1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Section 3 3 TRƯỜNG ĐIỆN TỪ

11 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 185,5 KB

Nội dung

3 3 Curl and Divergence Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edw[.]

3.3-1 Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jordan Professor of Electrical and Computer Engineering University of Illinois at Urbana-Champaign, Urbana, Illinois, USA Distinguished Amrita Professor of Engineering Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India 3.3 Curl and Divergence 3.3-3 Maxwell’s Equations in Differential Form B × E =  t D × H = J  t Curl ax ∂ × Α  ∂x Ax  D   B  ay ∂ ∂y Ay az ∂ ∂z Az A y A z  A x Divergence  A =   x y z 3.3-4 Basic definition of curl Lim  C A d l  × A = an S   S    max  × A is the maximum value of circulation of A per unit area in the limit that the area shrinks to the point Direction of  × A is the direction of the normal vector to the area in the limit that the area shrinks to the point, and in the right-hand sense 3.3-5 Curl Meter is a device to probe the field for studying the curl of the field It responds to the circulation of the field 3.3-6 3.3-7 a  2x for  x   v0 a az v  2x  a  v0    az for  x  a a    ax ay az  × v  x  y  z vz    × vy vz  ay x a  negative for  x     positive for a  x  a   2v0   a a y   2v0 a y  a 3.3-8 Basic definition of divergence Lim   A= v   A d S v is the outward flux of A per unit volume in the limit that the volume shrinks to the point Divergence meter is a device to probe the field for studying the divergence of the field It responds to the closed surface integral of the vector field 3.3-9 Example: At the point (1, 1, 0) (a)  x  1  y  1 a y Divergence positive (c) x a y y ax Divergence zero (b) x z x y 1 z x y 1 Divergence negative z y 3.3-10 Two Useful Theorems: Stokes’ theorem  A  d l =  × A   d S C S Divergence theorem  A  d S =    A  dv S V A useful identity    × A  3.3-11 ax ay az  × Α  x Ax  y Ay  z Az    × A =   × A x    × A  y    × A z x y z  x   x Ax  y  y Ay  z  0 z Az

Ngày đăng: 12/04/2023, 21:01