LÒ I CAM D OAN Tôi xin cam d̄oan nhũ ng kết quȧ’ d̄u o c tr̀ınh bày trong luâ n án là mó i, d̄ã d̄u o c công bố trên các ta p ch́ı Toán ho c quốc tế Các kết quȧ’ viết chung[.]
`.I CAM D - OAN LO Tˆoi xin cam d¯oan nh˜ u.ng kˆe´t qua˙’ d¯u.o c tr`ınh b`ay luˆa.n a´n l`a m´o.i, d¯a˜ d¯u.o c cˆong bˆo´ trˆen c´ac ta.p ch´ı To´an ho.c quˆo´c tˆe´ C´ac kˆe´t qua˙’ viˆe´t u v`a PGS TS Phan Th`anh An d¯a˜ chung v´o.i GS TSKH Ho`ang Xuˆan Ph´ d¯u.o c su d¯`oˆng y ´ cu˙’a c´ac d¯`ˆong t´ac gia˙’ d¯u.a v`ao luˆa.n ´an C´ac kˆe´t qua˙’ nˆeu luˆa.n a´n l`a trung thu c v`a chu.a t` u.ng d¯u.o c cˆong bˆo´ bˆa´t k` y cˆong tr`ınh n`ao kh´ac tru.o´.c d¯o´ Nghiˆen c´ u.u sinh ˙’ M O.N `.I CA LO Luˆa.n ´an d¯u.o c ho`an th`anh du.o´.i su hu.o´.ng dˆa˜n, chı˙’ ba˙’o cu˙’a GS TSKH Ho`ang Xuˆan Ph´ u v`a PGS TS Phan Thanh An T´ac gia˙’ chˆan th`anh ca˙’m `ay d¯˜a d`anh cho T´ac gia˙’ b`ay to˙’ l`ong o.n su gi´ up d¯o˜ mo.i mˇa.t m`a c´ac Thˆ `ay d¯a˜ u, Thˆ biˆe´t o.n sˆau sˇa´c v`a chˆan th`anh t´o.i GS TSKH Ho`ang Xuˆan Ph´ `eu kiˆe.n d¯ˆe˙’ t´ac quan tˆam, hu.o´.ng dˆa˜n tˆa.n t`ınh, nghiˆem khˇa´c v`a ta.o mo.i d¯iˆ gia˙’ c´o thˆe˙’ ho`an th`anh nh˜ u.ng mu.c tiˆeu d¯ˇa.t cho luˆa.n a´n T´ac gia˙’ xin - oˆng Yˆen, PGS TS Ta Duy b`ay to˙’ l`ong biˆe´t o.n d¯ˆe´n GS TSKH Nguyˆ˜en D Phu.o ng, PGS TS Nguyˆ˜en Nˇang Tˆam v`a c´ac d¯`ˆong nghiˆe.p thuˆo.c Ph`ong Gia˙’i t´ıch sˆo´ v`a T´ınh to´an Khoa ho.c Viˆe.n To´an ho.c v`ı d¯a˜ c´o nh˜ u.ng y ´ kiˆe´n qu´ y b´au cho t´ac gia˙’ qu´a tr`ınh nghiˆen c´ u.u T´ac gia˙’ xin d¯u.o c b`ay to˙’ l`ong ca˙’m o.n d¯ˆe´n Ban chu˙’ nhiˆe.m Khoa Cˆong Nghˆe thˆong tin, Ph`ong Sau d¯a.i ho.c v`a Ban Gi´am d¯oˆ´c Ho.c viˆe.n K˜ y thuˆa.t `eu kiˆe.n thuˆa.n lo i d¯ˆe˙’ t´ac gia˙’ c´o nhiˆ `eu th`o.i gian thu c Quˆan su d¯a˜ ta.o mo.i d¯iˆ hiˆe.n luˆa.n ´an - a`o Thanh T˜ınh, T´ac gia˙’ c˜ ung b`ay to˙’ l`ong biˆe´t o.n d¯ˆe´n PGS TS D -u PGS TS Nguyˆ˜en D ´.c