1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Section 3 1 TRƯỜNG ĐIỆN TỪ

16 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 261 KB

Nội dung

No Slide Title Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jor[.]

Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jordan Professor of Electrical and Computer Engineering University of Illinois at Urbana-Champaign, Urbana, Illinois, USA Distinguished Amrita Professor of Engineering Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India 3.1 Faraday’s Law and Ampère’s Circuital Law 3.1-3 Maxwell’s Equations in Differential Form Why differential form? Because for integral forms to be useful, an a priori knowledge of the behavior of the field to be computed is necessary The problem is similar to the following: If 0 y(x) dx 2, what is y(x)? There is no unique solution to this 3.1-4 However, if, e.g., y(x) = Cx, then we can find y(x), since then x 1 0 Cx dx 2 or C 2 0 2 or C 4    y(x) 4x On the other hand, suppose we have the following problem: dy If 2, what is y? dx Then y(x) = 2x + C Thus the solution is unique to within a constant 3.1-5 FARADAY’S LAW First consider the special case E  E x (z,t) a x and H  H y (z, t) a y and apply the integral form to the rectangular path shown, in the limit that the rectangle shrinks to a point y z (x, z) x z (x, z + z) S C (x + x, z) (x + x, z + z) x 3.1-6 d C E  d l  dt S B  dS  Ex z  z  d  By  x z x   Ex z x  x,z dt E   Lim x z  z x  z     Ex z x x  z d  Lim x  z  By Ex  z t  B   dt  y x, z  x z x z 3.1-7 General Case E  E x (x, y, z,t)a x  E y (x, y, z,t)a y  Ez (x, y, z, t)a z H  H x (x, y, z,t)a x  H y (x, y, z,t)a y  Hz (x, y, z, t)a z Ez E y Bx – – y z t By E x E z – – z x t E y E x Bz – – x y t Lateral space derivatives of the components of E Time derivatives of the components of B 3.1-8 Combining into a single differential equation, ax ay az  x Ex  y Ey  B – z t Ez B  E – t Differential form of Faraday’s Law     a x  ay  az x y z B Del Cross E or Curl of E = – t 3.1-9 AMPÈRE’S CIRCUITAL LAW Consider the general case first Then noting that d C E • dl  – dt S B • dS   E –  (B) we obtain from analogy, t d C H • dl  S J • dS  dt S D • dS  H J   (D) t 3.1-10 D  H J  t Thus Special case: E  E x (z,t)a x , H  H y (z,t)a y ax a y az  D 0 J  z t Hy H y Dx –  Jx  z t Differential form of Ampère’s circuital law 3.1-11 H y Dx  – Jx – z t   Ex For E E0 cos 6 ×10 t  kz a y in free space  0 ,   , J = , find the value(s) of k such that E satisfies both of Maxwell’s curl equations Noting that E  E y (z,t)a y , we have from B  E – , t 3.1-12 ax ay az  z B –  E  – 0 t Ey  Bx  Ey  t z     E0 cos 6 10 t  kz  z kE0 sin 6 108 t  kz  kE0 Bx  cos   10 t  kz   6 10 3.1-13 Thus, kE0 B  cos   10 t  kz ax  6 10 B B H  0 4 10 kE0  cos   10 t  kz ax  240 Then, noting that H  H x (z,t)a x , we have from D  H  , t 3.1-14 ax D  × H  t Hx ay 0 az  z  Dy  H x  t z k E0  sin   10 t  kz   240 3.1-15 k E0 Dy  cos   10 t  kz   1440 10 k E0 D cos   10 t  kz a y  1440 10 D D E   9  10 36 k E0  cos 6 10 t  kz a y 4 3.1-16 Comparing with the original given E, we have k E0 E0  4 k 2 E  E0 cos 6 108 t 2 z a y Sinusoidal traveling waves in free space, propagating in the z directions with velocity, 10 (c) m s 

Ngày đăng: 12/04/2023, 21:01