1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Section 4 6 TRƯỜNG ĐIỆN TỪ

15 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 319 KB

Nội dung

4 6 Boundary Conditions Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edw[.]

Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jordan Professor of Electrical and Computer Engineering University of Illinois at Urbana-Champaign, Urbana, Illinois, USA Distinguished Amrita Professor of Engineering Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India 4.6 Boundary Conditions 4.6-3 Why boundary conditions? Medium Inc wave Ref wave Medium Trans wave 4.6-4 Maxwell’s equations in integral form must be satisfied regardless of where the contours, surfaces, and volumes are Example: C3 C1 Medium C2 Medium 4.6-5 Example of derivation of boundary conditions d C E  d l  dt S B  d S Medium an Lim ad  bc   abcda as a b d c E  d l  Lim ad  bc  Medium d area B  d S  dt abcd 4.6-6 Eab ab   Ecd cd  0 Eab  Edc 0 aab  E1  E2  0 as × an  E1  E2  0 as  an × E1  E2  0 or, an × E1  E2  0 Et1  Et 0 4.6-7 Summary of boundary conditions an × E1  E2  0 or Et1  Et 0 an × H1  H2  J S or Ht1  H t  J S an  D1  D2  S or Dn1  Dn S an  B1  B2  0 or Bn1  Bn 0 4.6-8 Perfect Conductor Surface (No time-varying fields inside a perfect conductor Also no static electric field; may be a static magnetic field.) Assuming both E and H to be zero inside, on the surface, an × E = or Et 0 an × H = J S or Ht  J S an  D   S or Dn S an  B 0 or Bn 0 4.6-9 an E + - E   an JS H   H JS 4.6-10 Dielectric-Dielectric Interface S 0, J S 0 an × E1  E2  0 or Et1 Et an × H1  H2  0 or Ht1 Et an  D1  D2  0 or Dn1 Dn an  B1  B2  0 or Bn1 Bn 4.6-11 an Medium 1, e0 Dn1 En1 Dn2 En2 Bn1 Hn1 Bn2 Hn2 Et1 Et2 Medium 2, 3e0 an Medium 1, m0 Ht1 Ht2 Medium 2, 2m0 4.6-12 Example: D4.11 At a point on a perfect conductor surface,   (a) D D0 ax  2a y  2az and pointing away from the surface Find S D0 is positive D D0 ax  2a y  2az  an   D D0 ax  2a y  2az D D S an  D = D= D D  D D0 ax  2a y  2az 3D0 4.6-13   (b) D D0 0.6 ax  0.8 a y and pointing toward the surface D0 is positive D an  D D D S an  D =  D =  D D  D  D0 0.6 ax  0.8 a y  D0 4.6-14 Example: E1 E0 az for r  a (a) At 0, 0, a , an az E1 is entirely normal  D2 D1 2  E1 D2 E2  2E1 2 E0 az 0 z r>a e =e (0, 0, a) a a   0, ,   2   (0, a, 0) r

Ngày đăng: 12/04/2023, 21:02