Hiˆe´u, PGS TS Nguyˆ˜en Thiˆe.n Luˆa.n, PGS TS `ong, TS Nguyˆ˜en H˜ Tˆo Vˇan Ban, TS Nguyˆ˜en Nam Hˆ u.u Mˆo.ng, TS V˜ u Thanh H`a, TS Nguyˆ˜en Ma.nh H` ung, TS Nguyˆ˜en Tro.ng To`an, TS Ngˆo -u - `ınh So.n, TS Trˆ `an Nguyˆen Ngo.c H˜ u.u Ph´ uc, TS Tˆo´ng Minh D ´.c, TS Lˆe D v`a tˆa´t ca˙’ c´ac d¯`oˆng nghiˆe.p Khoa Cˆong Nghˆe thˆong tin, HVKTQS, d¯a˜ d¯ˆo.ng viˆen, kh´ıch lˆe v`a c´o nh˜ u.ng trao d¯oˆ˙’i h˜ u.u ´ıch suˆo´t th`o.i gian nghiˆen c´ u.u v`a cˆong t´ac T´ac gia˙’ ca˙’m o.n sˆau sˇa´c GS TSKH Pha.m Thˆe´ Long, Gi´am d¯ˆo´c Ho.c `eu kiˆe.n vˆ `e mˇa.t thu˙’ tu.c c˜ Viˆe.n KTQS, ngu.o`.i d¯a˜ ta.o mo.i d¯iˆ ung nhu chuyˆen mˆon d¯ˆe˙’ t´ac gia˙’ c´o thˆe˙’ ho`an th`anh luˆa.n ´an n`ay Cuˆo´i c` ung t´ac gia˙’ gu˙’.i l`o.i c´am o.n t´o.i vo v`a c´ac con, nh˜ u.ng ngu.o`.i d¯a˜ `eu kiˆe.n cho t´ac gia˙’ qu´a tr`ınh l`am d¯oˆ ng viˆen, chˇam s´oc v`a ta.o mo.i d¯iˆ luˆa.n ´an Mu.c lu.c L` o.i cam d ¯oan L` o.i ca˙’m o.n Danh mu.c c´ ac k´ y hiˆ e.u thu.` o.ng d` ung `au Mo˙’ d ¯ˆ `oi `oi, quy hoa.ch to` a h` am lˆ B` to´ an quy hoa.ch lˆ an phu.o.ng v` thˆ o `oi, quy hoa.ch to`an phu.o.ng 1.1 B`ai to´an quy hoa.ch lˆ `oi suy rˆo.ng thˆo 1.2 H`am lˆ 12 `oi ngo`ai 1.3 H`am γ-lˆ 13 `oi ngo`ai 1.4 H`am Γ-lˆ 15 `oi 1.5 H`am γ-lˆ 17 - iˆ D e˙’m infimum to` an cu.c cu˙’a B` to´ an (P˜ ) `oi ngo`ai cu˙’a h`am bi nhiˆ˜eu 2.1 T´ınh γ-lˆ - iˆe˙’m cu c tiˆe˙’u to`an cu.c v`a d¯iˆe˙’m infimum to`an cu.c 2.2 D 2.3 C´ac t´ınh chˆa´t cu˙’a d¯iˆe˙’m infimum to`an cu.c `eu kiˆe.n tˆo´i u.u 2.4 T´ınh chˆa´t tu a v`a d¯iˆ 20 20 27 28 33 ˜ `oi ngo` T´ınh Γ-lˆ cu˙’a h` am bi nhiˆ e u v` a d ¯iˆ e˙’m infimum to` an cu.c cu˙’a B` to´ an (P˜ ) `oi ngo`ai cu˙’a h`am bi nhiˆ˜eu 3.1 T´ınh Γ-lˆ - iˆe˙’m infimum to`an cu.c cu˙’a b`ai to´an nhiˆ˜eu 3.2 D 43 3.3 T´ınh oˆ˙’n d¯.inh cu˙’a tˆa.p c´ac d¯iˆe˙’m infimum to`an cu.c `eu kiˆe.n tˆo´i u.u 3.4 Du.o´.i vi phˆan suy rˆo.ng thˆo v`a d¯iˆ 55 ˜ - iˆ D e˙’m supremum cu˙’a B` to´ an (Q) `oi cu˙’a h`am bi nhiˆ˜eu 4.1 T´ınh γ-lˆ - iˆe˙’m supremum to`an cu.c cu˙’a h`am bi nhiˆ˜eu 4.2 D 4.3 T´ınh chˆa´t cu˙’a tˆa.p c´ac d¯iˆe˙’m supremum to`an cu.c 4.4 T´ınh chˆa´t cu˙’a tˆa.p c´ac d¯iˆe˙’m supremum d¯.ia phu.o.ng 43 52 58 64 64 66 73 86 Kˆ e´t luˆ a.n chung 94 Danh mu.c cˆ ong tr`ınh cu˙’a t´ ac gia˙’ liˆ en quan d ¯ˆ e´n luˆ a.n ´ an 96 T` liˆ e.u tham kha˙’o 97 `.NG DUNG ´ KY ´ HIE ˆ U THU.O ` DANH MU C CAC `eu • IRn : Khˆong gian Euclide n chiˆ • k · k : Chuˆa˙’n Euclide IRn • hx, yi : T´ıch vˆo hu.o´.ng cu˙’a v´ec to x, y `au mo˙’ b´an k´ınh r tˆam x • B(x, r) := {y | ky − xk < r} : H`ınh cˆ ¯ r) := {y | ky − xk ≤ r} : H`ınh cˆ `au d¯o´ng b´an k´ınh r tˆam x • B(x, • A ∈ IRn×n , A : Ma trˆa.n d¯oˆ´i x´ u.ng x´ac d¯.inh du.o.ng • AT : Ma trˆa.n chuyˆe˙’n vi cu˙’a ma trˆa.n A • λmin , (λmax ) : Gi´a tri riˆeng nho˙’ nhˆa´t (l´o.n nhˆa´t) cu˙’a ma trˆa.n A • λ(A) : Tˆa.p c´ac gi´a tri riˆeng cu˙’a ma trˆa.n A √ • kAk = { max λ | λ ∈ λ(AT A)} : Chuan cua ma tra.n A IRnìn `oi nga.t ã f (x) = hAx, xi + hb, xi : H`am to`an phu.o.ng lˆ • p(x), supx∈D |p(x)| ≤ s v´o.i s ∈ [0, +∞[ : H`am nhiˆ˜eu gi´o.i nˆo.i `oi ngˇa.t v´o.i nhiˆ˜eu gi´o.i nˆo.i • f˜ = f + p : H`am to`an phu.o.ng lˆ • f (x) := hAx, xi + hb, xi → inf, x ∈ D : B`ai to´an quy hoa.ch to`an phu.o.ng (P ) • f (x) := hAx, xi + hb, xi → sup, x ∈ D : B`ai to´an quy hoa.ch to`an phu.o.ng (Q) • f (x) := hAx, xi + hb, xi + p(x) → inf, x ∈ D : B`ai to´an quy hoa.ch `oi ngˇa.t v´o.i nhiˆ˜eu (P˜ ) to`an phu.o.ng lˆ • f (x) := hAx, xi + hb, xi + p(x) → sup, x ∈ D : B`ai to´an quy hoa.ch ˜ `oi ngˇa.t v´o.i nhiˆ˜eu (Q) to`an phu.o.ng lˆ • ∂g(x∗ ) : Du.o´.i vi phˆan cu˙’a g ta.i diem x ã L(x, à0 , , µm ) := Pm i=0 µi gi (x) : H`am Lagrange • T´ınh chˆa´t (Mγ ) : Mˆo˜i d¯iˆe˙’m γ-cu c tiˆe˙’u x∗ cu˙’a f l`a d¯iˆe˙’m cu c tiˆe˙’u to`an cu.c • T´ınh chˆa´t (Iγ ) : Mˆo˜i d¯iˆe˙’m γ-infimum