1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Section 3 2 TRƯỜNG ĐIỆN TỪ

12 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 272 KB

Nội dung

No Slide Title Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jor[.]

Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jordan Professor of Electrical and Computer Engineering University of Illinois at Urbana-Champaign, Urbana, Illinois, USA Distinguished Amrita Professor of Engineering Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India 3.2 Gauss’ Laws and the Continuity Equation 3.2-3 GAUSS’ LAW FOR THE ELECTRIC FIELD S D • dS  V  dv z (x, y, z) x  Dx x x  y  z   Dx x  y  z   Dy   z  x   Dy   z  x y  y y   Dz z  z  x  y   Dz z  x  y   x  y  z z y y x 3.2-4  D   x x x   Dx x  y  z    Dy    Dy  Δ z Δ x y +Δy y Lim x  y  z    Dz z z   Dz z   x y  x y  z   x y  z Lim x   x y  z y  z  3.2-5 Dx Dy Dz    x y  z       Longitudinal derivatives of the components of D   • D  Divergence of D =  Ex Given that 0 for – a  x  a    0 otherwise Find D everywhere 3.2-6 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  • • • • • • • • • x=–a x=0 x=a Noting that  = (x) and hence D = D(x), we set    and  0, so that y z Dx Dy Dz Dx • D     x y z x 3.2-7 Thus, • D =  gives Dx   (x) x which also means that D has only an xcomponent Proceeding further, we have x Dx  –  x  dx  C where C is the constant of integration Evaluating the integral graphically, we have the following: 3.2-8  –a a x x –   ( x ) dx 0 a –a 0 a x From symmetry considerations, the fields on the two sides of the charge distribution must be equal in magnitude and opposite in direction Hence, C = – 0a 3.2-9 Dx 0 a –a a x – 0a – 0 a a x  D  0 x a x  0 a a x for x  –a for – a  x  a for x  a 3.2-10 GAUSS’ LAW FOR THE MAGNETIC FIELD  D • dS =   dv S From analogy V • D  S B • dS = = V dv  • B 0  • B 0 Solenoidal property of magnetic field lines Provides test for physical realizability of a given vector field as a magnetic field 3.2-11 LAW OF CONSERVATION OF CHARGE d  dv 0 J • dS  S dt V  • J  t (  ) 0    • J  t 0  Continuity Equation 3.2-12 SUMMARY B  E – t D  H J  t  • D  (1) (2) (3)  • B 0 (4)  • J  0 t (5) (4) is, however, not independent of (1), and (3) can be derived from (2) with the aid of (5)

Ngày đăng: 12/04/2023, 21:01