lớp F(Ω, f ) Do tiếp tục mở rộng toán cho lớp khác toán cần đặt đáng quan tâm nghiên cứu Cũng cho việc nghiên cứu thác triển cho lớp hàm m-điều hòa với kiểm soát độ đo Hessian Hm (u) = (ddc u)m ∧ β n−m giải phương trình kiểu Monge-Ampère cho độ đo có giá tập đa cực Mục đích nhiệm vụ nghiên cứu Mục đích Luận án nghiên cứu vấn đề thác triển hàm đa điều hòa lớp Eχ (Ω, f ) Ω miền siêu lồi bị chặn Cn ; lớp F(Ω, f ) với Ω miền siêu không lồi bị chặn Cn thác triển hàm m-điều hòa cho lớp Fm (Ω) với Ω miền m-siêu lồi bị chặn Cn Ngồi luận án cịn chứng minh tồn nghiệm yếu phương trình kiểu Monge-Ampère lớp N (Ω, f ) cho độ đo bất kỳ, đặc biệt độ đo mang tập đa cực Chúng tơi chứng minh tốn trác triển cho lớp Eχ (Ω, f ), Fm (Ω) với Ω miền siêu lồi bị chặn m-siêu lồi bị chặn có hiệu lực Hơn chúng tơi thiết lập đẳng thức 10 độ đo Monge-Ampère hàm thác triển hàm cho Cũng thiết lập tồn thác triển cho lớp F(Ω, f ) Ω miền siêu lồi khơng bị chặn có đẳng thức độ đo Đối tượng phạm vi nghiên cứu Như trình bày phần lý chọn đề tài Đối tượng nghiên cứu luận án toán thác triển hàm đa điều hoà với giá trị biên lớp lượng phức có trọng, tốn thác triển hàm đa điều hồ miền siêu lồi khơng bị chặn ứng dụng, toán thác triển hàm m-điều hồ phương trình kiểu Monge–Ampère cho độ đo tùy ý với điều kiện tổng quát nghiên cứu trước vấn đề Hơn nữa, tình mà chúng tơi đưa nghiên cứu kỹ thuật phương pháp trước tác giả khác chưa đề cập tới Ý nghĩa khoa học thực tiễn Luận án Luận án góp phần làm phát triển sâu sắc kết vấn đề thác triển hàm đa điều hòa dưới, thác triển hàm m-điều hịa dưới, nghiệm yếu phương trình kiểu Monge-Ampère cho độ đo Về mặt phương pháp, Luận án góp phần làm đa dạng hóa hệ thống công cụ kỹ thuật nghiên cứu chuyên ngành, áp dụng cụ thể đề tài Luận án chủ đề tương tự Luận án tài liệu tham khảo cho học viên cao học nghiên cứu sinh theo hướng nghiên cứu Cấu trúc Luận án Cấu trúc Luận án trình bày theo quy định cụ thể luận án tiến sỹ Trường Đại học Sư phạm Hà Nội, bao gồm phần: Mở đầu, Tổng quan - trình bày lịch sử vấn đề, phân tích đánh giá cơng trình nghiên cứu tác giả nước liên quan đến luận án Bốn chương lại luận án viết dựa bốn cơng trình đăng gửi công bố Chương 1: Dưới thác triển hàm đa điều hoà với giá trị biên