x∗ cu˙’a f l`a d¯iˆe˙’m infimum to`an cu.c • Lα (f˜) := {x | x ∈ D, f˜(x) ≤ α}, α ∈ IR : Tˆa.p m´ u.c du.o´.i cu˙’a h`am f˜ = f + p 1 • h1 (γ) := inf x0 , x1 ∈D, kx0 −x1 k=γ (f (x0 ) + f (x1 )) − f ( (x0 + x1 )) • h2 (γ) := inf x0 , x1 ∈D, kx0 −x1 k=γ,−x0 +2x1 ∈D f (x0 )−2f (x1 )+f (−x0 +2x1 ) • aff D : Bao aphin cu˙’a tˆa.p D `oi d¯a diˆe.n D • ext D : Tˆa.p c´ac d¯iˆe˙’m cu c biˆen cu˙’a tˆa.p lˆ • JD (x∗ ) := ext D \ {x∗ }, x∗ ∈ ext D • d(x, D) := inf y∈D kx − yk : Khoa˙’ng c´ach t` u x d¯ˆe´n D `oi cu˙’a tˆa.p D • conv D : Bao lˆ • dD := minx∗ ∈ext D {d x∗ , conv JD (x∗ ) } • D(x∗ , β) := {x ∈ D | x = (1 − α)x∗ + αy, y ∈ D, ≤ α ≤ − β}, x∗ ∈ ext D, β ∈ [0, 1] • C (D) := {p : D → IR | kpkC := supx∈D |p(x)| < +∞} ¯C (0, r) : H`ınh cˆ `au d¯o´ng b´an k´ınh r tˆam C (D) • B ˙’ D ˆU -` MO A `en thˆo´ng c´o da.ng B`ai to´an quy hoa.ch to`an phu.o.ng truyˆ f (x) := hAx, xi + hb, xi → inf, x∈D d¯o´ A ∈ IRn×n l`a ma trˆa.n vuˆong, b ∈ IRn l`a v´ec to v`a D ⊂ IRn l`a tˆa.p `oi lˆ `oi, b`ai to´an quy hoa.ch to`an phu.o.ng C` ung v´o.i b`ai to´an quy hoa.ch lˆ `eu nh`a to´an ho.c Viˆe.t nam v`a quˆo´c tˆe´ nghiˆen c´ d¯u.o c nhiˆ u.u, v´ı du nhu H W Kuhn v`a A W Tucker [22], B Bank v`a R Hasel [5], E Blum v`a W Oettli [7], B C Eaves [12], M Frank v`a P Wolfe [13], O L Magasarian [26], G M Lee, N N Tam v`a N D Yen [31], H X Phu [45], H X Phu v`a N D Yen [53], M Schweighofer [57], H Tuy [63], [64], [72], H H Vui v`a P T Son [66] u.u c´ac b`ai to´an C´ac kˆe´t qua˙’ quan tro.ng d¯a˜ thu d¯u.o c nghiˆen c´ `on ta.i nghiˆe.m tˆo´i `e su tˆ quy hoa.ch to`an phu.o.ng cu˙’a c´ac nh`a to´an ho.c l`a vˆ `eu kiˆe.n cˆ `an tˆo´i u.u, d¯iˆ `eu kiˆe.n d¯u˙’ tˆo´i u.u, thuˆa.t to´an t`ım nghiˆe.m tˆo´i u.u, d¯iˆ u.u, t´ınh oˆ˙’n d¯.inh cu˙’a nghiˆe.m tˆo´i u.u c´ac b`ai to´an trˆen bi t´ac d¯ˆo.ng bo˙’.i `eu kˆe´t qua˙’ nghiˆen c´ `e b`ai to´an trˆen d¯a˜ d¯u.o c u nhiˆ˜eu Nhiˆ u.u vˆ ´.ng du.ng d¯ˆe˙’ gia˙’i c´ac b`ai to´an kinh tˆe´ v`a k˜ y thuˆa.t, nhu b`ai to´an lu a cho.n d¯`ˆau tu (portfolio selection) ([27], [28]), b`ai to´an ph´at d¯iˆe.n tˆo´i u.u (economic power dispatch) ([6], [11], [69]), b`ai to´an kinh tˆe´ d¯oˆ´i s´anh (matching economic), ([17]), b`ai to´an m´ay hˆo˜ tro v´ec to (support vector machine) ([29]) Khi A l`a nu˙’.a x´ac d¯i.nh du.o.ng hoˇa.c nu˙’.a x´ac d¯i.nh ˆam th`ı b`ai to´an trˆen c´o thˆe˙’ phˆan r˜a th`anh hai b`ai to´an kh´ac sau: f (x) := hAx, xi + hb, xi → inf, x∈D (P ) f (x) := hAx, xi + hb, xi → sup, x ∈ D (Q) v`a `oi ngˇa.t Luˆa.n ´an n`ay nghiˆen c´ u.u c´ac b`ai to´an quy hoa.ch to`an phu.o.ng lˆ v´o.i nhiˆ˜eu gi´o.i nˆo.i sau: f˜(x) := hAx, xi + hb, xi + p(x) → inf, x∈D (P˜ ) f˜(x) := hAx, xi + hb, xi + p(x) → sup, x ∈ D, ˜ (Q) v`a `eu kiˆe.n supx∈D |p(x)| ≤ s v´o.i gi´a tri d¯o´ p : D → IR tho˙’a m˜an d¯iˆ ˜ d¯u.o c gia˙’ thiˆe´t l`a s ∈ [0, +∞[ v`a A c´ac b`ai to´an (P ), (Q), (P˜ ) v`a (Q) ma trˆa.n d¯oˆ´i x´ u.ng x´ac d¯.inh du.o.ng V`ı c´ac b`ai to´an trˆen d¯u.o c cho.n d¯ˆe˙’ nghiˆen c´ u.u? R˜o r`ang, s = ˜ ch´ınh l`a c´ac b`ai to´an (P ) v`a (Q), hay n´oi c´ach th`ı c´ac b`ai to´an (P˜ ) v`a (Q) kh´ac c´ac b`ai to´an (P ) v`a (Q) l`a c´ac tru.o`.ng ho p riˆeng cu˙’a c´ac b`ai to´an (P˜ ) ˜ D - aˆy l`a l´ v`a (Q) y d¯ˆe˙’ tiˆe´n h`anh nghiˆen c´ u.u c´ac b`ai to´an trˆen, tˆo´i thiˆe˙’u y thuyˆe´t Tuy nhiˆen, c`on mˆo.t sˆo´ l´ y thu c tˆe´ kh´ac du.o´.i t` u quan d¯iˆe˙’m l´ ˜ l`a thu c su cˆ `an d¯aˆy, cho thˆa´y viˆe.c nghiˆen c´ u.u c´ac b`ai to´an (P˜ ), (Q) L´ y th´ u nhˆa´t: f (x) = hAx, xi + hb, xi l`a h`am mu.c tiˆeu ban d¯`aˆu v`a `om c´ac t´ac d¯oˆ ng bˆo˙’ sung p l`a h`am nhiˆ˜eu n`ao d¯o´ H`am nhiˆ˜eu p c´o thˆe˙’ bao gˆ (tˆa´t d¯.inh hoˇa.c ngˆa˜u nhiˆen) lˆen h`am mu.c tiˆeu v`a c´ac lˆo˜i gˆay qu´a - iˆe˙’m d¯aˇ c biˆe.t l`a o˙’ chˆo˜, ch´ ung tr`ınh mˆo h`ınh h´oa, d¯o d¯a.c, t´ınh to´an D ta ha.n chˆe´ chı˙’ x´et nhiˆ˜eu gi´o.i nˆo.i Ha.n chˆe´ n`ay l`a khˆong qu´a ngˇa.t, c´o thˆe˙’ `eu b`ai to´an thu c tˆe´, chˇa˙’ng ha.n nhu hai v´ı d¯u.o c tho˙’a m˜an nhiˆ du minh ho.a sau d¯ˆay Mˆo.t nh˜ u.ng u ´.ng du.ng nˆo˙’i bˆa.t cu˙’a quy hoa.ch to`an phu.o.ng l`a b`ai to´an lu a cho.n d¯`ˆau tu (H M Markowitz [27], [28]) B`ai to´an ph´at biˆe˙’u nhu sau: Phˆan phˆo´i vˆo´n qua n ch´ u.ng kho´an (asset) c´o sˇa˜n d¯ˆe˙’ c´o thˆe˙’ gia˙’m thiˆe˙’u ru˙’i ro v`a tˆo´i d¯a lo i nhuˆa.n, t´ u.c l`a t`ım v´ec to tı˙’ lˆe P x ∈ D, D := {x = (x1 , x2 , , xn ) | nj=1 xj = 1} d¯ˆe˙’ f (x) = ωxT Σx − ρT x d¯a.t gi´a tri nho˙’ nhˆa´t, d¯´o xj , j = 1, , n, l`a ty˙’ lˆe ch´ u.ng kho´an th´ u j danh mu.c d¯`ˆau tu., ω l`a tham sˆo´ ru˙’i ro, Σ ∈ IRn×n l`a ma trˆa.n hiˆe.p phu.o.ng sai, ρ ∈ IRn l`a v´ec to lo i nhuˆa.n k` y vo.ng V`ı Σ v`a ρ thu.o`.ng ˜ v`a ρ˜, d¯o´ ch´ khˆong d¯u.o c x´ac d¯i.nh ch´ınh x´ac m`a chı˙’ xˆa´p xı˙’ bo˙’.i Σ ung ˜ − ρ˜T x = f (x) + p(x), d¯´o ta pha˙’i cu c tiˆe˙’u h´oa h`am f˜(x) = ωxT Σx ˜ − Σ)x − (˜ p(x) = ωxT (Σ ρ − ρ)T x Khi quy d¯.inh, khˆong d¯u.o c b´an khˆo´ng, t´ u.c l`a xj ≥ 0, j = 1, , n, th`ı tˆa.p chˆa´p nhˆa.n d¯u.o c D l`a gi´o.i nˆo.i V`ı vˆa.y nhiˆ˜eu p c˜ ung gi´o.i nˆo.i trˆen D N´oi mˆo.t c´ach tˆo˙’ng qu´at, t´ınh gi´o.i nˆo.i cu˙’a nhiˆ˜eu luˆon d¯u.o c d¯a˙’m ba˙’o D gi´o.i nˆo.i v`a p liˆen tu.c trˆen D Gia˙’ thiˆe´t `eu b`ai to´an thu c tˆe´ n`ay c˜ ung ph` u ho p v´o.i nhiˆ Mˆo.t v´ı du n˜ u.a cho thˆa´y l`a nhiˆ˜eu gi´o.i nˆo.i luˆon xuˆa´t hiˆe.n gia˙’i mˆo.t `an l´o.n c´ac sˆo´ b`ai to´an tˆo´i u.u (P ) hoˇa.c (Q) n`ao d¯´o bˇa` ng m´ay t´ınh Do phˆ `au hˆe´t thu c khˆong thˆe˙’ biˆe˙’u diˆ˜en ch´ınh x´ac bˇa` ng m´ay t´ınh, nˆen d¯ˆo´i v´o.i hˆ x ∈ D ta khˆong thˆe˙’ t´ınh ch´ınh x´ac d¯a.i lu.o ng f (x) = hAx, xi + hb, xi m`a chı˙’ c´o thˆe˙’ xˆa´p xı˙’ f (x) bo˙’.i mˆo.t sˆo´ dˆa´u chˆa´m d¯oˆ ng f˜(x) n`ao d¯´o H`am f˜ `oi, khˆong to`an phu.o.ng v`a thˆa.m ch´ı l`a khˆong liˆen tu.c trˆen D Khi khˆong lˆ d¯o´ h`am p := f˜− f mˆo ta˙’ c´ac lˆo˜i t´ınh to´an C´ac lˆo˜i d¯´o bi chˇa.n bo˙’.i mˆo.t cˆa.n trˆen s ∈ [0, +∞[ n`ao d¯o´ c´o thˆe˙’ u.o´.c lu.o ng d¯u.o c, t´ u.c l`a supx∈D |p(x)| ≤ s Ngo`ai ra, bˇa` ng c´ach su˙’ du.ng c´ac sˆo´ dˆa´u chˆa´m d¯oˆ ng d`ai ho.n v`a/hoˇa.c c´ac thuˆa.t to´an tˆo´t ho.n, ta c´o thˆe˙’ gia˙’m cˆa.n trˆen s L´ y th´ u hai: f˜ l`a h`am mu.c tiˆeu d¯´ıch thu c v`a f l`a h`am mu.c tiˆeu `eu d¯u.o c l´ y tu.o˙’.ng h´oa hoˇa.c l`a h`am mu.c tiˆeu thay thˆe´ Trong thu c tˆe´, nhiˆ `oi, hoˇa.c to`an h`am thˆe˙’ hiˆe.n mˆo.t sˆo´ mu.c tiˆeu thu c tiˆ˜en d¯u.o c gia˙’ d¯.inh l`a lˆ phu.o.ng, hoˇa.c c´o mˆo.t sˆo´ t´ınh chˆa´t thuˆa.n tiˆe.n d¯a˜ d¯u.o c nghiˆen c´ u.u k˜ y, hoˇa.c - iˆ `eu n`ay d¯˜a d¯u.o c dˆ˜e nghiˆen c´ u.u, nhu.ng thu c th`ı khˆong pha˙’i l`a nhu vˆa.y D H X Phu, H G Bock v`a S Pickenhain d¯`ˆe cˆa.p d¯ˆe´n [48] Trong bˆo´i ca˙’nh d¯´o, p = f˜ − f l`a h`am hiˆe.u chı˙’nh C´o thˆe˙’ gia˙’ thiˆe´t p l`a gi´o.i nˆo.i (tˆo´i thiˆe˙’u trˆen tˆa.p chˆa´p nhˆa.n d¯u.o c) bo˙’.i mˆo.t sˆo´ du.o.ng kh´a b´e s, v`ı nˆe´u |p(x)| qu´a l´o.n th`ı su thay thˆe´ khˆong c`on ph` u ho p n˜ u.a - ˆe˙’ gia˙’i th´ıch d¯iˆ `eu n`ay, ta d¯`ˆe cˆa.p d¯ˆe´n vˆa´n d¯`ˆe thu.o`.ng d¯u.o c nghiˆen c´ D u.u cu˙’a ph´at d¯iˆe.n tˆo´i u.u, t´ u.c l`a b`ai to´an phˆan bˆo´ lu.o ng d¯iˆe.n nˇang cho t` u.ng tˆo˙’ m´ay ph´at nhiˆe.t d¯iˆe.n cho tˆo˙’ng chi ph´ı (gi´a th`anh) l`a cu c tiˆe˙’u, d¯`oˆng `au lu.o ng d¯iˆe.n nˇang v`a thoa˙’ m˜an r`ang buˆo.c th`o.i vˆa˜n d¯a´p u ´.ng d¯u.o c nhu cˆ `e cˆong suˆa´t ph´at cu˙’a mˆo˜i tˆo˙’ m´ay Ngu.o`.i ta thu.o`.ng gia˙’ thiˆe´t (xem vˆ `om c´ac chi ph´ı nhiˆen liˆe.u [6], [11], [69], ) h`am chi ph´ı tˆo˙’ng cˆo.ng (bao gˆ (fuel cost), chi ph´ı ta˙’i sau (load-following cost), chi ph´ı du ph`ong quay (sprinning-reserve cost), chi ph´ı du ph`ong bˆo˙’ sung (supplemental-reserve `en dˆa˜n d¯iˆe.n nˇang) l`a h`am to`an phu.o.ng, cost), chi ph´ı tˆo˙’n thˆa´t ph´at v`a truyˆ `oi ngˇa.t v`a c´o da.ng lˆ F (P ) = n X Fi (Pi ), i=1 d¯o´ n l`a sˆo´ tˆo˙’ m´ay ph´at, P := (P1 , P2 , , Pn ), Pi ∈ [Pi , Pi max ] l`a u i, Pi , Pi max l`a cˆong suˆa´t ph´at lu.o ng d¯iˆe.n nˇang ph´at cu˙’a tˆo˙’ m´ay th´ u i, Fi (Pi ) = + bi Pi + ci Pi2 l`a nho˙’ nhˆa´t v`a l´o.n nhˆa´t cu˙’a tˆo˙’ m´ay ph´at th´ h`am chi ph´ı cu˙’a tˆo˙’ m´ay ph´at th´ u i v`a , bi , ci l`a c´ac hˆe sˆo´ gi´a cu˙’a tˆo˙’ m´ay ph´at th´ u i ∈ {1, 2, , n} `oi ngˇa.t cu˙’a h`am mu.c tiˆeu l`a qu´a l´ y D˜ı nhiˆen, gia˙’ thiˆe´t to`an phu.o.ng, lˆ tu.o˙’.ng Chi ph´ı thu c tˆe´ c´o thˆe˙’ khˆong l`a h`am to`an phu.o.ng v`a c˜ ung khˆong `oi ngˇa.t Nhu vˆa.y, d¯ˆe˙’ gia˙’ thiˆe´t vˆ `e t´ınh to`an phu.o.ng v`a lˆ `oi ngˇa.t l`a h`am lˆ `an h`am gi´o.i nˆo.i p hiˆe.u chı˙’nh h`am chi cu˙’a h`am mu.c tiˆeu d¯u.o c tho˙’a m˜an, cˆ - aˇ c biˆe.t (xem [62], [6], [11], [69], ), nˆe´u hiˆe.u u ph´ı thu c tˆe´ D ´.ng d¯iˆe˙’m-van d¯u.o c x´et d¯ˆe´n th`ı h`am chi ph´ı to`an phu.o.ng pha˙’i d¯u.o c hiˆe.u chı˙’nh bo˙’.i tˆo˙’ng u.c l`a h˜ u.u ha.n c´ac h`am da.ng sin, t´ n X Fi (Pi ) + |ei sin(fi (Pi − Pi ))| , F (P ) = i=1 d¯´o ei , fi l`a c´ac hˆe sˆo´ hiˆe.u u ´.ng d¯iˆe˙’m-van R˜o r`ang h`am hiˆe.u chı˙’nh P p := ni=1 |ei sin(fi (Pi − Pi ))| l`a gi´o.i nˆo.i - ˆe˙’ ngˇa´n go.n, ta thu.o`.ng go.i p l`a h`am nhiˆ˜eu (mˇa.c d` D u n´o khˆong chı˙’ d¯o´ng vai tr`o d¯o´ nhu d¯a˜ gia˙’i th´ıch o˙’ trˆen), f˜ l`a h`am bi nhiˆ˜eu v`a (P˜ ) v`a ˜ l`a c´ac b`ai to´an nhiˆ˜eu Thˆa.t ra, ch´ (Q) ung chı˙’ l`a c´ac thuˆa.t ng˜ u vay mu.o n, khˆong pha˙’i l´ uc n`ao c˜ ung ch´ınh x´ac nhu thu.o`.ng lˆe ˜ cˆ `an d¯u.o c nghiˆen Nh˜ u.ng vˆa´n d¯`ˆe g`ı l`a m´o.i cu˙’a c´ac b`ai to´an (P˜ ) v`a (Q) `an thiˆe´t, v`ı d¯a˜ c´o nh˜ c´ u.u? Cˆau ho˙’i n`ay l`a cˆ u.ng kˆe´t qua˙’ nghiˆen c´ u.u d¯aˇ c